1887

Chapter 4 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815936/9781555814595_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555815936/9781555814595_Chap04-2.gif

Abstract:

is an anaerobic (microaerophilic), gram-positive, nonmotile, spore-forming, rod-shaped bacterium. is ubiquitous in the environment and is found in soil, dust, raw ingredients, such as spices used in food processing, and in the intestines of humans and animals. outbreaks usually result from improper handling and preparation of foods, such as inadequate cooling at the home, retail, or food service level, rarely involving commercial meat processors. This chapter discusses intrinsic and extrinsic factors that affect survival and growth in food products and contribute to outbreaks, and focuses on food processing operations that influence the numbers, spread, or characteristics. The presence of inhibitory agents in the products can affect germination of spores and may also affect the minimum growth temperatures for the germinated spores. Recent research has focused on combining traditional inactivation, survival, and growth-limiting factors at subinhibitory levels with emerging novel nonthermal intervention food preservation techniques using ionizing radiation, high hydrostatic pressure, or exposure to ozone. The ability of to cause food-borne illness and occasional associated outbreaks necessitates effective discriminatory detection methods for this pathogen in order to ensure reliable and confirmatory epidemiological screening of suspected foods. Many predictive growth models have been developed to accurately estimate survival following various types of food processing scenarios. The best strategy to control appears to be a hurdle approach combined with careful handling of foods to avoid temperature abuse.

Citation: Juneja V, Novak J, Labbe R. 2010. , p 53-70. In Juneja V, Sofos J (ed), Pathogens and Toxins in Foods. ASM Press, Washington, DC. doi: 10.1128/9781555815936.ch4

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.4103006
Meat and Meat Products
0.40073624
0.4103006
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555815936.ch04
1. Al-Khaldi, S. F.,, K. M. Myers,, A. Rasooly, and, V. Chizhikov. 2004. Genotyping of Clostridium perfringens toxins using multiple oligonucleotide microarray hybridization. Mol. Cell. Probes 18:359367.
2. Amezquita, A.,, C. L. Weller,, L. Wang,, H. Thippareddi, and, D. E. Burson. 2004. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham. Int. J. Food Microbiol. 101:123144.
3. Angulo, F. L.,, A. C. Voetsch,, D. Vugia,, J. L. Hadler,, M. Farley,, C. Hedberg,, P. Cieslak,, D. Morse,, D. Dwyer, and, D. L. Swerdlow. 1998. Determining the burden of human illness from foodborne diseases—CDC’s emerging infectious disease program Foodborne Diseases Active Surveillance Network (FoodNet). Vet. Clin. N. Amer. Food Anim. Pr. 14:165172.
4. Anonymous. 1995. Food poisoning—an overview. Int. Poul. Prod. 4:2021.
5. Aran, N. 2001. The effect of calcium and sodium lactates on growth from spores of Bacillus cereus and Clostridium perfringens in a ‘sous-vide’ beef goulash under temperature abuse. Int. J. Food Microbiol. 63:117123.
6. Araujo, P. M. August 2007. Culture medium for the detection of Clostridium perfringens. European Patent EP1816209 A2.
7. Araujo, M.,, R. A. Sueiro,, M. J. Gomez, and, M. J. Garrido. 2004. Enumeration of Clostridium perfringens spores in groundwater samples: comparison of six culture media. J. Microbiol. Methods. 57:175180.
8. Baez, L. A.,, and V. K. Juneja. 1995. Nonradioactive colony hybridization assay for detection and enumeration of enterotoxigenic Clostridium perfringens in raw beef. Appl. Environ. Microbiol. 61:807810.
9. Barnes, E. M.,, J. E. Despaul, and, M. Ingram. 1963. The behavior of a food poisoning strain of Clostridium welchii in beef. J. Appl. Bacteriol. 26:415427.
10. Bartholomew, B. A.,, M. F. Stringer,, G. N. Watson, and, R. J. Gilbert. 1985. Development and application of an enzyme linked immunosorbent assay for Clostridium perfringens type A enterotoxin. J. Clin. Pathol. 38:222228.
11. Bauer, F. T.,, J. A. Carpenter, and, J. O. Reagan. 1981. Prevalence of Clostridium perfringens in pork during processing. J. Food Prot. 44:279283.
12. Baums, C. G.,, U. Schotte,, G. Amtsberg, and, R. Goethe. 2004. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Vet. Microbiol. 100:1116.
