1887

Chapter 11 : Immunoglobulin M Determinations

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Immunoglobulin M Determinations, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555815974/9781555814625_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555815974/9781555814625_Chap11-2.gif

Abstract:

Since the introduction of the first applications of immunoglobulin M (IgM) determinations in diagnostic virology, a variety of methods have been developed and applied. These methods can generally be separated into three groups: (i) those based on comparing IgM titers before and after chemical inactivation of serum IgM, (ii) those based on the physicochemical separation of IgM from other serum Ig classes, and (iii) those based on solid-phase immunologic detection of IgM antibodies. This chapter discusses the relative merits of each of these approaches. Physicochemical separation methods were originally developed to separate IgM antibodies from other serum Igs to facilitate assay by conventional serological tests, e.g., complement fixation (CF) and hemagglutination inhibition (HI) assays. The major distinguishing features of solid-phase immunoassays are the choice of indicator label and solid phase. Solid-phase immunoassays can be further differentiated into indirect and reverse, or “capture,” forms, based on the orientation of the immunoreactants on the solid phase. The indirect and capture formats have advantages and disadvantages that are described in detail. Compared to the whole virus antigen-based IgM immunoassay, the recombinant protein-based assay offers several distinct advantages. First, the use of infectious virus and special safety precautions used for antigen production are not required. Second, recombinant proteins can be easily standardized and quality controlled. Third, recombinant antigen production is efficient and relatively economical, thus eliminating the generally high production costs associated with virus cultivation.

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Primary and secondary immune responses to a hypothetical virus infection. After primary exposure to the viral antigen, there is usually an early and pronounced rise in IgM antibodies, followed by a gradual rise in IgG. IgM antibodies then typically decline to undetectable levels within 1 to 3 months, whereas IgG antibodies can persist for years. Because immunological memory develops, reexposure to the same or similar virus usually results in an early and enhanced rise in IgG antibodies and an attenuated IgM response.

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schema of indirect solid-phase immunoassay for IgM antibody.

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schema of false-positive IgM result caused by RF interference in indirect solid-phase immunoassay.

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schema of reverse, or capture, solid-phase immunoassay for IgM antibody.

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schema of false-positive IgM result caused by RF interference in reverse, or capture, solid-phase immunoassay.

