1887

Chapter 9 : Towards an Understanding of Membrane Channels

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Towards an Understanding of Membrane Channels, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816452/9781555813284_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816452/9781555813284_Chap09-2.gif

Abstract:

This chapter presents exemplary studies of the structure-function relationship of four membrane channels of diverse function that illustrate the recent advance in membrane protein modeling: aquaporin water channels, the chloride channel, hemolysin, and the mechanosensitive channel of small conductance. Two obstacles stand in the way of the application of molecular dynamics (MD) simulations to membrane channels: the large size of systems to be simulated and the short timescale to which the method traditionally applies. The authors' first case study focused on aquaporin (AQP) water channels. These channels are particularly amenable to MD investigations due to their rather simple function, their great structural rigidity, and the short timescale of the elementary conduction process. The authors characterize the way in which Cl passes through the ClC channel under extremely favorable conditions: open gates and no proton-coupling to slow the dynamics. Two sections of the chapter closely follow the reports by Aksimentiev and Schulten and by Sotomayor and Schulten. The chapter also presents four case studies that demonstrate the power of MD simulations in unraveling the mechanisms underlying the function of membrane channels. The study of ion and water permeation through hemolysin exemplifies how accurately one can simulate today even very large membrane channel systems. A detailed energetic analysis of ion permeation through chloride channels proposes a two-ion permeation mechanism that can reconcile naturally structural and physiological data. The chapter concludes by suggesting that one can reach more quickly to the goal of understanding membrane channels with computational modeling.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9

Key Concept Ranking

Integral Membrane Proteins
0.40654725
0.40654725
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

(Left) An AQP monomer shown in cartoon representation. The reentrant loops described in the text are very important structural elements in AQP's architecture. They are shown in a darker shade and are surrounded by the helical bundle formed by transmembrane helices of the protein. (Right) Hydrogen bonds between the two NPA motifs are essential for the stability of the structure and for the function of AQPs. Due to two stable hydrogen bonds between the amino group of the asparagine side chain of each NPA motif with neighboring side chains, one of the amino hydrogens of the asparagine is restrained to be fully exposed toward the interior of the channel, where it forms hydrogen bonds with the permeating substrate. Hydrogen bonds between the two NPA motifs are also important for the stability of the two reentrant loops.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Comparison of ribitol (a) and arabitol (b) at the selectivity filter of GlpF. Hydrogen bonds are shown as dotted lines. Ribitol is able to form an optimal number of hydrogen bonds with the channel without losing its linear conformation in this region. Formation of the same number of hydrogen bonds for arabitol requires a tilted conformation of the molecule that is unfavorable due to strong steric hindrance of the filter region.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Illustration of the method to produce a pressure gradient across the membrane through forces, shown by small arrows, applied to individual water molecules in the bulk region. Either all or only some water molecules may be selected for force application. The total pressure difference,ΔP, is determined by the number of water molecules, n; the applied force on each water molecule, f ; and the area of the membrane, A. In this case, P drives the water downward.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

(a) View of the ClC dimer showing the broken helix architecture and the position of the Cl− ions in the crystal structure. Each monomer and pair of ions is displayed in a different shade. (b) Vertical cross-section of the solvent-accessible surface of the ClC protein embedded in a lipid bilayer. The simulated model comprises 97,000 atoms. In the narrowest part of the protein, where the Cl− ions permeate, the residues that define the selectivity filter are shown.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Detailed view of residues forming the ClC selectivity filter. The locations of hydrophobic residues are indicated as balls, whereas polar and charged residues are drawn explicitly. The positions of the Cl− ions as they permeate across the selectivity filter are plotted as small spheres, and the locations of the three Cl−-binding sites (Sint, Scen, and Sext) identified by X-ray crystallography ( ) are indicated as large circles.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Map of the PMF for a pair of Cl− ions moving across one of ClC's two pores as a function of the independent positions of the top and bottom Cl− ion. The thick line represents the coordinated motion of the pair of ions that follows the path of minimum energy (i.e., the most probable path). Each contour represents an energy difference of 1 kcal/mol. The axes correspond to the distance of the top and bottom permeating ions along a line perpendicular to the membrane, with the three binding sites from the crystal structure indicated as Sin, Scen, and Sext for reference.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Sequence of motion of two ions in the ClC pore, resulting in the conduction of one Cl− ion across ClC, as inferred from the calculated PMF.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Current-voltage characteristics of alpha-hemolysin computed with MD. Each data point is derived from a 288,680-atom simulation of the system shown in Fig. 8 . The dashed line indicates the linear fit through the data points at 120 and 240 mV and the origin. In accordance with experimental studies ( ), the I-V curve is sublinear at V 0. The absolute value of the ionic current at 120 mV is also in good agreement with experiment ( ). The inset shows cumulative currents through alpha-hemolysin at 120 and 240 mV. The table shows the number of ion permeations computed by dividing the total charge transported through the alphahemolysin pore by e, the unitary charge (1.6 ×10−19 C).