13. Bean, N. H.,, and P. M. Griffin. 1990. Foodborne disease outbreaks in the United States, 1973–1987: pathogens, vehicles, and trends. J. Food Prot. 9:804817.
14. Bean, N. H.,, J. S. Goulding,, M. T. Daniels, and, F. J. Angulo. 1997. Surveillance for foodborne disease outbreaks—United States, 1988–1992. J. Food Prot. 60:12651286.
15. Beh, K. J.,, and S. H. Buttery. 1978. Reverse phase passive haemaglutination and single radial immunodiffusion to detect epsilon antigen of Clostridium perfringens type D. Aus. Vet. J. 54:541544.
16. Berry, P. R.,, J. C. Rodhouse,, S. Hughes,, B. A. Bartholomew, and, R. J. Gilbert. 1988. Evaluation of ELISA, RPLA, and Vero cell assays for detecting Clostridium perfringens enterotoxin in faecal specimens. J. Clin. Pathol. 41:458461.
17. Blankenship, L. C.,, S. E. Craven,, R. G. Leffler, and, C. Custer. 1988. Growth of Clostridium perfringens in cooked chili during cooling. Appl. Environ. Microbiol. 53:11041108.
18. Bradshaw, J.,, G. Stelma,, V. Jones,, J. Peeler,, J. Wimsatt,, J. Corwin, and, R. Twedt. 1982. Thermal inactivation of Clostridium perfringens enterotoxin in buffer and in chicken gravy. J. Food Sci. 47:914916.
19. Brett, M. M. 1998. Kits for the detection of some bacterial food poisoning toxins: problems, pitfalls, and benefits. J. Appl. Microbiol. 84:110S118S.
20. Brown, K. L. 2000. Control of bacterial spores. Bri. Med. Bull. 56:158171.
21. Bryan, F. L. 1969. What the sanitarian should know about Clostridium perfringens foodborne illness. J. Milk Food Technol. 32:381389.
22. Bryan, F. L. 1988. Risks associated with vehicles of foodborne pathogens and toxins. J. Food Prot. 51:498508.
23. Bryan, F. L.,, and T. W. McKinley. 1979. Hazard analysis and control of roast beef preparation in foodservice establishments. J. Food Prot. 42:418.
24. Brynestad, S.,, and P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74:195202.
25. Cardosi, M.,, S. Birch,, J. Talbot, and, A. Phillips. 2005. An electrochemical immunoassay for Clostridium perfringens phospholipase C. Electroanalysis 3:169176.
26. CDC. 2000. Surveillance for foodborne-disease outbreaks—United States, 1993–1997. MMWR Morb. Mortal. Wkly. Rep. 49:151.
27. Chumney, R. K.,, and D. M. Adams. 1980. Relationship between the increased sensitivity of heat injured Clostridium perfringens spores to surface-active antibiotics and to sodium chloride and sodium nitrite. J. Appl. Bacteriol. 49:5563.
28. Collie, R. E.,, and B. A. McClane. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J. Clin. Microbiol. 36:3036.
29. Craven, S. E. 2001. Occurrence of Clostridium perfringens in the broiler chicken processing plant as determined by recovery in iron milk medium. J. Food Prot. 64:19561960.
30. Craven, S. E. 1980. Growth and sporulation of Clostridium perfringens in foods. Food Technol. 34:8087, 95.
31. Davidson, P. M.,, and V. K. Juneja. 1990. Antimicrobial agents, p. 83. In A. L. Branen,, P. M. Davidson,, and S. Salminen (ed.), Food Additives. Marcel Dekker, Inc., New York, NY.
32. Deboer, E.,, W. Spiegelenberg, and, F. Jenssen. 1985. Microbiology of spices and herbs. Antonie van Leeuwenhoek 51:435438.
33. de Jong, A. E. I.,, G. P. Eijhusen,, E. J. F. Brouwer-Post,, M. Grand,, T. Johansson,, T. Karkkainen,, J. Marugg,, P. H. in’t Veld,, F. H. M. Warmerdam,, G. Worner,, A. Zicavo,, F. M. Rombouts, and, R. R. Beumer. 2003. Comparison of media for enumeration of Clostridium perfringens from foods. J. Microbiol. Meth. 54:359366.