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555815974.ch11
1. Al-Nakib, W. 1980. A modified passive-haemagglutination technique for the detection of cytomegalovirus and herpes simplex virus antibodies: application in virus-specific IgM diagnosis. J. Med. Virol. 5:287293.
2. Anandarao, R.,, S. Swaminathan,, S. Fernando,, A. M Jana, and, N. Khanna. 2005. Custom designed recombinant multiepitope protein as a dengue diagnostic reagent. Protein Expr. Purif. 41:136147.
3. Anandarao, R.,, S. Swaminathan,, S. Fernando,, A. M. Jana, and, H. Khanna. 2006. Recombinant multiepitope protein for early detection of dengue infections. Clin. Vaccine Immunol. 13:5967.
4. Ankerst, J.,, P. Christensen,, L. Kjellén, and, G. Kronvall. 1974. A routine diagnostic test for IgA and IgM antibodies to rubella virus: absorption of IgG with Staphylococcus aureus. J. Infect. Dis. 130:268273.
5. Banatvala, J. E.,, J. M. Best,, E. A. Kennedy,, E. E. Smith, and, M. E. Spence. 1967. A serological method for demonstrating recent infection by rubella virus. Br. Med. J. 3:285286.
6. Barros, M. F.,, and P. Lebon. 1975. Séparation des anticorps IgM anti-rubéole par chromatographie d’affinité. Biomedicine 23:184188.
7. Baublis, J. V.,, and G. C. Brown. 1968. Specific response of the immunoglobulins to rubella infection. Proc. Soc. Exp. Biol. Med. 128:206210.
8. Beck, O. E. 1981. Distribution of virus antibody activity among human IgG subclasses. Clin. Exp. Immunol. 43:626632.
9. Besselaar, T. G.,, N. K. Blackburn, and, N. Aldridge. 1989. Comparison of an antibody-capture IgM enzyme-linked immunosorbent assay with IgM-indirect immunofluorescence for the diagnosis of acute Sindbis and West Nile infections. J. Virol. Methods 25:337345.
10. Björck, L.,, and B. Kronvall. 1984. Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J. Immunol. 133:969974.
11. Caul, E. O.,, S. J. Hobbs,, P. C. Roberts, and, S. K. R. Clarke. 1978. Evaluation of a simplified sucrose gradient method for the detection of rubella-specific IgM in routine diagnostic practice. J. Med. Virol. 2:153163.
12. Caul, E. O.,, G. W. Smyth, and, S. K. R. Clarke. 1974. A simplified method for the detection of rubella-specific IgM employing sucrose density fractionation and 2-mercapto-ethanol. J. Hyg. (Cambridge) 73:329340.
13. Chantler, S.,, and C. J. Evans. 1986. Selection and performance of monoclonal and polyclonal antibodies in an IgM antibody capture enzyme immunoassay for rubella. J. Immunol. Methods 87:109117.
14. Cuzzubbo, A. J.,, T. P. Endy,, A. Nisalak,, S. Kalayanarooj,, D. W. Vaughn,, S. A. Ogata,, D. E. Clements, and, P. L. Devine. 2001. Use of recombinant envelope proteins for serological diagnosis of Dengue virus infection in an immunochromatographic assay. Clin. Diagn. Lab. Immunol. 8:11501155.
15. Duermeyer, W.,, F. Wielaard, and, J. van der Veen. 1979. A new principle for the detection of specific IgM antibodies applied in an ELISA for hepatitis A. J. Med. Virol. 4:2532.
16. Elder, B. L.,, and T. F. Smith. 1987. Evaluation of cytomegelisa immunoglobulin M assay and comparison with indirect fluorescent antibody testing of QAE-Sephadex A50-treated sera. Am. J. Clin. Pathol. 87:230235.
17. Elder, B. L.,, C. D. Shelley, and, T. F. Smith. 1987. Evaluation of quarternary aminoethyl-Sephadex A50 column chromatography for detection of anti-cytomegalovirus immunoglobulin M. Mayo Clin. Proc. 62:345350.
18. Field, P. R.,, S. Shanker, and, A. M. Murphy. 1980. The use of protein A Separose affinity chromatography for separation and detection of specific IgM antibody in acquired rubella infection: a comparison with absorption by staphylococci containing protein A and density gradient ultracentrifugation. J. Immunol. Methods 32:5970.