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Microscopic model of the alphahemolysin channel in its native environment, a lipid bilayer membrane. The channel is drawn as a molecular surface separating the protein from the membrane and water. This surface is cut by the plane normal to the lipid bilayer passing through the geometrical center of the protein. All atoms but phosphorus of the dipalmitoyl phosphatidylcholine lipid bilayer are shown as lines; the phosphorus atoms are shown as spheres. Water and ions are not shown. The model comprises 288,680 atoms.

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Computing the osmotic permeability of alpha-hemolysin with MD. (Top) Collective coordinate of all water molecules inside the channel n(t) ( equation 2 ) versus time; n(t) quantifies the net amount of water permeation through the channel (see the text). Neither the sign nor the magnitude of the transmembrane potential has a noticeable deterministic effect on water permeability. (Bottom) Mean square displacement of n(t) versus time. The slope of the curve yields the collective diffusion constant of water at 310/ns, which gives, after taking into account a correction for the low viscosity of TIP3P water, the osmotic permeability for alpha-hemolysin of 1.9 ×10−12cm3/s (see text).

Citation: Tajkhorshid E, Cohen J, Aksimentiev A, Sotomayor M, Schulten K. 2005. Towards an Understanding of Membrane Channels, p 153-190. In Kubalski A, Martinac B (ed), Bacterial Ion Channels and Their Eukaryotic Homologs. ASM Press, Washington, DC. doi: 10.1128/9781555816452.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816452.chap9
1. Accardi, A.,, L. Kolmakova-Partensky,, C. Williams,, and C. Miller. 2004. Ionic currents mediated by a prokaryotic homologue of CLC Cl channels. J. Gen. Physiol. 123: 109 119.
2. Accardi, A.,, and C. Miller. 2004. Secondary active transport mediated by a prokaryotic homologue of ClC Cl channels. Nature 427: 803 807.
3. Agre, P.,, M. Bonhivers,, and M. J. Borgnia. 1998. The aquaporins, blueprints for cellular plumbing systems. J. Biol. Chem. 273: 14659 14662.
4. Akenson, M.,, D. Branton,, J. J. Kasianowicz,, E. Brandin,, and D. W. Deamer. 1999. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77: 3227 3233.
5. Aksimentiev, A.,, I. A. Balabin,, R. H. Fillingame,, and K. Schulten. 2004a. Insights into the molecular mechanism of rotation in the F0 sector of ATP synthase. Biophys. J. 86: 1332 1344.
Aksimentiev, A.,, J. B. Heng,, G. Timp,, and K. Schulten. 2004.b. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J. 87: 2086 2097.
7. Aksimentiev, A.,, and K. Schulten. Imaging the permeability of alpha-hemolysin with molecular dynamics. Biophys. J., in press.
8. Amaro, R.,, E. Tajkhorshid,, and Z. Luthey-Schulten. 2003. Developing an energy landscape for the novel function of a (β/α) 8 barrel: ammonia conduction through HisF. Proc. Natl. Acad. Sci. USA 100: 7599 7604.
9. Anishkin, A.,, and S. Sukharev. 2004. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86: 2883 2895.
10. Åqvist, J.,, and V. Luzhkov. 2000. Ion permeation mechanism of the potassium channel. Nature 404: 881 884.
11. Ash, W. L.,, M. R. Zlomislic,, E. O. Oloo,, and D. P. Tieleman. 2004. Computer simulations of membrane proteins. Biochim. Biophys. Acta 1666: 158 189.
12. Bass, R. B.,, P. Strop,, M. Barclay,, and D. C. Rees. 2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298: 1582 1587.
13. Baudry, J.,, E. Tajkhorshid,, F. Molnar,, J. Phillips,, and K. Schulten. 2001. Molecular dynamics study of bacteriorhodopsin and the purple membrane. J. Phys. Chem. B 105: 905 918.
14. Bayley, H. 1995. Pore-forming proteins with built-in triggers and switches. Bioorg. Chem. 23: 340 354.
15. Beckstein, O.,, and M. S. P. Sansom. 2003. Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 100: 7063 7068.
16. Beckstein, O.,, and M. S. P. Sansom. 2004. The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1: 42 52.
17. Bernèche, S.,, and B. Roux. 2000. Molecular dynamics of the KcsA K + channel in a bilayer membrane. Biophys. J. 78: 2900 2917.
18. Bernèche, S.,, and B. Roux. 2001. Energetics of ion conduction through the K + channel. Nature 414: 73 77.
19. Berrier, C.,, A. Coulombe,, C. Houssin,, and A. Ghazi. 1989. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. FEBS Lett. 259: 27 32.
20. Betanzos, M.,, C.-S. Chiang,, H. R. Guy,, and S. Sukharev. 2002. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol. 9: 704 710.
21. Bezanilla, F.,, and E. Perozo. 2002. Force and voltage sensors in one structure. Science 298: 1562 1563.
22. Bhakdi, S.,, U. Weller,, I. Walev,, E. Martin,, D. Jonas,, and M. Palmer. 1993. A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med. Microbiol. Immunol. 182: 167 175.
