1887

Chapter 5 : Glutamate-Activated Channels

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Glutamate-Activated Channels, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816452/9781555813284_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555816452/9781555813284_Chap05-2.gif

Abstract:

Ligand-gated ion channels (LGICs) are a major class of ion channels. Postsynaptic LGICs generate electrical signals in response to specific chemical neurotransmitters such as acetylcholine, glutamate, glycine, or γ-aminobutyric acid. Understanding the polymorphism of the genes encoding the GluRs in particular will increase one's understanding of the role of these receptors in neurogenetic variations. Animal glutamate receptors possess both metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs). The iGluRs and mGluRs are classified into subgroups based on their sequence homology, agonist pharmacology, and intracellular transduction mechanisms. The structural and sequence similarity of the different domains of GluRs to proteins from different types of organisms gives rise to some interesting implications in the evolutionary relationship between prokaryotes and eukaryotes. The iGluRs are classified as nmethyl-D-aspartic acid (NMDA) receptors or non-NMDA receptors, which include kainate (KAI) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. The first prokaryotic glutamate receptors to be discovered was GluR0 from sp. strain PCC 6803. An interesting observation was made based on scores of the similarity of profiles of the P-loop and M2 helix. Plant glutamate receptors (GLRs) were first identified in . The sequencing of the complete genome of revealed the existence of not 1 but 20 genes that encoded putative GLRs. A famous quote of Theodosius Dobzhansky, “Nothing in biology makes sense, except in the light of evolution,” emphasizes the importance of evolutionary studies in biology. Evolutionary inferences essentially rely on diversity among organisms, where the differences are accumulated randomly from some common ancestor.

Citation: Shrivastava I, Guy H. 2005. Glutamate-Activated Channels, p 83-95. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch5

Key Concept Ranking

Bacteria and Archaea
0.41364464
Ion Channels
0.4020342
0.41364464
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Classification of mGluRs and iGluRs based on their pharmacological activities and structural similarities.

Citation: Shrivastava I, Guy H. 2005. Glutamate-Activated Channels, p 83-95. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

General structure of the membrane topology of a single subunit of mGluRs (A) and iGluRs (B).

Citation: Shrivastava I, Guy H. 2005. Glutamate-Activated Channels, p 83-95. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The predicted membrane topologies of eukaryotic GluRs, prokaryotic GluRs, and KcsA. The boxed regions indicate the ligand-binding domain (dashes) and M1-P-M2 motif (dash-dot-dash).

Citation: Shrivastava I, Guy H. 2005. Glutamate-Activated Channels, p 83-95. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Phylogenetic tree generated from parsimony analysis of amino acid sequences of rat iGluRs, GLRs, and two prokaryotic cyanobacterial iGluRs. (Reprinted from with permission.)

