Chapter 14 : The Role of Bacterial Channels in Cell Physiology

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Role of Bacterial Channels in Cell Physiology, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816452/9781555813284_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555816452/9781555813284_Chap14-2.gif


This chapter provides an overview on the role of bacterial channels in cell physiology. The proposed role of mechanosensitive (MS) channels is the rapid and nonspecific release of solutes from the cell in response to the generation of excessive turgor pressure. This model has now been tested and verified for . In most bacterial cells Cl ions have not been predicted to have significant roles in cell physiology. In some halophilic bacteria Cl is accumulated to provide salt balance during growth in very high salt concentrations. The aquaglyceroporins are pores that allow the permeation of water and small linear polyhydric molecules through the bacterial membrane. The cell faces two types of problems that relate to ammonium ions. First, there is the need to scavenge for ammonium when the concentration in the environment is low. Second, cells growing on broth may encounter a surfeit of cytoplasmic ammonium ions arising from the deamination of amino acids. In a wide range of bacterial genera the genes for AmtB and GlnK exist as an operon, and recent work suggests that the former is a pore that is used by cells to accelerate the passage of ammonium ions across the membrane and that GlnK is a specific component of the nitrogen-regulatory circuit that controls its activity. The increased understanding of mechanistic aspects of the channel selectivity and gating has advanced rapidly, but an appreciation of the role of channels in cell physiology lags well behind.

Citation: Booth I, Edwards M, Murray E, Miller S. 2005. The Role of Bacterial Channels in Cell Physiology, p 291-312. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch14

Key Concept Ranking

Bacteria and Archaea
Ion Channels
Amino Acids
Amino Acid Decarboxylase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Consequences of channel gating for bacterial cells. The figure depicts the consequences of ion channel gating for a K-specific channel (left) and an MS channel (right). The internal and external ion concentrations depicted are based on published values (see text for detail), and the changes in membrane potential, ion concentrations, and cytoplasmic pH value are based on previously published calculations that use data for the capacitance of the cytoplasmic membrane (see text) ( ). Initially the cell is depicted with the channels closed (a) with typical cell and environmental concentrations of inorganic ions (note that bacterial cells will also contain ∼60 to 150 mM glutamate as the major osmotically active anion, plus lower concentrations of acetate and other organic anions [ ]). Upon gating the channels for 1 ms (b) or 1 s (c), there are major changes in ion pools when MS channels fire, but much less so for K channels, with the consequence that the latter, but not the former, can be used to generate a membrane potential. Note that unless there is a substantial inward leak current, a voltage-gated K channel would be unlikely to sustain the open state for 1 s, whereas a ligand-gated channel could remain open as long as the ligand remains bound. For an MS channel an open state of 1 s is frequently seen in patch-clamp recordings but is not considered physiologically relevant during hypoosmotic shock when channel activation would dissipate the pressure differential required for channel activation in milliseconds.

Citation: Booth I, Edwards M, Murray E, Miller S. 2005. The Role of Bacterial Channels in Cell Physiology, p 291-312. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Ligand gating of bacterial channels. The figure illustrates the different types of K and Na channels (and pore) now known to be located in bacterial and archaeal cells. The majority of these possess the classical P-type structure, but there is another class, of which KefC is currently the best example, of gated systems. The nature of the ligand and the site of its action (periplasm, cytoplasm or membrane) are indicated. Further details on these channels are provided elsewhere ( ). ΔΦ, membrane potential; GSX, glutathione adducts; X, polyamines; Glut, glutamate.

Citation: Booth I, Edwards M, Murray E, Miller S. 2005. The Role of Bacterial Channels in Cell Physiology, p 291-312. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The consequences of electrophile activation of KefC. The formation of an adduct between MG and GSH provides the substrate, hemithiolacetal (HTA), for glyoxalase I (GlyI). The product of GlyI action is SLG, which is the primary activator of KefB and KefC. Further detoxification is undertaken by glyoxalase II (GlyII), regenerating GSH and forming D-lactate. GSH and SLG are negative and positive regulators, respectively, of KefB and KefC. The result is K efflux from the cell, and this is accompanied by H and Na entry by a route not yet identified. It has been demonstrated that the acidification of the cytoplasm aids cell survival of cells ( ), protecting the DNA against damage by MG ( ).