23. Bhakdi, S.,, and J. Tranum-Jensen. 1991. Alpha-toxin of Staphylococcus aureus. Microbiol. Rev. 55: 733 751.
24. Bhandarkar, M.,, G. Budescu,, W. Humphrey,, J. A. Izaguirre,, S. Izrailev,, L. V. Kalé,, D. Kosztin,, F. Molnar,, J. C. Phillips,, and K. Schulten,. 1999. BioCoRE: a collaboratory for structural biology, p. 242 251. In A. G. Bruzzone,, A. Uchrmacher,, and E. H. Page (ed.), Proceedings of the SCS International Conference on Web-Based Modeling and Simulation. Society for Modeling and Simulation, San Francisco, Calif.
25. Blount, P.,, and P. C. Moe. 1999. Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol. 18: 420 424.
26. Bond, P. J.,, and M.S.P. Sansom. 2004. The simulation approach to bacterial outer membrane proteins. Mol. Mem. Biol. 21: 151 161.
27. Borgnia, M.,, S. Nielsen,, A. Engel,, and P. Agre. 1999a. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem. 68: 425 458.
28. Borgnia, M. J.,, and P. Agre. 2001. Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc. Natl. Acad. Sci. USA 98: 2888 2893.
29. Borgnia, M. J.,, D. Kozono,, G. Calamita,, P. C. Maloney,, and P. Agre. 1999b. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291: 1169 1179.
30. Bostick, D. L.,, and M. L. Berkowitz. 2004. Exterior site occupancy infers chloride-induced proton gating in a prokaryotic homolog of the ClC chloride channel. Biophys. J. 87: 1686 1696.
31. Braha, O.,, L. Q. Gu,, L. Zhou,, X. Lu,, S. Cheley,, and H. Bayley. 2000. Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18: 1005 1007.
32. Braun, R.,, D. M. Engelman,, and K. Schulten. 2004. Molecular dynamics simulations of micelle formation around dimeric glycophorin A transmembrane helices. Biophys. J. 87: 754 763.
33. Chakrabarti, N.,, E. Tajkhorshid,, B. Roux,, and R. Pomès. 2004. Molecular basis of proton blockage in aquaporins. Structure 12: 65 74.
34. Chang, G.,, R. H. Spencer,, A. T. Lee,, M. T. Barclay,, and D. C. Rees. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220 2226.
35. Cohen, J.,, and K. Schulten. 2004. Mechanism of anionic conduction across ClC. Biophys. J. 86: 836 845.
36. Colombo, G.,, S. J. Marrink,, and A. E. Mark. 2003. Simulation of MscL gating in a bilayer under stress. Biophys. J. 84: 2331 2337.
37. Corry, B.,, M. O’Mara,, and S.-H. Chung. 2004. Conduction mechanisms of chloride ions in ClC-type channels. Biophys. J. 86: 846 860.
38. Cozmuta, I.,, J. T. O’Keeffe,, D. Bose,, and V. Stolc. 2005. Hybrid MD-Nernst-Planck model of α-hemolysin conductance properties. Mol. Sim. 31: 79 93.
39. Crozier, P. S.,, D. Henderson,, R. L. Rowley,, and D. D. Busath. 2001. Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics. Biophys. J. 81: 3077.
40. Cui, C.,, D. O. Smith,, and J. Adler. 1995. Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membrane by whole-cell patch clamp recording. J. Mol. Biol. 44: 31 42.
41. Damjanović, A.,, I. Kosztin,, U. Kleinekathofer,, and K. Schulten. 2002. Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry and polaron model study. Phys. Rev. E 65: 031919.
42. Darden, T.,, D. York,, and L. Pedersen. 1993. Particle mesh Ewald. An N log(N) method for Ewald sums in large systems. J. Chem. Phys. 98: 10089 10092.
43. Deamer, D.,, and D. Branton. 2002. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35: 817 825.
44. Deen, P. M. T.,, and C. H. van Os. 1998. Epithelial aquaporins. Curr. Opin. Cell Biol. 10: 435 442.
45. de Groot, B. L.,, A. Engel,, and H. Grubmüller. 2001. A refined structure of human aquaporin-1. FEBS Lett. 504: 206 211.
46. de Groot, B. L.,, T. Frigato,, V. Helms,, and H. Grubmüller. 2003. The mechanism of proton exclusion in the aquaporin-1 water channel. J. Mol. Biol. 333: 279 293.
47. de Groot, B. L.,, and H. Grubmüller. 2001. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294: 2353 2357.
48. de Groot, B. L.,, J. B. Heymann,, A. Engel,, K. Mitsuoka,, Y. Fujiyoshi,, and H. Grubmüller. 2000. The fold of human aquaporin 1. J. Mol. Biol. 300: 987 994.
49. Domene, C.,, P. J. Bond,, and M. S. P. Sansom. 2003. Membrane protein simulations: ion channels and bacterial outer membrane proteins. Adv. Protein Chem. 66: 159 193.
50. Doyle, D. A.,, J. M. Cabral,, R. A. Pfuetzer,, A. Kuo,, J. M. Gulbis,, S. L. Cohen,, B. T. Chait,, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69 77.
51. Dutzler, R.,, E. B. Campbell,, M. Cadene,, B. T. Chait,, and R. MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415: 287 294.