34. de Jong, J. 1989. Spoilage of an acid food product by Clostridium perfringens, C. barati, and C. butyricum. Int. J. Food Microbiol. 8:121132.
35. Duncan, C. L.,, and D. H. Strong. 1969. Ileal loop fluid accumulation and production of diarrhea in rabbits by cell-free products of Clostridium perfringens. J. Bacteriol. 100:8694.
36. Duncan, C. L.,, D. H. Strong, and, M. Sebald. 1972. Sporulation and enterotoxin production by mutants of Clostridium perfringens. J. Bacteriol. 110:378391.
37. El Idrissi, A. H. 1989. A 4-layer sandwich ELISA for detection of Clostridium perfringens epsilon toxin. FAO Corporate Document Repository. http://www.fao.org/Wairdocs/ILRI/x5489B/x5489b14.htm. Accessed 25 January 2008.
38. Engstrom, B. E.,, C. Fermer,, A. Lindberg,, E. Saarinen,, V. Baverud, and, A. Gunnarsson. 2003. Molecular typing of isolates of Clostridium perfringens from healthy and diseased poultry. Vet. Microbiol. 9:225235.
39. Emswiler, B. S.,, C. J. Pierson, and, A. W. Kotula. 1977. Comparative study of two methods for detection of Clostridium perfringens in ground beef. Appl. Environ. Microbiol. 33:735737.
40. FDA. 2001. Limitation of growth of organisms of public health concern. 2001 Food Code. Part 3-5.
41. Gaze, J. E., R. Shaw,, and J. Archer. 1998. Identification and Prevention of Hazards Associated with Slow Cooling of Hams and Other Large Cooked Meats and Meat Products, review no. 8. Campden and Chorleywood Food Research Association, Gloucestershire, United Kingdom.
42. Gibson, A. M.,, and T. A. Roberts. 1986. The effect of pH, sodium chloride, sodium nitrite, and storage temperature on the growth of Clostridium perfringens and fecal streptococci in laboratory media. Int. J. Food Microbiol. 3:195210.
43. Goepfert, J. M.,, and H. K. Kim. 1975. Behavior of selected food-borne pathogens in raw ground beef. J. Milk Food Technol. 38:449456.
44. Gough, B. J.,, and J. A. Alford. 1965. Effect of curing agents on the growth and survival of food-poisoning strains of Clostridium perfringens. J. Food Sci. 30:10251028.
45. Hall, H. E.,, and R. Angelotti. 1965. Clostridium perfringens in meat and meat products. Appl. Microbiol. 13:352357.
46. Hallerbach, C. M.,, and N. N. Potter. 1981. Effects of nitrite and sorbate on bacterial populations in frankfurters and thuringer cervelat. J. Food Prot. 44:341346.
47. Harmon, S. M.,, D. A. Kautter, and, J. T. Peeler. 1971. Improved medium for enumeration of Clostridium perfringens. Appl. Microbiol. 22:688692.
48. Heikinheimo, A.,, M. Lindstrom, and, H. Korkeala. 2004. Enumeration and isolation of cpe-positive Clostridium perfringens spores from feces. J. Clin. Microbiol. 42:39923997.
49. Heredia, N. L.,, G. A. Garcia,, R. Luevanos,, R. G. Labbe, and, J. S. Garcia-Alvarado. 1997. Elevation of the heat resistance of vegetative cells and spores of Clostridium perfringens type A by sublethal heat shock. J. Food Prot. 60:9981000.
50. Hobbs, G.,, D. Cann,, B. Wilson, and, J. Shewan. 1965. The incidence of organisms of the genus Clostridium in vacuum-packed fish in the United Kingdom. J. Appl. Bacteriol. 28:265270.
51. Hobbs, B. C. 1979. Clostridium perfringens gastroenteritis, p. 131–167. In H. Riemann, and F. L. Bryan (ed.), Food-Borne Infections and Intoxications, 2nd ed. Academic Press, Inc., New York, NY.
52. Holley R. A.,, A. M. Lammerding,, and F. Tittiger. 1988. Microbiological safety of traditional and starter-mediated processes for the manufacture of Italian dry sausage. Int. J. Food Microbiol. 7:4962.
53. Hsieh, P.,, and R. Labbe. 2007. Influence of petone source on sporulation of Clostridium perfringens type A. J. Food Protect. 70:17301734.