Citation: Booth I, Edwards M, Murray E, Miller S. 2005. The Role of Bacterial Channels in Cell Physiology, p 291-312. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abramson, J.,, I. Smirnova,, V. Kasho,, G. Verner,, H. R. Kaback,, and S. Iwata. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610615.
2. Accardi, A.,, L. Kolmakova-Partensky,, C. Williams,, and C. Miller. 2004. Ionic currents mediated by a prokaryotic homologue of CLC Cl channels. J. Gen. Physiol. 123:109119.
3. Accardi, A.,, and C. Miller. 2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427:803807.
4. Albuquerque, E. X.,, E. F. R. Pereira,, N. G. Castro,, and M. Alkondon. 1995. Neuronal nicotinic receptors: function, modulation and structure. Semin. Neurosci. 7:91101.
5. Bakker, E. P.,, and W. E. Mangerich. 1982. N-Ethylmaleimide induces K+-H+ antiport activity in Escherichia coli K-12. FEBS Lett. 140:177180.
6. Bearson, S.,, B. Bearson,, and J. W. Foster. 1997. Acid stress responses in enterobacteria. FEMS Microbiol. Lett. 147:173180.
7. Berrier, C.,, A. Coulombe,, I. Szabo,, M. Zoratti,, and A. Ghazi. 1992. Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur. J. Biochem. 206: 559565.
8. Blakey, D.,, A. Leech,, G. H. Thomas,, G. Coutts,, K. Findlay,, and M. Merrick. 2002. Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem. J. 364:527535.
9. Blount, P.,, S. I. Sukharev,, M. J. Schroeder,, S. K. Nagle,, and C. Kung. 1996. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 93:1165211657.
10. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359378.
11. Booth, I. R., 2003. Bacterial ion channels, p. 91112. In J. K. Setlow (ed.), Genetic Engineering—Principles and Methods, vol. 25. Kluwer Academic/Plenum Publishers, New York, N.Y.
12. Booth, I. R.,, P. Cash,, and C. O’Byrne. 2002. Sensing and adapting to acid stress. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 81:3342.
13. Booth, I. R.,, M. D. Edwards,, and S. Miller. 2003. Bacterial ion channels. Biochemistry 42:1004510053.
14. Borgnia, M.,, S. Nielsen,, A. Engel,, and P. Agre. 1999. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68:425458.
15. Braun, V.,, and H. C. Wu,. 1994. Lipoproteins, structure, function, biosynthesis and model for protein export, p. 319341. In J.-M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
16. Buurman, E. T.,, D. McLaggan,, J. Naprstek,, and W. Epstein. 2004. Multiple paths for nonphysiological transport of K+ in Escherichia coli. J. Bacteriol. 186:42384245.
17. Calamita, G. 2000. The Escherichia coli aquaporin-Z water channel. Mol. Microbiol. 37:254262.
18. Calamita, G.,, B. Kempf,, M. Bonhivers,, W. Bishai,, E. Bremer,, and P. Agre. 1998. Regulation of the Escherichia coli water channel gene aqpZ. Proc. Natl. Acad. Sci. USA 95:36273631.
19. Chen, G. Q.,, C. H. Cui,, M. L. Mayer,, and E. Gouaux. 1999. Functional characterization of a potassiumselective prokaryotic glutamate receptor. Nature 402:817821.
20. Choi, H.,, and L. Heginbotham. 2004. Functional influence of the pore helix glutamate in the KcsA K+ channel. Biophys. J. 86:21372144.
21. Coutts, G.,, G. Thomas,, D. Blakey,, and M. Merrick. 2002. Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J. 21:536545.
22. Cuello, L. G.,, J. G. Romero,, D. M. Cortes,, and E. Perozo. 1998. pH-dependent gating in the Streptomyces lividans K+ channel. Biochemistry 37:32293236.
23. Delamarche, C.,, D. Thomas,, J. P. Rolland,, A. Froger,, J. Gouranton,, M. Svelto,, P. Agre,, and G. Calamita. 1999. Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181:41934197.
24. Douglas, R. M.,, J. A. Roberts,, A. W. Munro,, G. Y. Ritchie,, A. J. Lamb,, and I. R. Booth. 1991. The distribution of homologues of the Escherichia coli KefC K+ efflux system in other bacterial species. J. Gen. Microbiol. 137:19992005.