52. Dutzler, R.,, E. B. Campbell,, and R. MacKinnon. 2003. Gating the selectivity filter in ClC chloride channels. Science 300: 108 112.
53. Edwards, M. D.,, I. R. Booth,, and S. Miller. 2004. Gating the bacterial mechanosensitive channels: Mscs a new paradigm? Curr. Opin. Microbiol. 7: 163 167.
54. Elmore, D. E.,, and D. A. Dougherty. 2003. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys. J. 85: 1512 1524.
55. Essmann, U.,, L. Perera,, M. L. Berkowitz,, T. Darden,, H. Lee,, and L. G. Pedersen. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103: 8577 8593.
56. Estévez, R.,, and T. J. Jentsch. 2002. ClC chloride channels: correlating structure with function. Curr. Opin. Struct. Biol. 12: 531 539.
57. Fahlke, C. 2001. Ion permeation and selectivity in ClC-type chloride channels. Am. J. Physiol. Ren. Physiol. 280: F748 F757.
58. Fahlke, C.,, H. Yu,, C. L. Beck,, T. R. Rhodes,, and J. A. L. George. 1997. Pore-forming segments in voltage-gated chloride channels. Nature 390: 529 532.
59. Faraldo-Gómez, J. D.,, and B. Roux. 2004. Electrostatics of ion stabilization in a ClC chloride channel homologue from Escherichia coli. J. Mol. Biol. 339: 981 1000.
60. Feller, S. E.,, and R. W. Pastor. 1999. Constant surface tension simulations of lipid bilayers: the sensitivity of surface areas and compressibilities. J. Chem. Phys. 111: 1281 1287.
61. Feller, S. E.,, R. W. Pastor,, A. Rojnuckarin,, S. Bogusz,, and B. R. Brooks. 1996. Effect of electrostatic force truncation on interfacial and transport properties of water. J. Phys. Chem. 100: 17011 17020.
62. Feller, S. E.,, Y. H. Zhang,, R. W. Pastor,, and B. R. Brooks. 1995. Constant pressure molecular dynamics simulation— the Langevin piston method. J. Chem. Phys. 103: 4613 4621.
63. Friedrich, T.,, T. Breiderhoff,, and T. J. Jentsch. 1999. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274: 896 902.
64. Fu, D.,, A. Libson,, L. J. W. Miercke,, C. Weitzman,, P. Nollert,, J. Krucinski,, and R. M. Stroud. 2000. Structure of a glycerol conducting channel and the basis for its selectivity. Science 290: 481 486.
65. Fujiyoshi, Y.,, K. Mitsuoka,, B. L. de Groot,, A. Philippsen,, H. Grubmüller,, P. Agre,, and A. Engel. 2002. Structure and function of water channels. Curr. Opin. Struct. Biol. 12: 509 515.
66. Gonen, T.,, P. Sliz,, J. Kistler,, Y. Cheng,, and T. Walz. 2004. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429: 193 197.
67. Gouaux, E. 1998. 〈-Hemolysin from Staphylococcus aureus: an archetype of β-barrel, channel-forming toxins. J. Struct. Biol. 121: 110 122.
68. Grayson, P.,, E. Tajkhorshid,, and K. Schulten. 2003. Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics. Biophys. J. 85: 36 48.
69. Gu, Q.,, O. Braha,, S. Conlan,, S. Cheley,, and H. Bayley. 1999. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 398: 686 690.
70. Gullingsrud, J.,, R. Braun,, and K. Schulten. 1999. Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J. Comp. Phys. 151: 190 211.
71. Gullingsrud, J.,, D. Kosztin,, and K. Schulten. 2001. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys. J. 80: 2074 2081.
72. Gullingsrud, J.,, and K. Schulten. 2003. Gating of MscL studied by steered molecular dynamics. Biophys. J. 85: 2087 2099.
73. Gullingsrud, J.,, and K. Schulten. 2004. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86: 3496 3509.
74. Hayashi, S.,, E. Tajkhorshid,, H. Kandori,, and K. Schulten. 2004. Role of hydrogen-bond network in energy storage of bacteriorhodopsin’s light-driven proton pump revealed by ab initio normal mode analysis. J. Am. Chem. Soc. 126: 10516 10517.
75. Hayashi, S.,, E. Tajkhorshid,, E. Pebay-Peyroula,, A. Royant,, E. M. Landau,, J. Navarro,, and K. Schulten. 2001. Structural determinants of spectral tuning in retinal proteins—bacteriorhodopsin vs sensory rhodopsin II. J. Phys. Chem. B 105: 10124 10131.
76. Hayashi, S.,, E. Tajkhorshid,, and K. Schulten. 2003. Molecular dynamics simulation of bacteriorhodopsin’s photoisomerization using ab initio forces for the excited chromophore. Biophys. J. 85: 1440 1449.
77. Heller, H.,, M. Schaefer,, and K. Schulten. 1993. Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal-phases. J. Phys. Chem. 97: 8343 8360.
78. Heller, K. B.,, E. C. Lin,, and T. H. Wilson. 1980. Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J. Bacteriol. 144: 274 278.