19. Flehmig, B. 1978. Laboratoriumsdiagnose der Hepatitis A-Infektion. Bundesgesundheitsblatt 21:277283.
20. Forghani, B.,, N. J. Schmidt, and, E. H. Lennette. 1973. Demonstration of rubella IgM antibody by indirect fluorescent antibody staining, sucrose density gradient centrifugation and mercaptoethanol reduction. Intervirology 1:4859.
21. Frisch-Niggemeyer, W. 1982. Simple and rapid chromatographic separation of IgM using microcolumns and stained sera. J. Virol. Methods 5:135142.
22. Frösner, G. G.,, R. Scheid,, H. Wolf, and, F. Deinhardt. 1979. Immunoglobulin M anti-hepatitis A virus determination by reorienting gradient centrifugation for diagnosis of acute hepatitis A. J. Clin. Microbiol. 9:476478.
23. Fuccillo, D. A.,, D. A. Vacante, and, J. L. Sever. 1992. Rapid viral diagnosis, p. 545–553. In N. R. Rose,, E. C. deMacario,, J. L. Fahey,, H. Friedman, and, G. M. Penn (ed.), Manual of Clinical Laboratory Immunology, 4th ed. ASM Press, Washington, DC.
24. Geha, R. S.,, and F. S. Rosen. 1994. The genetic basis of immunoglobulin-class switching. N. Engl. J. Med. 330:10081009.
25. Gerna, G.,, M. Zannino,, M. G. Revello,, E. Petruzelli, and, M. Dovis. 1987. Development and evaluation of a capture enzyme-linked immunosorbent assay for determination of rubella immunoglobulin M using monoclonal antibodies. J. Clin. Microbiol. 25:10331038.
26. Gutierrez, J.,, and C. Maroto. 1996. Are IgG antibody avidity assays useful in the diagnosis of infectious diseases? A review. Microbios 87:113121.
27. Hawkes, R. A.,, C. R. Boughton,, V. Ferguson, and, N. I. Leh-mann. 1980. Use of immunoglobulin M antibody to hepatitis B core antigen in diagnosis of viral hepatitis. J. Clin. Microbiol. 11:581583.
28. Heidelberger, M.,, and K. O. Pedersen. 1937. The molecular weight of antibodies. J. Exp. Med. 65:393414.
29. Heinz, F. X.,, M. Roggendorf,, H. Hofmann,, C. Kunz, and, F. Dienhardt. 1981. Comparison of two different enzyme immunoassays for detection of immunoglobulin M antibodies against tick-borne encephalitis virus in serum and cerebrospinal fluid. J. Clin. Microbiol. 14:141146.
30. Hilfenhaus, S.,, B. J. Cohen,, C. Bates,, S. Kajigaya,, N. S. Young,, M. Zambon, and, P. P. Mortimer. 1993. Antibody capture haemadherence tests for parvovirus B19-specific IgM and IgG. J. Virol. Methods 45:2737.
31. Hogrefe, W. R.,, R. Moore,, M. Lape-Nixon,, M. Wagner, and, H. E. Prince. 2004. Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. J. Clin. Microbiol. 42:46414648.
32. Hüser, A.,, and C. Hofmann. 2003. Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. Am. J. Pharmacogenomics 3:5363.
33. Jenkerson, S. A.,, M. Beller,, J. P. Middaugh, and, D. D. Erdman. 1995. False positive rubeola IgM tests. N. Engl. J. Med. 332:11031104.
34. Johnson, R. B., Jr., and, R. Libby. 1980. Separation of immunoglobulin M (IgM) essentially free of IgG from serum for use in systems requiring assay of IgM-type antibodies without interference from rheumatoid factor. J. Clin. Microbiol. 12:451454.
35. Krech, U.,, and J. A. Wilhelm. 1979. A solid-phase immunosorbent technique for the rapid detection of rubella IgM by haem-agglutination inhibition. J. Gen. Virol. 44:281286.
36. Kronvall, G.,, A. Simmons,, E. B. Myhre, and, S. Jonsson. 1979. Specific absorption of human serum albumin, immunoglobulin A, and immunoglobulin G with selected strains of group A and G streptococci. Infect. Immun. 25:110.
37. Kronvall, G.,, and R. C. Williams, Jr. 1969. Differences in anti-protein A activity among IgG subgroups. J. Immunol. 103:828833.