25. Dutzler, R.,, E. B. Campbell,, M. Cadene,, B. T. Chait,, and R. MacKinnon. 2002. X-ray structure of a CIC chloride channel at 3.0 angstrom reveals the molecular basis of anion selectivity. Nature 415:287294.
26. Dutzler, R.,, E. B. Campbell,, and R. MacKinnon. 2003. Gating the selectivity filter in ClC chloride channels. Science 300:108112.
27. Epstein, W. 2003. The roles and regulation of potassium in bacteria. Prog. Nucleic Acid Res. Mol. Biol. 75: 293320.
28. Essen, L. O. 2002. Halorhodopsin: light-driven ion pumping made simple? Curr. Opin. Struct. Biol. 12: 516522.
29. Evans, G. J.,, G. P. Ferguson,, I. R. Booth,, and S. Vuilleumier. 2000. Growth inhibition of Escherichia coli by dichloromethane in cells expressing dichloromethane dehalogenase/glutathione S-transferase. Microbiology 146:29672975.
30. Ferguson, G. P.,, A. W. Munro,, R. M. Douglas,, D. McLaggan,, and I. R. Booth. 1993. Activation of potassium channels during metabolite detoxification in Escherichia coli. Mol. Microbiol. 9:12971303.
31. Ferguson, G. P.,, D. McLaggan,, and I. R. Booth. 1995. Potassium channel activation by glutathione- S-conjugates in Escherichia coli; protection against methylglyoxal is mediated by cytoplasmic acidification. Mol. Microbiol. 17:10251033.
32. Ferguson, G. P.,, A. D. Chacko,, C. Lee,, and I. R. Booth. 1996. The activity of the high-affinity K+ uptake system Kdp sensitizes cells of Escherichia coli to methylglyoxal. J. Bacteriol. 178:39573961.
33. Ferguson, G. P.,, Y. Nikolaev,, D. McLaggan,, M. Maclean,, and I. R. Booth. 1997. Survival during exposure to the electrophilic reagent N-ethylmaleimide in Escherichia coli: role of KefB and KefC potassium channels. J. Bacteriol. 179:10071012.
34. Ferguson, G. P.,, and I. R. Booth. 1998. Importance of glutathione for growth and survival of Escherichia coli cells: detoxification of methylglyoxal and maintenance of intracellular K+. J. Bacteriol. 180:43144318.
35. Ferguson, G. P.,, J. R. Battista,, A. T. Lee,, and I. R. Booth. 2000. Protection of the DNA during the exposure of Escherichia coli cells to a toxic metabolite: the role of the KefB and KefC potassium channels. Mol. Microbiol. 35:113122.
36. Foster, J. W. 1999. When protons attack: microbial strategies of acid adaptation. Curr. Opin. Microbiol. 2:170174.
37. Foster, J. W.,, and H. K. Hall. 1990. Adaptive acidification tolerance response of Salmonella typhimurium. J. Bacteriol. 172:771778.
38. Foster, J. W.,, and M. Moreno. 1999. Inducible acid tolerance mechanisms in enteric bacteria. Novartis Found. Symp. 221:5574.
39. Fu, D. X.,, A. Libson,, L. J. W. Miercke,, C. Weitzman,, P. Nollert,, J. Krucinski,, and R. M. Stroud. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 290:481486.
40. Fujisawa, M.,, Y. Wada,, and M. Ito. 2004. Modulation of the K+ efflux activity of Bacillus subtilis YhaU by YhaT and the C-terminal region of YhaS. FEMS Microbiol. Lett. 231:211217.
41. Glauner, B.,, J. V. Holtje,, and U. Schwartz. 1988. The composition of the murein of Escherichia coli. J. Biol. Chem. 263:1008810095.
42. Goodstadt, L.,, and C. R. Ponting. 2001. Sequence variation and disease in the wake of the draft human genome. Hum. Mol. Gen. 10:22092214.
43. Hernandez-Castro, R.,, M. C. Rodriguez,, A. Seoane,, and J. M. G. Lobo. 2003. The aquaporin gene aqpX of Brucella abortus is induced in hyperosmotic conditions. Microbiology 149:31853192.
44. Holtje, J. V. 1996. Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. Microb. Drug Resist. 2:99103.
45. Holtje, J.-V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:181203.
46. Huang, Y. F.,, M. J. Lemieux,, J. M. Song,, M. Auer,, and D. N. Wang. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616620.