79. Henrickson, S.,, M. Misakian,, B. Robertson,, and J. J. Kasianowicz. 2000. Driven DNA transport into an asymmetric nanometer-scale pore. Phys. Rev. Lett. 85: 3057 3060.
80. Heymann, J. B.,, and A. Engel. 1999. Aquaporins: phylogeny, structure, and physiology of water channels. News Physiol. Sci. 14: 187 193.
81. Howorka, S.,, S. Cheley,, and H. Bayley. 2001. Sequence-specific detection of individual dna strands using engineered nanopores. Nat. Biotechnol. 19: 636 639.
82. Hu, X.,, T. Ritz,, A. Damjanović,, F. Autenrieth,, and K. Schulten. 2002. Photosynthetic apparatus of purple bacteria. Q. Rev. Biophys. 35: 1 62.
83. Humphrey, W.,, A. Dalke,, and K. Schulten. 1996. VMD—visual molecular dynamics. J. Mol. Graph. 14: 33 38.
84. Ilan, B.,, E. Tajkhorshid,, K. Schulten,, and G. A. Voth. 2004. The mechanism of proton exclusion in aquaporin channels. Proteins 55: 223 228.
85. Isralewitz, B.,, J. Baudry,, J. Gullingsrud,, D. Kosztin,, and K. Schulten. 2001a. Steered molecular dynamics investigations of protein function. J. Mol. Graph. Model. 19: 13 25.
86. Isralewitz, B.,, M. Gao,, and K. Schulten. 2001b. Steered molecular dynamics and mechanical functions of proteins. Curr. Opin. Struct. Biol. 11: 224 230.
87. Iyer, R.,, T. M. Iverson,, A. Accardi,, and C. Miller. 2002. A biological role for prokaryotic ClC chloride channels. Nature 419: 715 718.
88. Izrailev, S.,, A. R. Crofts,, E. A. Berry,, and K. Schulten. 1999. Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex. Biophys. J. 77: 1753 1768.
89. Izrailev, S.,, S. Stepaniants,, B. Isralewitz,, D. Kosztin,, H. Lu,, F. Molnar,, W. Wriggers,, and K. Schulten,. 1998. Steered molecular dynamics, p. 39 65. In P. Deuflhard,, J. Hermans,, B. Leimkuhler,, A. E. Mark,, S. Reich,, and R. D. Skeel (ed.), Lecture Notes in Computational Science and Engineering, vol. 4. Computational Molecular Dynamics: Challenges, Methods, Ideas. Springer-Verlag, Berlin, Germany.
90. Jarzynski, C. 1997a. Equilibrium free-energy differences from nonequilibrium measurements: a master equation approach. Phys. Rev. E 56: 5018 5035.
91. Jarzynski, C. 1997b. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78: 2690 2693.
92. Jensen, M. Ø., S. Park, E. Tajkhorshid, and K. Schulten. 2002. Energetics of glycerol conduction through aquaglyceroporin GlpF. Proc. Natl. Acad. Sci. USA 99: 6731 6736.
93. Jensen, M. Ø., E. Tajkhorshid, and K. Schulten. 2001. The mechanism of glycerol conduction in aquaglyceroporins. Structure 9: 1083 1093.
94. Jensen, M. Ø., E. Tajkhorshid, and K. Schulten. 2003. Electrostatic tuning of permeation and selectivity in aquaporin water channels. Biophys. J. 85: 2884 2899.
95. Jentsch, T. J.,, T. Friedrich,, A. Schriever,, and H. Yamada. 1999. The CLC chloride channel family. Pflugers Arch. 437: 783 795.
96. Jiang, Y.,, A. Lee,, J. Chen,, M. Cadene,, B. T. Chait,, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417: 515 522.
97. Jiang, Y.,, A. Lee,, J. Chen,, M. Cadene,, B. T. Chait,, and R. MacKinnon. 2003. X-ray structure of a voltage-dependent K + channel. Nature 423: 33 41.
98. Jung, J. S.,, G. M. Preston,, B. L. Smith,, W. B. Guggino,, and P. Agre. 1994. Molecular structure of the water channel through aquaporin CHIP—the hourglass model. J. Biol. Chem. 269: 14648 14654.
99. Kalé, L.,, R. Skeel,, M. Bhandarkar,, R. Brunner,, A. Gursoy,, N. Krawetz,, J. Phillips,, A. Shinozaki,, K. Varadarajan,, and K. Schulten. 1999. NAMD2: greater scalability for parallel molecular dynamics. J. Comp. Phys. 151: 283 312.
100. Kasianowicz, J. J.,, and S. M. Bezrukov. 1995. Protonation dynamics of the α-toxin ion channel from spectral analysis of pH dependent current fluctuations. Biophys. J. 69: 94 105.
101. Kasianowicz, J. J.,, E. Brandib,, D. Branton,, and W. Deamer. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93: 13770 13773.
102. Kasianowicz, J. J.,, S. E. Henrickson,, H. H. Weetall,, and B. Robertson. 2001. Simultaneous multianalyte detection with a nanometer-scale pore. Anal. Chem. 73: 2268 2272.
103. Kong, Y.,, Y. Shen,, T. E. Warth,, and J. Ma. 2002. Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA 99: 5999 6004.