54. Huang, L. 2003a. Growth kinetics of Clostridium perfringens in cooked beef. J. Food Saf. 23:91105.
55. Huang, L. 2003b. Estimation of growth of Clostridium perfringens in cooked beef under fluctuating temperature conditions. Food Microbiol. 20:549559.
56. Huang, L. 2003c. Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef. Int. J. Food Microbiol. 87:217227.
57. ICMSF. 1996. Clostridium perfringens, p. 112–115. Microorganisms in Foods 5: Characteristics of Microbial Pathogens. Blackie Academic and Professional, London, United Kingdom.
58. Juneja, V. K.,, H. Marks, and, H. Thippareddi. 2008. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef. Food Microbiol. 25:4255.
59. Juneja, V. K.,, and M. Friedman. 2007. Carvacrol, cinnamaldehyde, oregano oil, and thymol inhibit Clostridium perfringens spore germination and outgrowth in ground turkey during chilling. J. Food Prot. 70:218222.
60. Juneja, V. K.,, M. L. Bari,, Y. Inatsu,, S. Kawamoto, and, M. Friedman. 2007. Control of Clostridium perfringens by green tea leaf extracts during cooling of cooked ground beef, chicken, and pork. J. Food Prot. 70:14291433.
61. Juneja, V. K.,, H. Thippareddi, and, M. Friedman. 2006a. Control of Clostridium perfringens in cooked ground beef by carvacrol, cinnamaldehyde, thymol or oregano oil during chilling. J. Food Prot. 69:15461551.
62. Juneja, V. K.,, H. Thippareddi,, M. L. Bari,, Y. Inatsu,, S. Kawamoto, and, M. Friedman. 2006b. Chitosan protects cooked ground beef and turkey against Clostridium perfringens spores during chilling. J. Food Sci. 71:M236M240.
63. Juneja, V. K.,, L. Huang, and, H. Thippareddi. 2006c. Predictive model for growth of Clostridium perfringens in cooked cured pork. Int. J. Food Microbiol. 110:8592.
64. Juneja, V. K. 2006. Delayed Clostridium perfringens growth from a spore inocula by sodium lactate in sous-vide chicken products. Food Microbiol. 23:105111.
65. Juneja, V. K.,, and H. Thippareddi. 2004a. Inhibitory effects of organic acid salts on growth of Clostridium perfringens from spore inocula during chilling of marinated ground turkey breast. Int. J. Food Microbiol. 93:155163.
66. Juneja, V. K.,, and H. Thippareddi. 2004b. Control of Clostridium perfringens in a model roast beef by salts of organic acids during chilling. J. Food Saf. 24:95108.
67. Juneja, V. K.,, J. S. Novak,, L. Huang, and, B. S. Eblen. 2003. Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock. Food Control 14:163168.
68. Juneja, V. K.,, and H. M. Marks. 2002. Predictive model for growth of Clostridium perfringens during cooling of cooked cured chicken. Food Microbiol. 19:313327.
69. Juneja, V. K.,, J. S. Novak,, B. S. Eblen, and, B. A. McClane. 2001a. Heat resistance of Clostridium perfringens vegetative cells as affected by prior heat shock. J. Food Saf. 21:127139.
70. Juneja, V. K.,, J. S. Novak,, H. M. Marks, and, D. E. Gombas. 2001b. Growth of Clostridium perfringens from spore inocula in cooked cured beef: development of a predictive model. Innov. Food Sci. Emer. Technol. 2:289301.
71. Juneja, V. K.,, R. C. Whiting,, H. M. Marks, and, O. P. Snyder. 1999. Predictive model for growth of Clostridium perfringens at temperatures applicable to cooling of cooked meat. Food Microbiol. 16:335349.
72. Juneja, V. K.,, and B. S. Marmer. 1998. Thermal inactivation of Clostridium perfringens vegetative cells in ground beef and turkey as affected by sodium pyrophosphate. Food Microbiol. 15:281287.
73. Juneja, V. K.,, and B. S. Marmer. 1996. Growth of Clostridium perfringens from spore inocula in sous-vide turkey products. Int. J. Food Microbiol. 21:115123.
74. Juneja, V. K.,, B. S. Marmer, and, J. E. Call. 1996. Influence of modified atmosphere packaging on growth of Clostridium perfringens in cooked turkey. J. Food Saf. 16:141150.
75. Juneja, V. K.,, and W. M. Majka. 1995. Outgrowth of Clostridium perfringens spores in cook-in-bag beef products. J. Food Saf. 15:2134.