47. Irizarry, S. N.,, E. Kutluay,, G. Drews,, S. J. Hart,, and L. Heginbotham. 2002. Opening the KcsA K+ channel: tryptophan scanning and complementation analysis lead to mutants with altered gating. Biochemistry 41: 1365313662.
48. Ito, M.,, H. Xu,, A. A. Guffanti,, Y. Wei,, L. Zvi,, D. E. Clapham,, and T. A. Krulwich. 2004. The voltage-gated Na+ channel NaVBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc. Natl. Acad. Sci. USA 101:1056610571.
49. Iyer, R.,, T. M. Iverson,, A. Accardi,, and C. Miller. 2002. A biological role for prokaryotic ClC chloride channels. Nature 419:715718.
50. Javelle, A.,, E. Severi,, J. Thornton,, and M. Merrick. 2004. Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB-GlnK complex formation. J. Biol. Chem. 279:85308538.
51. Jiang, Y. X.,, V. Ruta,, J. Y. Chen,, A. Lee,, and R. MacKinnon. 2003. The principle of gating charge movement in a voltage-dependent K+ channel. Nature 423:4248.
52. Kloda, A.,, and B. Martinac. 2001a. Mechanosensitive channels in Archaea. Cell Biochem. Biophys. 34: 349381.
53. Kloda, A.,, and B. Martinac. 2001b. Molecular identification of a mechanosensitive channel in archaea. Biophys. J. 80:229240.
54. Kloda, A.,, and B. Martinac. 2001c. Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20:18881896.
55. Kloda, A.,, and B. Martinac. 2001d. Mechanosensitive channel of Thermoplasma, the cell wallless archaea: cloning and molecular characterization. Cell Biochem. Biophys. 34:321347.
56. Krulwich, T. A.,, M. Ito,, R. Gilmour,, and A. A. Guffanti. 1997. Mechanisms of cytoplasmic pH regulation in alkaliphilic strains of Bacillus. Extremophiles 1:163169.
57. Kuo, M. M. C.,, Y. Saimi,, and C. Kung. 2003. Gain-of-function mutations indicate that Escherichia coli Kch forms a functional K+ conduit in vivo. EMBO J. 22:40494058.
58. Kustu, S.,, J. Hirschman,, and J. C. Meeks. 1985. Adenylylation of bacterial glutamine synthetase: physiological significance. Curr. Top. Cell. Regul. 27:201213.
59. Levina, N.,, S. Totemeyer,, N. R. Stokes,, P. Louis,, M. A. Jones,, and I. R. Booth. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18:17301737.
60. MacLean, M. J.,, L. S. Ness,, G. P. Ferguson,, and I. R. Booth. 1998. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol. Microbiol. 27:563571.
61. Maduke, M.,, D. J. Pheasant,, and C. Miller. 1999. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J. Gen. Physiol. 114:713722.
62. Martinac, B.,, M. Buehner,, A. H. Delcour,, J. Adler,, and C. Kung. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:22972301.
63. Mayer, M. L.,, R. Olson,, and E. Gouaux. 2001. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed Apo state. J. Mol. Biol. 311: 815836.
64. McLaggan, D.,, M. J. Selwyn,, and A. P. Dawson. 1984. Dependence on Na+ of control of cytoplasmic pH in a facultative alkalophile. FEBS Lett. 165:254258.
65. McLaggan, D.,, M. Keyhan,, and A. Matin. 1990. Chloride transport pathways and their bioenergetic implications in the obligate acidophile Bacillus coagulans. J. Bacteriol. 172:14851490.
66. McLaggan, D.,, J. Naprstek,, E. T. Buurman,, and W. Epstein. 1994. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem. 269:19111917.
67. Meury, J.,, and A. Kepes. 1982. Glutathione and the gated potassium channels of Escherichia coli. EMBO J. 1:339343.
68. Meury, J.,, S. Lebail,, and A. Kepes. 1980. Opening of potassium channels in Escherichia coli membranes by thiol reagents and recovery of potassium tightness. Eur. J. Biochem. 113:3338.
69. Miller, S.,, W. Bartlett,, S. Chandrasekaran,, S. Simpson,, M. Edwards,, and I. R. Booth. 2003. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22:3646.
70. Miller, S.,, R. M. Douglas,, P. Carter,, and I. R. Booth. 1997. Mutations in the glutathione-gated KefC K+ efflux system of Escherichia coli that cause constitutive activation. J. Biol. Chem. 272:2494224947.