104. Koprowski, P.,, and A. Kubalski. 2003. C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278: 11237 11245.
105. Korchev, Y. E.,, G. M. Alder,, A. Bakhramov,, C. L. Bashford,, B. S. Joomun,, E. V. Sviderskaya,, P. N. R. Usherwood,, and C. A. Pasternak. 1995. Staphylococcus aureus alpha-toxin: channel-like behavior in lipid bilayers and patch clamped cells. J. Membr. Biol. 143: 143 151.
106. Kosztin, I.,, and K. Schulten. 2004. Fluctuation-driven molecular transport through an asymmetric membrane channel. Phys. Rev. Lett. 93: 238102.
107. Krasilnikov, O. V.,, and R. Z. Sabirov. 1989. Ion transport through channels formed in lipid bilayers by Staphylococcus aureus alpha-toxin. Gen. Physiol. Biophys. 8: 213 222.
108. Kumar, S.,, D. Bouzida,, R. H. Swendsen,, P. A. Kollman,, and J. M. Rosenberg. 1992. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comp. Chem. 13: 1011 1021.
109. Lamoureux, G.,, A. D. MacKerell, Jr.,, and B. Roux. 2003. A simple polarizable model of water based on classical drude oscillators. J. Chem. Phys. 119: 5185 5197.
110. Law, R. J.,, and M. S. P. Sansom. 2002. Water transporters: how so fast yet so selective? Curr. Biol. 12: R250 R252.
111. Levina, N.,, S. Totemeyer,, N. R. Stokes,, P. Louis,, M. A. Jones,, and I. Booth. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18: 1730 1737.
112. Li, J.,, and A. S. Verkman. 2001. Impaired hearing in mice lacking aquaporin-4 water channels. J. Biol. Chem. 276: 31233 31237.
113. Lu, D.,, P. Grayson,, and K. Schulten. 2003. Glycerol conductance and physical asymmetry of the Escherichia coli glycerol facilitator GlpF. Biophys. J. 85: 2977 2987.
114. MacKerell, A. D., Jr.,, D. Bashford,, M. Bellott, et al. 1992. Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. FASEB J. 6: A143.
115. MacKerell, A. D., Jr.,, D. Bashford,, M. Bellott, et al. 1998. All-hydrogen empirical potential for molecular modeling and dynamics studies of proteins using the CHARMM22 force field. J. Phys. Chem. B 102: 3586 3616.
116. Maduke, M.,, C. Miller,, and J. A. Mindell. 2000. A decade of CLC chloride channels: structure, mechanism, and many unsettled questions. Annu. Rev. Biophys. Biomol. Struct. 29: 411 438.
117. Martinac, B.,, M. Buechner,, A. H. Delcour,, J. Adler,, and C. Kung. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2297 2301.
118. Meller, A.,, and D. Branton. 2002. Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23: 2583 2591.
119. Menestrina, G. 1986. Ionic channels formed by Staphylococcus aureus alpha-toxin: voltage-dependent inhibition by divalent and trivalent cations. J. Membr. Biol. 90: 177 190.
120. Miller, C. 1982. Open-state substructure of single chloride channels from Torpedo electroplax. Philos. Trans. R. Soc. Lond. B 299: 401 411.
121. Miller, C. 2003. Reading eukaryotic function through prokaryotic spectacles. J. Gen. Physiol. 122: 129 131.
122. Miller, M. K.,, M. L. Bang,, C. C. Witt,, D. Labeit,, C. Trombitas,, K. Watanabe,, H. Granzier,, A. S. McElhinny,, C. C. Gregorio,, and S. Labelt. 2003. The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament-based stress response molecules. J. Mol. Biol. 333: 951 964.
123. Miloshevsky, G. V.,, and P. C. Jordan. 2004. Anion pathway and potential energy profiles along curvilinear bacterial ClC Cl↕ pores: Electrostatic effects of charged residues. Biophys. J. 86: 825 835.
124. Mindell, J. A.,, M. Maduke,, C. Miller,, and N. Grigorieff. 2001. Projection structure of a ClC-type chloride channel at 6.5 Å resolution. Nature 409: 219 223.
125. Misakian, M.,, and J. J. Kasianowicz. 2003. Electrostatic influence of ion transport through the ˚HL channel. J. Membr. Biol. 195: 137 146.
126. Morais-Cabral, J. H.,, Y. Zhou,, and R. MacKinnon. 2001. Energetic optimization of ion conduction rate by the K + selectivity filter. Nature 414: 37 41.
127. Nelson, M.,, W. Humphrey,, A. Gursoy,, A. Dalke,, L. Kalé,, R. D. Skeel,, and K. Schulten. 1996. NAMD—a parallel, object-oriented molecular dynamics program. Int. J. Supercomput. Appl. 10: 251 268.
128. Nollert, P.,, W. E. C. Harries,, D. Fu,, L. J. W. Miercke,, and R. M. Stroud. 2001. Atomic structure of a glycerol channel and implications for substrate permeation in aqua(glycero)porins. FEBS Lett. 504: 112 117.