Citation: Shrivastava I, Guy H. 2005. Glutamate-Activated Channels, p 83-95. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816452.chap5
1. Arinaminpathy, Y.,, M. S. P. Sansom,, and P. C. Biggin. 2002. Molecular dynamics simulations of the ligand binding domain of the ionotropic glutamate receptor GluR2. Biophys J. 82: 676 683.
2. Armstrong, N. A.,, and E. Gouaux. 2000. Mechanism for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand-binding core. Neuron 28: 164 181.
3. Armstrong, N. A.,, Y. Sun,, G.-Q. Chen,, and E. Gouaux. 1998. Structure of glutamate-receptor ligand-binding core in complex with kainite. Nature 395: 913 917.
4. Ayalon, G.,, and Y. Stern-Bach. 2001. Functional assembly of AMPA and kainite receptors is mediated by several discrete protein-protein interactions. Neuron 13: 103 113.
5. Bennet, J. A.,, and R. Dingledine. 1995. Topology profile for a glutamate receptor: three transmembrane domains and a channel-lining re-entrant membrane loop. Neuron 14: 373 384.
6. Bigge, C. F. 1999. Ionotropic glutamate receptors. Curr. Opin. Chem. Biol. 3: 441 447.
7. Bönigk, W.,, F. Muller,, R. Middendorff,, I. Wenard,, and U. B. Kaup. 1996. Two alternatively spliced forms of the cGMP-gated channel α-subunit from cone photoreceptor are expressed in the chick pineal organ. J. Neurosci. 16: 7458 7468.
8. Brakeman, P. R.,, A. A. Lanahan,, R. O’Brien,, K. Roche,, C. A. Barnes,, R. L. Huganir,, and P. F. Worley. 1997. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386: 284 288.
9. Burnashev, N.,, A. Villarroel,, and B. Sakmann. 1996. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J. Physiol. 496: 165 176.
10. Chen, G.-Q.,, C. Cui,, M. L. Mayer,, and E. Gouaux. 1999. Functional characterization of a potassium-selective prokaryotuc glutamate receptor. Nature 402: 817 821.
11. Chiu, J.,, R. DeSalle,, H. M. Lam,, L. Meisel,, and G. M. Coruzzi. 1999. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged. Mol. Biol. Evol. 16: 826 838.
12. Chiu, J. C.,, E. D. Brenner,, R. DeSalle,, M. N. Nitabach,, T. C. Holmes,, and G. M. Coruzzi. 2002. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol. Biol. Evol. 19: 1066 1082.
13. Choi, Y. B., and S. A. Lipton. 1999. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+inhibition of the NMDA receptor. Neuron 23: 171 180.
14. Conn, P. J. 2003. Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann. N. Y. Acad. Sci. 1003: 12 21.
15. Conn, P. J.,, and J. P. Pin. 1997. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol. 37: 205 237.
16. Dingledine, R.,, K. Borges,, D. Bowie,, and S. F. Traynelis. 1999. The glutamate receptor ion channels. Pharmacol. Rev. 51: 8 61.
17. Doyle, D. A.,, C. J. Morais,, R. A. Pfuetzner,, A. Kuo,, J. M. Gulbis,, S. L. Cohen,, B. T. Chait,, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K +conduction and selectivity. Science 280: 69 77.
18. Gilbert, W. 1978. Why genes in pieces. Nature 271: 501.
19. Harte, R.,, and C. A. Ouzounis. 2002. Genome-wide detection and family of clustering of ion channels. FEBS Lett. 515: 129 134.
20. Hille, B. 2001. Ion Channels of Excitable Membranes, 3rd ed. Sinauer, Sunderland, Mass.
21. Hollmann, M.,, C. Maron,, and S. Heinemann. 1994. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron 12: 1331 1343.
22. Ji, O.,, P. J. Currie,, M. A. Norell,, and S.-A. Ji. 1998. Two feathered dinosaurs from northeastern China. Nature 393: 753 761.
23. Kim, S. A.,, J. M. Kwak,, S. K. Jae,, M. H. Wang,, and H. G. Nam. 2001. Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of the mammalian glutamate receptors, impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol. 42: 74 84.
24. Knight, E. D.,, and L. F. Landweber. 2000. The early evolution of the genetic code. Cell 101: 569 572.
25. Krupp, J. J.,, B. Vissel,, S. F. Heinemann,, and G. L. Westbrook. 1998. N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20: 317 327.
26. Kuner, T.,, P. H. Seeburg,, and H. R. Guy. 2003. A common architecture for K+channels and ionotropic glutamate receptors. Trends Neurosci. 26: 27 32.
27. Lam, H.-M.,, J. Chiu,, M.-H. Hsieh,, L. Meisel,, I. C. Oliveira,, M. Shin,, and G. Coruzzi. 1998. Glutamate receptors genes in plants. Nature 396: 125 126.
28. Lipsky, R. H.,, and D. Goldman. 2003. Genomics and variation of ionotropic glutamate receptors. Ann. N. Y. Acad. Sci. 1003: 22 35.