71. Miller, S.,, L. S. Ness,, C. M. Wood,, B. C. Fox,, and I. R. Booth. 2000. Identification of an ancillary protein, YabF, required for activity of the KefC glutathione-gated potassium efflux system in Escherichia coli. J. Bacteriol. 182:65366540.
72. Moe, P. C.,, P. Blount,, and C. Kung. 1998. Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol. Microbiol. 28:583592.
73. Moe, P. C.,, G. Levin,, and P. Blount. 2000. Correlating a protein structure with function of a bacterial mechanosensitive channel. J. Biol. Chem. 275:31121–31127.
74. Muller, V.,, and A. Oren. 2003. Metabolism of chloride in halophilic prokaryotes. Extremophiles 7:261266.
75. Munro, A. W.,, G. Y. Ritchie,, A. J. Lamb,, R. M. Douglas,, and I. R. Booth. 1991. The cloning and DNA sequence of the gene for the glutathione-regulated potassium-efflux system KefC of Escherichia coli. Mol. Microbiol. 5:607616.
76. Nakamaru, Y.,, Y. Takahashi,, T. Unemoto,, and T. Nakamura. 1999. Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium Vibrio alginolyticus, by osmotic downshock. FEBS Lett. 444: 170172.
77. Ness, L. S.,, and I. R. Booth. 1999. Different foci for the regulation of the activity of the KefB and KefC glutathione-gated K+ efflux systems. J. Biol. Chem. 274:95249530.
78. Ness, L. S.,, G. P. Ferguson,, Y. Nikolaev,, and I. R. Booth. 1997. Survival of Escherichia coli cells exposed to iodoacetate and chlorodinitrobenzene is independent of the glutathione-gated K+ efflux systems KefB and KefC. Appl. Environ. Microbiol. 63:40834086.
79. Nicholls, D. G. 2003. Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem. Res. 28:14331441.
80. Nikaido, H., 1996. Outer membrane, p. 2947. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. ASM Press, Washington D.C.
81. Nikaido, H.,, and M. Vaara. 1985. Molecular basis of outer membrane permeability. Microbiol. Rev. 19:132.
82. Nimigean, C. M.,, J. S. Chappie,, and C. Miller. 2003. Electrostatic tuning of ion conductance in potassium channels. Biochemistry 42:92639268.
83. Nottebrock, D.,, U. Meyer,, R. Kramer,, and S. Morbach. 2003. Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol. Lett. 218:305309.
84. Padan, E.,, and S. Schuldiner. 1994. Molecular physiology of Na+/H+ mantiporters, key transporters in circulation of Na+ and H+ in cells. Biochim. Biophys. Acta 1185:129151.
85. Padan, E.,, D. Zilberstein,, and H. Rottenberg. 1976. The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 63:533541.
86. Park, Y. K.,, B. Bearson,, S. H. Bang,, I. S. Bang,, and J. W. Foster. 1996. Internal pH crisis, lysine decarboxylase and the acid tolerance response of Salmonella typhimurium. Mol. Microbiol. 20:605611.
87. Pisabarro, A. G.,, M. A. de Pedro,, and D. Vazquez. 1985. Structural modifications in the peptidoglycan of Escherichia coli associated with changes in the growth state of the culture. J. Bacteriol. 161:238242.
88. Popham, D. L.,, and K. D. Young. 2003. Role of pencillin-binding proteins in bacterial cell morphogenesis. Curr. Opin. Microbiol. 6:594599.
89. Preston, R. R.,, Y. Saimi,, B. Martinac,, and C. Kung. 1992. Genetic analysis of ion channels of prokaryotes and lower eukaryotes. Curr. Opin. Genet. Dev. 2:780784.
90. Quintela, J. C.,, M. A. de Pedro,, P. Zollner,, G. Allmaier,, and F. Garcia-del Portillo. 1997. Peptidoglycan structure of Salmonella typhimurium growing within cultured mammalian cells. Mol. Microbiol. 23:693704.
91. Ren, D. J.,, B. Navarro,, H. X. Xu,, L. X. Yue,, Q. Shi,, and D. E. Clapham. 2001. A prokaryotic voltage-gated sodium channel. Science 294:23722375.
92. Roe, A. J.,, D. McLaggan,, I. Davidson,, C. O’Byrne,, and I. R. Booth. 1998. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J. Bacteriol. 180:767772.
93. Ruffert, S.,, C. Berrier,, R. Kramer,, and A. Ghazi. 1999. Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum. J. Bacteriol. 181:16731676.