129. Noskov, S.,, S. Berneche,, and B. Roux. 2004a. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431: 830 834.
130. Noskov, S. Y.,, W. Im,, and B. Roux. 2004b. Ion permeation through the α-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Biophys. J. 87: 2299 2309.
131. Okada, K.,, P. C. Moe,, and P. Blount. 2002. Functional design of bacterial mechanosensitive channels. J. Biol. Chem. 277: 27682 27688.
132. Park, S.,, F. Khalili-Araghi,, E. Tajkhorshid,, and K. Schulten. 2003. Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J. Chem. Phys. 119: 3559 3566.
133. Park, S.,, and K. Schulten. 2004. Calculating potentials of mean force from steered molecular dynamics simulations. J. Chem. Phys. 120: 5946 5961.
134. Paula, S.,, M. Akeson,, and D. Deamer. 1999. Water transport by the bacterial channel α-hemolysin. Biochim. Biophys. Acta 1418: 117 126.
135. Perozo, E.,, D. M. Cortes,, P. Sompornpisut,, A. Kloda,, and B. Martinac. 2002a. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942 948.
136. Perozo, E.,, A. Kloda,, D. M. Cortes,, and B. Martinac. 2002b. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9: 696 703.
137. Preston, G. M.,, and P. Agre. 1991. Isolation of the cDNA for erythrocyte integral membrane-protein of 28-kD— member of an ancient channel family. Proc. Natl. Acad. Sci. USA 88: 11110 11114.
138. Pusch, M.,, U. Ludewig,, A. Rehfeldt,, and T. J. Jentsch. 1995. Gating of the voltage-dependent chloride channel ClC-0 by the permeant anion. Nature 373: 527 531.
139. Rickey, D. P.,, and E. E. C. Lin. 1972. Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli. J. Bacteriol. 112: 784 790.
140. Roux, B. 1995. The calculation of the potential of mean force using computer simulations. Comput. Phys. Commun. 91: 275 282.
141. Roux, B. 2002. Computational studies of the gramicidin channel. Acc. Chem. Res. 35: 366 375.
142. Roux, B.,, T. Allen,, S. Berneche,, and W. Im. 2004. Theoretical and computational models of biological ion channels. Q. Rev. Biophys. 37: 15 103.
143. Roux, B.,, and K. Schulten. 2004. Computational studies of membrane channels. Structure 12: 1343 1351.
144. Russo, M. J.,, H. Bayley,, and M. Toner. 1997. Reversible permeabilization of plasma membranes with an engineered switchable pore. Nat. Biotechnol. 15: 278 282.
145. Saam, J.,, E. Tajkhorshid,, S. Hayashi,, and K. Schulten. 2002. Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin. Biophys. J. 83: 3097 3112.
146. Saiz, L.,, S. Bandyopadhyay,, and M. L. Klein. 2002. Towards an understanding of complex biological membranes from atomistic molecular dynamics simulations. Biosci. Rep. 22: 151 173.
147. Savage, D. F.,, P. F. Egea,, Y. Robles-Colmenares,, J. D. O’Connell III,, and R. M. Stroud. 2003. Architecture and selectivity in aquaporins: 2.5 Å x-ray structure of aquaporin z. PLoS Biol. 1: 334 340.
148. Schlenkrich, M.,, J. Brickmann,, A. D. MacKerell Jr,., and M. Karplus,. 1996. Empirical potential energy function for phospholipids: criteria for parameter optimization and applications, p. 31 81. In K. M. Merz, and B. Roux (ed.), Biological Membranes: a Molecular Perspective from Computation and Experiment. Birkhauser, Boston, Mass.
149. Schumann, U.,, M. Edwards,, C. Li,, and I. R. Booth. 2004. The conserved carboxy-terminus of the mscs mechanosensitive channel is not essential but increases stability and activity. FEBS Lett. 572: 233 237.
150. Shapovalov, G.,, and H. A. Lester. 2004. Gating transitions in bacterial ion channels measured at 3 μs resolution. J. Gen. Physiol. 124: 151 161.
151. Sheng, Q.,, K. Schulten,, and C. Pidgeon. 1995. A molecular dynamics simulation of immobilized artificial membranes. J. Phys. Chem. 99: 11018 11027.
152. Shi, L. B.,, W. R. Skach,, and A. S. Verkman. 1994. Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type-mutant heterodimers. J. Biol. Chem. 269: 10417 10422.
153. Shilov, I. Y.,, and M. G. Kurnikova. 2003. Energetics and dynamics of a cyclic oligosaccharide molecule in a confined protein pore environment: a molecular dynamics study. J. Phys. Chem. B 107: 7189 7201.
154. Shrivastava, I. H.,, and M. S. P. Sansom. 2000. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys. J. 78: 557 570.
155. Smart, O. S.,, G. M. P. Coates,, M. S. P. Sansom,, G. M. Alder,, and C. L. Bashford. 1998. Structure-based prediction of the conductance properties of ion channels. Faraday Discuss. 111: 185 199.
156. Song, L.,, M. R. Hobaugh,, C. Shustak,, S. Cheley,, H. Bayley,, and J. E. Gouaux. 1996. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274: 1859 1866.