76. Juneja, V. K.,, J. E. Call,, B. S. Marmer, and, A. J. Miller. 1994a. The effect of temperature abuse on Clostridium perfringens in cooked turkey stored under air and vacuum. Food Microbiol. 11:187193.
77. Juneja, V. K.,, B. S. Marmer, and, A. J. Miller. 1994b. Growth and sporulation potential of Clostridium perfringens in aerobic and vacuum-packaged cooked beef. J. Food Prot. 57:393398.
78. Juneja, V. K.,, O. P. Snyder, and, M. Cygnarowicz-Provost. 1994c. Influence of cooling rate on outgrowth of Clostridium perfringens spores and cooked ground beef. J. Food Prot. 57:10631067.
79. Kalchayanand, N.,, C. P. Dunne,, A. Sikes, and, B. Ray. 2004. Germination induced and inactivation of Clostridium spores at medium-range hydrostatic pressure treatment. Innov. Food. Sci. Emerg. Tech. 5:277283.
80. Kalender, H.,, and H. B. Ertas. 2005. Isolation of Clostridium perfringens from chickens and detection of the alpha toxin gene by polymerase chain reaction (PCR). Turk. J. Vet. Anim. Sci. 29:847851.
81. Kalinowski, R. M.,, R. B. Tompkin,, P. W. Bodnaruk, and, W. P. Pruett. 2003. Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products. J. Food Prot. 66:12271232.
82. Kanakaraj, R.,, D. L. Harris,, J. G. Songer, and, B. Bosworth. 1998. Multiplex PCR assay for detection of Clostridium perfringens in feces and intestinal contents of pigs and in swine feed. Vet. Microbiol. 63:2938.
83. Kang C. K.,, M. Woodburn,, A. Pagenkopf, and, R. Cheney. 1969. Growth, sporulation, and germination of Clostridium perfringens in media of controlled water activity. Appl. Microbiol. 18:798805.
84. Keto-Timonen, R.,, A. Heikinheimo,, E. Eerola, and, H. Korkeala. 2006. Identification of Clostridium species and DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis. J. Clin. Microbiol. 44:40574065.
85. Kim, S.,, R. G. Labbe, and, S. Ryu. 2000. Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl. Environ. Microbiol. 66:12131215.
86. Kokai-Kun, J. F.,, J. G. Songer,, J. R. Czeczulin,, F. Chen, and, B. A. McClane. 1994. Comparison of Western immunoblots and gene detection assays for identification of potentially enterotoxigenic isolates of Clostridium perfringens. J. Clin. Microbiol. 32:25332539.
87. Labbe, R. J.,, and V. K. Juneja. 2006. Clostridium perfringens gastroenteritis. In H. Riemann, and D. O. Cliver (ed.), Foodborne Infections and Intoxications. Academic Press, Inc., San Diego, CA.
88. Labbe, R. J.,, and V. K. Juneja. 2002. Clostridium perfringens, p. 192–126. In D. O. Cliver, and H. Riemann (ed.), Foodborne Diseases. Academic Press, Inc., San Diego, CA.
89. Labbe, R. G. 1989. Clostridium perfringens, p. 192–234. In M. P. Doyle (ed.), Foodborne Bacterial Pathogens. Marcel Dekker, Inc., New York, NY.
90. Labbe, R. G.,, and C. L. Duncan. 1970. Growth from spores of Clostridium perfringens in the presence of sodium nitrite. Appl. Microbiol. 19:353359.
91. Ladiges, W. C.,, J. F. Foster, and, W. M. Ganz. 1974. Incidence and viability of Clostridium perfringens in ground beef. J. Milk Food Technol. 37:622626.
92. Li, J.,, S. Sayeed, and, B. A. McClane. 2007. Prevalence of enterotoxigenic Clostridium perfringens isolates in Pittsburgh (Pennsylvania) area soils and home kitchens. Appl. Environ. Microbiol. 73:72187224.
93. Lin, Y. T.,, and R. Labbe. 2003. Enterotoxigenicity and genetic relatedness of Clostridium perfringens isolates from retail food. Appl. Environ. Microbiol. 69:16421646.
94. Lindquist, S.,, and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631677.
95. Maslanka, S. E.,, J. G. Kerr,, G. Williams,, J. M. Barbaree,, L. A. Carson,, J. M. Miller, and, B. Swaminathan. 1999. Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations. J. Clin. Microbiol. 37:22092214.