38. Ksiazek, T. G.,, D. Erdman,, C. S. Goldsmith,, S. R. Zaki,, T. Peret,, S. Emery,, S. Tong,, C. Urbani,, J. A. Comer,, W. Lim,, P. E. Rollin,, S. F. Dowell,, A. E. Ling,, C. D. Humphrey,, W. J. Shieh,, J. Guarner,, C. D. Paddock,, P. Rota,, B. Fields,, J. DeRisi,, J. Y. Yang,, N. Cox,, J. M. Hughes,, J. W. LeDuc,, W. J. Bellini, and, L. J. Anderson. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348:19531966.
39. Kurtz, J. B.,, and M. J. Anderson. 1985. Cross-reactions in rubella and parvovirus specific IgM tests. Lancet ii:1356.
40. Landini, M. P.,, T. Lazzarotto,, G. T. Maine,, A. Ripalti, and, R. Flanders. 1995. Recombinant mono- and polyantigens to detect cytomegalovirus-specific immunoglobulin M in human sera by enzyme immunoassay. J. Clin. Microbiol. 33:25352542.
41. Maache, M.,, F. Komurian-Pradel,, A. Rajoharison,, M. Perret,, J. L. Berland,, S. Pouzol,, A. Bagnaud,, B. Duverger,, J. Xu,, A. Osuna, and, G. Paranhos-Baccala. 2006. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid-based western blot assay were recified by the use of two subunit (S1 and S2) of spike for detection of antibody to SARS-CoV. Clin. Vaccine Immunol. 13:409414.
42. Maine, G. T.,, R. Stricker,, M. Schuler,, J. Spesard,, S. Brojanac,, B. Iriarte,, K. Herwig,, T. Gramins,, B. Combs,, J. Wise,, H. Simmons,, T. Gram,, J. Lonze,, D. Ruzicki,, B. Byrne,, J. D. Clifton,, L. E. Chovan,, D. Wachta,, C. Holas,, D. Wang,, T. Wilson,, S. Tomazic-Allen,, M. A. Clements,, G. L. Wright, Jr.,, T. Lazzarotto,, A. Ripalti, and, M. P. Landini. 2000. Development and clinical evaluation of a recombinant-antigen-based cytomegalovirus immunoglobulin M automated immunoassay using the Abbott AxSYM analyzer. J. Clin. Microbiol. 38:14761481.
43. Marston, F. A. 1986. The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240:112.
44. Martins, T. B.,, T. D. Jaskowski,, C. L. Mouritsen, and, H. R. Hill. 1995. An evaluation of the effectiveness of three immunoglobulin G (IgG) removal procedures for routine IgM serological testing. Clin. Diagn. Lab. Immunol. 2:98103.
45. McCartney, R. A.,, J. E. Banatvala, and, E. J. Bell. 1986. Routine use of mu-antibody-capture ELISA for the serological diagnosis of Coxsackie B virus infections. J. Med. Virol. 19:205212.
46. Meurman, O. 1983. Detection of antiviral IgM antibodies and its problems—a review. Curr. Top. Microbiol. Immunol. 104:101131.
47. Miendje Deyi, Y.,, P. Goubau, and, M. Bodéus. 2000. False-positive IgM antibody tests for cytomegalovirus in patients with acute Epstein-Barr virus infection. Eur. J. Clin. Microbiol. Infect. Dis. 19:557560.
48. Morgan-Capner, P.,, E. Davies, and, J. R. Pattison. 1980. Rubella-specific IgM detection using Sephacryl S-300 gel filtration. J. Clin. Pathol. 33:10821085.
49. Morgan-Capner, P.,, R. S. Tedder, and, J. E. Mace. 1983. Rubella-specific IgM reactivity in sera from cases of infectious mononucleosis. J. Hyg. (Cambridge) 90:407413.
50. Morinet, F.,, A. M. Courouce,, F. Galibert, and, Y. Perol. 1991. The use of labeled fusion protein for detection of B19 parvovirus IgM antibodies by an immunocapture test. J. Virol. Methods 32:2130.
51. Muerhoff, A. S.,, G. J. Dawson,, B. Dille,, R. Gutierrez,, T. P. Leary,, M. C. Gupta,, C. R. Kyrk,, H. Kapoor,, P. Clark,, G. Schochetman, and, S. M. Desai. 2004. Enzyme-linked immunosorbent assays using recombinant envelope protein expressed in COS-1 and Drosophila S2 cells for detection of West Nile virus immunoglobulin M in serum or cerebrospinal fluid. Clin. Diagn. Lab. Immunol. 11:651657.
52. Nielsen, C. M.,, K. Hansen,, H. M. Andersen,, J. Gerstoft, and, B. F. Vestergaard. 1987. An enzyme labelled nuclear antigen immunoassay for detection of cytomegalovirus IgM antibodies in human serum: specific and nonspecific reactions. J. Med. Virol. 22:6776.