157. Sotomayor, M.,, and K. Schulten. 2004. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys. J. 87: 3050 3065.
158. Stepaniants, S.,, S. Izrailev,, and K. Schulten. 1997. Extraction of lipids from phospholipid membranes by steered molecular dynamics. J. Mol. Mod. 3: 473 475.
159. Stone, J.,, J. Gullingsrud,, P. Grayson,, and K. Schulten,. 2001. A system for interactive molecular dynamics simulation, p. 191 194. In J. F. Hughes, and C. H. Séquin (ed.), 2001 ACM Symposium on Interactive 3D Graphics. ACM SIGGRAPH, New York, N.Y.
160. Sui, H.,, B.-G. Han,, J. K. Lee,, P. Walian,, and B. K. Jap. 2001. Structural basis of water-specific transport through the AQP1 water channel. Nature 414: 872 878.
161. Sukharev, S. 2002. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83: 290 298.
162. Sukharev, S.,, M. Betanzos,, C.-S. Chiang,, and H. R. Guy. 2001. The gating mechanism of the large mechanosensitive channel MscL. Nature 409: 720 724.
163. Sukharev, S.,, and D. P. Corey. 2004. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. STKE 2004: re4.
164. Sukharev, S. I.,, P. Blount,, B. Martinac,, F. R. Blattner,, and C. Kung. 1994. A large-conductance mechanosensitive channel in E. coli encoded by MscL alone. Nature 368: 265 268.
165. Tajkhorshid, E.,, A. Aksimentiev,, I. Balabin,, M. Gao,, B. Isralewitz,, J. C. Phillips,, F. Zhu,, and K. Schulten,. 2003. Large scale simulation of protein mechanics and function, p. 195 247. In F. M. Richards,, D. S. Eisenberg,, and J. Kuriyan (ed.), Advances in Protein Chemistry, vol. 66. Elsevier Academic Press, New York, N.Y.
166. Tajkhorshid, E.,, J. Baudry,, K. Schulten,, and S. Suhai. 2000. Molecular dynamics study of the nature and origin of retinal’s twisted structure in bacteriorhodopsin. Biophys. J. 78: 683 693.
167. Tajkhorshid, E.,, P. Nollert,, M. Ø. Jensen, L. J. W. Miercke, J. O’Connell, R. M. Stroud, and K. Schulten. 2002. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296: 525 530.
168. Tajkhorshid, E.,, F. Zhu,, and K. Schulten,. Kinetic theory and simulation of single-channel water transport. In E. Sip (ed.), Encyclopedia of Materials Modeling, vol. 1. Fundamental Models and Methods, in press. MIT Press, Cambridge, Mass.
169. Valverde, M. A. 1999. ClC channels: leaving the dark ages on the verge of a new millenium. Curr. Opin. Cell Biol. 11: 509 516.
170. Vercoutere, W.,, and M. Akeson. 2002. Biosensors for DNA sequence detection. Curr. Opin. Chem. Biol. 6: 816 822.
171. Verkman, A. S.,, and A. K. Mitra. 2000. Structure and function of aquaporin water channels. Am. J. Physiol. Ren. Physiol. 278: F13 F28.
172. Walz, T.,, and R. Ghosh. 1997. Two-dimensional crystallization of the light-harvesting I reaction centre photounit from Rhodospirillum rubrum. J. Mol. Biol. 265: 107 111.
173. Walz, T.,, T. Hirai,, K. Murata,, J. B. Heynmann,, K. Mitsuoka,, Y. Fujiyoshi,, B. L. Smith,, P. Agre,, and A. Engel. 1997. The three-dimensional structure of aquaporin-1. Nature 387: 624 627.
174. Yeh, I. C.,, and G. Hummer. 2004. Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. Biophys. J. 86: 681 689.
175. Yin, J.,, Z. Kuang,, U. Mahankali,, and T. L. Beck. 2004. Ion transit pathways and gating in ClC chloride channels. Proteins 57: 414 421.
176. Yool, A. J.,, and A. M. Weinstein. 2002. New roles for old holes: ion channel function in aquaporin-1. News Physiol. Sci. 17: 68 72.
177. Zhou, F.,, and K. Schulten. 1995. Molecular dynamics study of a membrane-water interface. J. Phys. Chem. 99: 2194 2208.
178. Zhou, F.,, and K. Schulten. 1996. Molecular dynamics study of phospholipase A2 on a membrane surface. Proteins 25: 12 27.
179. Zhu, F.,, and K. Schulten. 2003. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J. 85: 236 244.
180. Zhu, F.,, E. Tajkhorshid,, and K. Schulten. 2001. Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer. FEBS Lett. 504: 212 218.
181. Zhu, F.,, E. Tajkhorshid,, and K. Schulten. 2002. Pressure-induced water transport in membrane channels studied by molecular dynamics. Biophys. J. 83: 154 160.
182. Zhu, F.,, E. Tajkhorshid,, and K. Schulten. 2004a. Collective diffusion model for water permeation through microscopic channels. Phys. Rev. Lett. 93: 224501.
183. Zhu, F.,, E. Tajkhorshid,, and K. Schulten. 2004b. Theory and simulation of water permeation in aquaporin-1. Biophys. J. 86: 50 57.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error