96. Maurer, A. J. 1983. Reduced sodium usage in poultry muscle foods. Food Technol. 37:6065.
97. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin, and, R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
98. Miserez, R.,, J. Frey,, C. Buogo,, S. Capaul,, A. Tontis,, A. Burnens, and, J. Nicolet. 1998. Detection of α- and ε-toxigenic Clostridium perfringens type D in sheep and goats using a DNA amplification technique (PCR). Lett. Appl. Microbiol. 26:382386.
99. Miwa, N.,, T. Masuda,, A. Kwamura,, K. Terai, and, M. Akiyama. 2002. Survival and growth of enterotoxin-positive and enterotoxin-negative Clostridium perfringens in laboratory media. Int. J. Food Microbiol. 72:233238.
100. Naik, H.,, and C. Duncan. 1977. Rapid detection and quantitation of Clostridium perfringens enterotoxin by counterimmunoelectrophoresis. Appl. Environ. Microbiol. 34:125128.
101. Nauerby, B.,, K. Pedersen, and, M. Madsen. 2003. Analysis by pulsed-field gel electrophoresis of the genetic diversity among Clostridium perfringens isolates from chickens. Vet. Microbiol. 94:257266.
102. Naylor, R. D.,, P. K. Martin, and, R. T. Sharpe. 1987. Detection of Clostridium perfringens epsilon toxin by ELISA. Res. Vet. Sci. 42:255285.
103. Novak, J. S.,, and Y. T. C. Yuan. 2004. The fate of Clostridium perfringens spores exposed to ozone and/or mild heat pretreatment on beef surfaces followed by modified atmosphere packaging. Food Microbiol. 21:667673.
104. Oxoid Ltd. 2002. Improved detection of Clostridium perfringens in water samples. http://www.rapidmicrobiology.com/news/603h15.php. Accessed 25 January 2008.
105. Paine, C. M.,, and R. Cherniak. 1975. Composition of the capsular polysaccharides of Clostridium perfringens as a basis for their classification by chemotypes. Can. J. Microbiol. 21:181185.
106. Perigo, J. A.,, and T. A. Roberts. 1968. Inhibition of clostridia by nitrate. J. Food. Technol. 39:91.
107. Petit, L.,, M. Gilbert, and, M. R. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7:104110.
108. Phillips, D.,, D. Jordan,, S. Morris,, I. Jenson, and, J. Sumner. 2008. A national survey of the microbiological quality of retail raw meats in Australia. J. Food Prot. 71:12321236.
109. Rahmati, T.,, and R. Labbe. 2008. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. J. Food Prot. 71:11781185.
110. Rhodehamel, J.,, and S. Harmon. 1998. Clostridium perfringens, p. 16.01–16.06. In R. W. Bennett (ed.), FDA Bacteriological Analytical Manual, 8th ed. AOAC International, Gaithersburg, MD.
111. Riha, W. E.,, and M. Solberg. 1975. Clostridium perfringens inhibition by sodium nitrite as a function of pH, inoculum size, and heat. J. Food Sci. 40:439442.
112. Roberts, T. A.,, and C. M. Derrick. 1978. The effect of curing salts on the growth of Clostridium perfringens (welchii) in a laboratory medium. J. Food Technol. 13:349356.
113. Rodriguez-Romo, L. A.,, N. L. Heredia,, R. G. Labbe, and, J. S. Garcia-Alvarado. 1998. Detection of enterotoxigenic Clostridium perfringens in spices used in Mexico by dot blotting using a DNA probe. J. Food Prot. 61:201204.
114. Roy, R. J.,, F. F. Busta, and, D. R. Thompson. 1981. Thermal inactivation of Clostridium perfringens after growth at several constant and linearly rising temperatures. J. Food Sci. 46:15861591.
115. Sabah, J. R.,, H. Thippareddi,, J. L. Marsden, and, D. Y. C. Fung. 2003. Use of organic acids for the control of Clostridium perfringens in cooked vacuum-packaged restructured roast beef during an alternative cooling procedure. J. Food Prot. 66:14081412.
116. Sabah, J. R.,, V. K. Juneja, and, D. Y. C. Fung. 2004. Effect of spices and organic acids on the growth of Clostridium perfringens during cooling of cooked ground beef. J. Food Prot. 67:18401847.