53. Pattison, J. R.,, J. E. Mace, and, D. S. Dane. 1976. The detection and avoidance of false-positive reactions in tests for rubella-specific IgM. J. Med. Microbiol. 9:355357.
54. Pickering, J. W.,, B. Forghani,, G. R. Shell, and, L. Wu. 1998. Comparative evaluation of three recombinant antigen-based enzyme immunoassays for detection of IgM and IgG antibodies to human parvovirus B19. Clin. Diagn. Virol. 9:5763.
55. Purdy, D. E.,, A. J. Noga, and, G. J. Chang. 2004. Noninfectious recombinant antigen for detection of St. Louis encephalitis virus-specific antibodies in serum by enzyme-linked immunosorbent assay. J. Clin. Microbiol. 42:47094717.
56. Re, M. C.,, and M. P. Landini. 1989. IgM to human cytomegalovirus: comparison to two enzyme immunoassays and IgM reactivity to viral polypeptides detected by immunoblotting. J. Clin. Lab. Anal. 3:169173.
57. Roggendorf, M.,, F. Heinz,, F. Deinhardt, and, C. Kunz. 1981. Serological diagnosis of acute tick-borne encephalitis by demonstration of antibodies of the IgM class. J. Med. Virol. 7:4150.
58. Rota, P. A.,, M. S. Oberste,, S. S. Monroe,, W. A. Nix,, R. Campagnoli,, J. P. Icenogle,, S. Penaranda,, B. Bankamp,, K. Maher,, M. H. Chen,, S. Tong,, A. Tamin,, L. Lowe,, M. Frace,, J. L. DeRisi,, Q. Chen,, D. Wang,, D. D. Erdman,, T. C. Peret,, C. Burns,, T. G. Ksiazek,, P. E. Rollin,, A. Sanchez,, S. Liffick,, B. Holloway,, J. Limor,, K. McCaustland,, M. Olsen-Rasmussen,, R. Fouchier,, S. Gunther,, A. D. Osterhaus,, C. Drosten,, M. A. Pallansch,, L. J. Anderson, and, W. J. Bellini. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300:13941399.
59. Rudolph, R.,, and H. Lilie. 1996. In vitro folding of inclusion body proteins. FASEB J. 10:4956.
60. Salonen, E. M.,, A. Vaheri,, J. Suni, and, O. Wager. 1980. Rheumatoid factor in acute viral infections: interference with determination of IgM, IgG, and IgA antibodies in an enzyme immunoassay. J. Infect. Dis. 142:250255.
61. Samuel, D.,, K. Sasnauskas,, L. Jin,, S. Beard,, A. Zvirbliene,, A. Gedvilaite, and, B. Cohen. 2002. High level expression of recombinant mumps nucleoprotein in Saccharomyces cerevisiae and its evaluation in mumps IgM serology. J. Med. Virol. 66:123130.
62. Sathish, N.,, D. J. Manayani,, V. Shankar,, M. Abraham,, G. Nithyanandam, and, G. Sridharan. 2002. Comparison of IgM capture ELISA with a commercial rapid immunochromatographic card test & IgM microwell ELISA for the detection of antibodies to dengue viruses. Indian J. Med. Res. 115:3136.
63. Schluederberg, A. 1965. Immune globulins in human viral infections. Nature 205:12321233.
64. Schmidt, J.,, H. Meisel,, B. Hjelle,, D. H. Kruger, and, R. Ulrich. 2005. Development and evaluation of serological assays for detection of human hantavirus infections caused by Sin Nombre virus. J. Clin. Virol. 33:247253.
65. Schmitz, H.,, U. von Deimling, and, B. Flehmig. 1980. Detection of IgM antibodies to cytomegalovirus (CMV) using an enzyme-labelled antigen (ELA). J. Gen. Virol. 50:5968.
66. Sjolander, K. B.,, F. Elgh,, H. Kallio-Kokko,, O. Vapalahti,, M. Hagglund,, V. Palmcrantz,, P. Juto,, A. Vaheri,, B. Niklasson, and, A. Lundkvist. 1997. Evaluation of serological methods for diagnosis of Puumala hantavirus infection (nephropathia epidemica). J. Clin. Microbiol. 35:32643268.
67. Sun, Z. F.,, and X. J. Meng. 2004. Antigenic cross-reactivity between the nucleocapsid protein of severe acute respiratory syndrome (SARS) coronavirus and polyclonal antisera of antigenic group I animal coronaviruses: implication for SARS diagnosis. J. Clin. Microbiol. 42:23512352.
68. Thomas H. I.,, E. Barrett,, L. M. Hesketh,, A. Wynne, and, P. Morgan-Capner. 1999. Simultaneous IgM reactivity by EIA against more than one virus in measles, parvovirus B19 and rubella infection. J. Clin. Virol. 14:107118.