29. Lomeli, H.,, J. Mosbacher,, T. Melcher,, T. Höger,, J. R. P. Geiger,, T. Kuner,, H. Monyer,, M. Higuchi,, A. Bach,, and P. H. Seeburg. 1994. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 261: 1709 1713.
30. MacKinnon, R. 1991. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature 350: 232 235.
31. Madden, D. R. 2002. The structure and function of glutamate receptor ion channels. Nat. Rev. Neurosci. 3: 91 101.
32. Marciq, A. V.,, E. Peckol,, M. Driscoll,, and C. I. Bargmann. 1995. Mechanosensory signaling in C. elegans, mediated by the GLR-1 glutamate receptor. Nature 378: 78 81.
33. Mayer, M. L.,, and N. Armstrong. 2004. Structure and functions of glutamate receptor ion channels. Annu. Rev. Physiol. 66: 161 181.
34. Mayer, M. L.,, R. Olson,, and E. Gouaux. 2001. Mechanisms for ligand binding to GluR0 ion channels: crystal structure of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311: 815 836.
35. Nakanishi, N.,, N. A. Shneider,, and R. Axel. 1990. A family of glutamate receptor genes: evidence for formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569 581.
36. Nichols, C. G.,, and A. N. Lopatin. 1997. Inward rectifier potassium channels. Annu. Rev. Physiol. 59: 171 191.
37. O’Hara, P. J.,, P. O. Sheppard,, H. Thogersen,, D. Venezia,, B. A. Haldmen,, V. McGrane,, K. M. Houamed,, C. Thomsen,, T. L. Gilbert,, and E. R. Mulvihill. 1993. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic proteins. Neuron 11: 41 52.
38. Osborne, H. B.,, J. Egeberg,, E. Ø. Nielsen, U. Madsen, and P. Krogsgaard-Larsen. 2000. Ligands for glutamate receptors: design and therapeutic prospects. J. Med. Chem. 43: 2609 2645.
39. Paas, Y. 1998. The macro- and microarchitectures of the ligand-binding domain of glutamate receptors. Trends Neurosci. 21: 117 125.
40. Plummer, N. W.,, and M. H. Meisler. 1999. Evolution and diversity of mammalian sodium channel genes. Genomics 57: 323 331.
41. Quiocho, F. A.,, and P. S. Ledvina. 1996. Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes. Mol. Microbiol. 20: 17 25.
42. Ranganathan, R. 1994. Evolutionary origins of ion channels. Proc. Natl. Acad. Sci. USA 91: 3484 3486.
43. Rosenmund, C.,, Y. Stern-Bach,, and C. F. Stevens. 1998. The tetrameric structure of a glutamate receptor channel. Science 280: 1596 1599.
44. Schoepp, D. D.,, D. E. Jane,, and J. A. Monn. 1999. Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharma 38: 1431 1476.
45. Schuster, C. M.,, A. Ultsch,, P. Schloss,, J. A. Cox,, B. Schmitt,, and H. Betz. 1991. Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. Science 254: 112 114.
46. Sommer, B.,, M. Köhler,, R. Sprengel,, and P. H. Seeburg. 1991. RNA editing in brain controls a determinant of ion flow in glutamate-gated channel. Cell 67: 11 19.
47. Sprengel, R.,, and P. H. Seeburg,. 1995. Ionotropic glutamate receptors. In R. A. North (ed.), Handbook of Receptors and Channels: Ligand- and Voltage-Gated Ion Channels. CRC, Boca Raton, Fla.
48. Sugiyama, H.,, I. Ito,, and C. Hirono. 1987. A new type of glutamate receptor linked to inositol phospholipids metabolism. Nature 325: 531 533.
49. Tikhonov, D. B.,, J. R. Mellor,, P. N. R. Usherwood,, and L. G. Magazanik. 2002. Modeling of the pore domain of the GLUR1 channel: homology with K +channel and binding of channel blockers. Biophys. J. 82: 1884 1893.
50. Toro, L.,, M. Wallner,, P. Meera,, and Y. Tanaka. 1998. Maxi-K Ca, a unique member of the voltage-gated K channel superfamily. News Physiol. Sci. 13: 112 117.
51. Villarroel, A.,, N. Burnashev,, and B. Sakmann. 1995. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys. J. 68: 866 875.
52. Wenthold, R. J.,, N. Yokotani,, K. Doi,, and K. Wada. 1992. Immunochemical characterization of the non- NMDA glutamate receptor using subunit-specific antibodies. Evidence for hetero-oligomeric structure in rat brain. J. Biol. Chem. 267: 501 507.
53. Wo, Z. G.,, and R. E. Oswald. 1994. Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proc. Natl. Acad. Sci. USA 91: 7154 7158.
54. Wo, Z. G.,, and R. E. Oswald. 1995. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18: 161 168.
55. Wood, M.,, H. M. A. VanDongen,, and A. M. J. VanDongen. 1995. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl. Acad. Sci. USA 92: 4882 4886.
56. Zuo, J.,, L. P. De Jager,, K. A. Takahashi,, W. Jiang,, D. J. Linden,, and N. Heintz. 1997. Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature 388: 769 773.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error