117. Saito, M. 1990. Production of enterotoxin by Clostridium perfringens derived from humans, animals, foods, and the natural environment in Japan. J. Food Prot. 53:115118.
118. Sarker, M. R.,, R. P. Shivers,, S. G. Sparks,, V. K. Juneja, and, B. A. McClane. 2000. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl. Environ. Microbiol. 66:32343240.
119. Sauter, E. A.,, J. D. Kemp, and, B. E. Langlois. 1977. Effect of nitrite and erythorbate on recovery of Clostridium perfringens spores in cured pork. J. Food Sci. 42:16781679.
120. Schalch, B.,, J. Bjorkroth,, H. Eisgruber,, H. Korkeala, and, A. Stolle. 1997. Ribotyping for strain characterization of Clostridium perfringens isolates from food poisoning cases and outbreaks. Appl. Environ. Microbiol. 63:39923994.
121. Sheng, S.,, and R. Cherniak. 1998. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 10 determined by NMR spectroscopy. Carbohydr. Res. 305:6572.
122. Sheridan, J. J.,, R. L. Buchanan, and, T. J. Montville (ed.). 1996. HACCP: an Integrated Approach to Assuring the Microbiological Safety of Meat and Poultry. Food & Nutrition Press, Trumbull, CT.
123. Shigehisa, T.,, T. Nakagami, and, S. Taji. 1985. Influence of heating and cooling rates on spore germination and growth of Clostridium perfringens in media and in roast beef. Jpn. J. Vet. Sci. 47:259267.
124. Shinya, L. T.,, M. R. Baccaro, and, A. M. Moreno. 2006. Use of single-enzyme amplified fragment length polymorphism for typing Clostridium perfringens isolated from diarrheic piglets. Braz. J. Microbiol. 37:385389.
125. Shoemaker, S. P.,, and M. D. Pierson. 1976. “Phoenix phenomenon” in the growth of Clostridium perfringens. Appl. Environ. Microbiol. 32:803807.
126. Siragusa, G. R.,, M. D. Danyluk,, K. L. Hiett,, M. G. Wise, and, S. E. Craven. 2006. Molecular subtyping of poultry-associated type A Clostridium perfringens isolates by repetitive-element PCR. J. Clin. Microbiol. 44:10651073.
127. Smart, J. L.,, T. A. Roberts,, M. F. Stringer, and, N. Shah. 1979. The incidence and serotypes of Clostridium perfringens on beef, pork and lamb carcasses. J. Appl. Bacteriol. 46:377383.
128. Smith-Simpson, S.,, and D. W. Schaffner. 2005. Development of a model to predict growth of Clostridium perfringens in cooked beef during cooling. J. Food Prot. 68:336341.
129. Solberg, M.,, and B. Elkind. 1970. Effect of processing and storage conditions on the microflora of Clostridium perfringens-inoculated frankfurters. J. Food Sci. 35:126131.
130. Steele, F. M.,, and K. H. Wright. 2001. Cooling rate effect of outgrowth of Clostridium perfringens in cooked, ready-to-eat turkey breast roasts. Poult. Sci. 80:813816.
131. Sterne, M.,, and I. Batty. 1975. Pathogenic Clostridia, p. 79–122. Butterworths, London, England.
132. Stringer, M. F.,, P. C. B. Turnbull, and, R. J. Gilbert. 1980. Application of serological typing to the investigation of outbreaks of Clostridium perfringens food poisoning, 1970–1978. J. Hyg. 84:443456.
133. Strong, D. H.,, E. F. Foster, and, C. L. Duncan. 1970. Influence of water activity on the growth of Clostridium perfringens. Appl. Microbiol. 19:980987.
134. Strong, D. H.,, K. F. Weiss, and, L. W. Higgins. 1966. Survival of Clostridium perfringens in starch pastes. J. Am. Diet. Assoc. 49:191195.
135. Taormina, P. J.,, G. W. Bartholomew, and, W. J. Dorsa. 2003. Incidence of Clostridium perfringens in commercially produced cured raw meat product mixtures and behavior in cooked products during chilling and refrigerated storage. J. Food Prot. 66:7281.
136. Thippareddi, H.,, V. K. Juneja,, R. K. Phebus,, J. L. Marsden, and, C. L. Kastner. 2003. Control of Clostridium perfringens germination and outgrowth by buffered sodium citrate during chilling of ground roast beef and injected pork. J. Food Prot. 66:376381.