94. Ruta, V.,, Y. X. Jiang,, A. Lee,, J. Y. Chen,, and R. MacKinnon. 2003. Functional analysis of an archaebacterial voltage-dependent K+ channel. Nature 422:180185.
95. Saimi, Y.,, S. H. Loukin,, X. L. Zhou,, B. Martinac,, and C. Kung. 1999. Ion channels in microbes. Methods Enzymol. 294:507524.
96. Schleyer, M.,, R. Schmid,, and E. P. Bakker. 1993. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch. Microbiol. 160:424431.
97. Schrempf, H.,, O. Schmidt,, R. Kummerlen,, S. Hinnah,, D. Muller,, M. Betzler,, T. Steinkamp,, and R. Wagner. 1995. A prokaryotic potassium-ion channel with 2 predicted transmembrane segments from Streptomyces lividans. EMBO J. 14:51705178.
98. Schultz, A. G.,, N. L. Wilson,, and W. Epstein. 1962. Cation transport in Escherichia coli. Intracellular chloride concentration. J. Gen. Physiol. 46:159166.
99. Sesti, F.,, S. Rajan,, R. Gonzalez-Colaso,, N. Nikolaeva,, and S. A. N. Goldstein. 2003. Hyperpolarization moves S4 sensors inward to open MVP, a methanococcal voltage-gated potassium channel. Nat. Neurosci. 6: 353361.
100. Skulachev, V. P. 1992. The laws of cell energetics. Eur. J. Biochem. 208:203209.
101. Soupene, E.,, L. H. He,, D. L. Yan,, and S. Kustu. 1998. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc. Natl. Acad. Sci. USA 95: 70307034.
102. Soupene, E.,, H. Lee,, and S. Kustu. 2002. Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc. Natl. Acad. Sci. USA 99:39263931.
103. Stokes, N. R.,, H. D. Murray,, C. Subramaniam,, R. L. Gourse,, P. Louis,, W. Bartlett,, S. Miller,, and I. R. Booth. 2003. A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc. Natl. Acad. Sci. USA 100:1595915964.
104. Stroud, R. M.,, L. J. W. Miercke,, J. O’Connell,, S. Khademi,, J. K. Lee,, J. Remis,, W. Harries,, Y. Robles,, and D. Akhavan. 2003. Glycerol facilitator GlpF and the associated aquaporin family of channels. Curr. Opin. Struc. Biol. 13:424431.
105. Sukharev, S. I.,, P. Blount,, B. Martinac,, F. R. Blattner,, and C. Kung. 1994. A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368:265268.
106. Szabo, I.,, V. Petronilli,, and M. Zoratti. 1992. A patch-clamp study of Bacillus subtilis. Biochim. Biophys. Acta 1112:2938.
107. Vollmer, W.,, and J. V. Holtje. 2001. Morphogenesis of Escherichia coli. Curr. Opin. Microbiol. 4:625633.
108. Vuilleumier, S. 1997. Bacterial glutathione S-transferases: what are they good for? J. Bacteriol. 179:14311441.
109. Vuilleumier, S.,, and M. Pagni. 2002. The elusive roles of bacterial glutathione S- transferases: new lessons from genomes. Appl. Microbiol. Biotechnol. 58:138146.
110. Wei, Y.,, T. W. Southworth,, H. Kloster,, M. Ito,, A. A. Guffanti,, A. Moir,, and T. A. Krulwich. 2003. Mutational loss of a K+ and NH4 + transporter affects the growth and endospore formation of alkaliphilic Bacillus pseudofirmus OF4. J. Bacteriol. 185:51335147.
111. Yue, L. X.,, B. Navarro,, D. J. Ren,, A. Ramos,, and D. E. Clapham. 2002. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120:845853.
112. Zablotowicz, R. M.,, R. E. Hoagland,, M. A. Locke,, and W. J. Hickey. 1995. Glutathione-S-transferase activity and metabolism of glutathione conjugates by rhizosphere bacteria. Appl. Environ. Microbiol. 61:10541060.
113. Zakharian, E.,, and R. N. Reusch. 2004. Streptomyces lividans potassium channel KcsA is regulated by the potassium electrochemical gradient. Biochem. Biophys. Res. Commun. 316:429436.
114. Zimanyi, L.,, and J. K. Lanyi. 1989. Halorhodopsin: a light-driven active chloride transport system. Ann. N. Y. Acad. Sci. 574:1119.


Generic image for table
Table 1.

Types of bacterial and archaeal ion channels

Citation: Booth I, Edwards M, Murray E, Miller S. 2005. The Role of Bacterial Channels in Cell Physiology, p 291-312. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error