69. Tuokko, H. 1988. The detection of measles specific immunoglobulin M antibodies using biotinylated antigens. Acta. Pathol. Microbiol. Immunol. Scand. 96:491496.
70. Van der Logt, J. T. M.,, A. M. van Loon, and, J. Van der Veen. 1981. Hemadsorption immunosorbent technique for determination of rubella immunoglobulin M antibody. J. Clin. Microbiol. 13:410415.
71. Van der Logt, J. T. M.,, A. M. van Loon, and, J. Van der Veen. 1985. Detection of parainfluenza IgM antibody by hemadsorption immunosorbent technique. J. Med. Virol. 10:213221.
72. Vesikari, T.,, and A. Vaheri. 1968. Rubella: a method for rapid diagnosis of a recent infection by demonstration of the IgM antibodies. Br. Med. J. 1:221223.
73. Voller, A.,, and D. E. Bidwell. 1976. Enzyme-immunoassays for antibodies in measles, cytomegalovirus infections and after rubella vaccination. Br. J. Exp. Pathol. 57:243247.
74. Vuorinen, T.,, and O. Meurman. 1989. Enzyme immunoassays for detection of IgG and IgM antibodies to parainfluenza types 1, 2, and 3. J. Virol. Methods 23:6370.
75. Weiblen, B. J.,, R. T. Schumacher, and, R. Hoff. 1990. Detection of IgM and IgA HIV antibodies after removal of IgG with recombinant protein G. J. Immunol. Methods 126:199204.
76. Welliver, R. C.,, T. N. Kaul,, T. I. Putnam,, M. Sun,, K. Riddlesberger, and, P. L. Ogra. 1980. The antibody response to primary and secondary infection with respiratory syncytial virus: kinetics of class-specific responses. J. Ped. 96:808813.
77. Wielaard, F.,, A. Denissen,, J. Van Elleswijk-v.d. Berg, and, G. van Gemert. 1985. Clinical validation of an antibody-capture anti-rubella IgM-ELISA. J. Virol. Methods 10:349354.
78. Wolff, K. L.,, D. J. Muth,, B. W. Hudson, and, D. W. Trent. 1981. Evaluation of the solid-phase radioimmunoassay for diagnosis of St. Louis encephalitis infection in humans. J. Clin. Microbiol. 14:135140.
79. Woo, P. C.,, S. K. Lau,, H. W. Tsoi,, K. H. Chan,, H. Wong,, X. Y. Che,, V. K. Tam,, S. C. Tam,, V. C. Cheng,, I. F. Hung,, S. S. Wong,, B. J. Zheng,, Y. Guan, and, K. Y. Yuen. 2004a. Relative rates of non-pneumonic SARS coronavirus infection and SARS coronavirus pneumonia. Lancet 363:841845.
80. Woo, P. C.,, S. K. Lau,, B. H. Wong,, K. H. Chan,, W. T. Hui,, G. S. Kwan,, J. S. Peiris,, R. B. Couch, and, K. Y. Yuen. 2004b. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by western blotting with recombinant SARS-CoV spike polypeptide. J. Clin. Microbiol. 42:58855888.
81. Yu, F.,, M. Q. Le,, S. Inoue,, F. Hasebe,, M. del C. Parquet,, S. Morikawa, and, K. Morita. 2007. Recombinant truncated nucleocapsid protein as antigen in a novel immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of severe acute respiratory syndrome coronavirus infection. Clin. Vaccine Immunol. 14:146149.
82. Yu, F.,, M. Q. Le,, S. Inoue,, T. C. T. Hong,, H. Futoshi,, M. C. del Parquet, and, K. Morita. 2005. Evaluation of inapparent nosocomial severe acute respiratory syndrome coronavirus infection in Vietnam by use of highly specific recombinant truncated nucleocapsid protein-based enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 12:848854.

Tables

Generic image for table
TABLE 1

Methods for IgM antibody determination

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11
Generic image for table
TABLE 2

A selection of commercial vendors of diagnostic kits for virus-specific IgM antibodies

Citation: Erdman D, Haynes L. 2009. Immunoglobulin M Determinations, p 124-133. In Specter S, Hodinka R, Young S, Wiedbrauk D (ed), Clinical Virology Manual, Fourth Edition. ASM Press, Washington, DC. doi: 10.1128/9781555815974.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error