137. Todd, E. C. D. 1989. Costs of acute bacterial foodborne disease in Canada and the United States. Int. J. Food Microbiol. 9:313326.
138. Traci, P. A.,, and C. L. Duncan. 1974. Cold shock lethality and injury in Clostridium perfringens. Appl. Microbiol. 28:815821.
139. Tschirdewahn, B.,, S. Notermans,, K. Wernars, and, F. Untermann. 1991. The presence of enterotoxigenic Clostridium perfringens strains in feces of various animals. Int. J. Food Microbiol. 14:175178.
140. Tuomi, S.,, M. E. Matthews, and, E. H. Marth. 1974. Behavior of Clostridium perfringens in precooked chilled ground beef gravy during cooling, holding, and reheating. J. Milk Food Technol. 37:494498.
141. USDA/FSIS. 2001. Performance standards for the production of certain meat and poultry products, final rule. Fed. Regist. 64:732749.
142. Uzal, F. A.,, W. R. Kelly,, R. Thomas,, M. Hornitzky, and, F. Galea. 2003. Comparison of four techniques for the detection of Clostridium perfringens type D epsilon toxin in intestinal contents and other body fluids of sheep and goats. J. Vet. Diagn. Invest. 15:9499.
143. Van Damme-Jongsten, M.,, M. K. Wernars, and, S. Notermans. 1989. Cloning and sequencing of the Clostridium perfringens enterotoxin gene. Antonie van Leeuwenhoek 56:181190.
144. Vareltzis, K.,, E. M. Buck, and, R. G. Labbe. 1984. Effectiveness of a Betalains/Potassium Sorbate system versus sodium nitrite for color development and control of total aerobes, Clostridium perfringens and Clostridium sporogenes in chicken frank furters. J. Food Prot. 47:532536.
145. Vos, P.,, R. Hogers,, M. Bleeker,, M. Reijans,, T. van de Lee,, M. Hornes,, A. Frijters,, J. Pot,, J. Peleman,, M. Kulper, and, M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res. 23:44074414.
146. Waldroup, A. L. 1996. Contamination of raw poultry with pathogens. World Poult. Sci. J. 52:725.
147. Walker, H. W. 1975. Foodborne illness from Clostridium perfringens. CRC Crit. Rev. Food Sci. Nutr. 7:71104.
148. Weddell, W.,, and R. W. Worthington. 1984. An enzyme labeled immunosorbent assay for measuring Clostridium perfringens epsilon toxin gut contents. N. Z. Vet. J. 33:3637.
149. Wen, Q.,, and B. McClane. 2004. Detection of enterotoxigenic Clostridium perfringens type A isolates in American retail foods. Appl. Environ. Microbiol. 70:26852691.
150. Willardsen, R. R.,, F. F. Busta, and, C. E. Allen. 1979. Growth of Clostridium perfringens in three different beef media and fluid thioglycollate medium at static and constantly rising temperatures. J. Food Prot. 42:144148.
151. Willardsen, R. R.,, F. F. Busta,, C. E. Allen, and, L. B. Smith. 1978. Growth and survival of Clostridium perfringens during constantly rising temperatures. J. Food Sci. 43:470475.
152. Wise, M.,, and G. R. Siragusa. 2005. Semi-quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl. Environ. Microbiol. 71:39113916.
153. Xylouri, E.,, C. Papadopoulou,, G. Antoniadis, and, E. Stoforos. 1997. Rapid identification of Clostridium perfringens in animal feedstuffs. Anaerobe 3:191193.
154. Zaika, L. L. 2003. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef. J. Food Prot. 66:15991603.

Tables

Generic image for table
Table 1.

Toxins of

Citation: Juneja V, Novak J, Labbe R. 2010. , p 53-70. In Juneja V, Sofos J (ed), Pathogens and Toxins in Foods. ASM Press, Washington, DC. doi: 10.1128/9781555815936.ch4
Generic image for table
Table 2.

Comparison of commonly used discriminatory methods for detection of

Citation: Juneja V, Novak J, Labbe R. 2010. , p 53-70. In Juneja V, Sofos J (ed), Pathogens and Toxins in Foods. ASM Press, Washington, DC. doi: 10.1128/9781555815936.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error