1887

Chapter 10 : Phages

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Phages, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap10-2.gif

Abstract:

species are small, aerobic, gram-negative betaproteobacteria which are capable of infecting a broad range of host species. The first reported isolation of a phage dates back to 1935, when a phage was isolated from river water in the Ukraine by researchers at the USSR Academy of Sciences. Until recently, nearly all of the published work on phages has been performed by Russian investigators. Much of this work was motivated by the potential use of phages for antimicrobial therapy, particularly for diseases such as whooping cough, in which the microbe is exposed on the respiratory epithelial surface. Tropism switching by phage BPP-1 is mediated by a variability-generating cassette (VGC) carried in the phage genome. Downstream from , there is a second copy of the 134-bp repeat, called the template repeat (TR), which is approximately 90% identical to variable repeat (VR). The properties of the homing reaction can be elucidated genetically by the classical technique of haplotype mapping. The observation that the transmission of sequence information is characterized by such flexible mosaicism has important mechanistic consequences. The role of diversity-generating retroelements (DGRs) in phages is to introduce diversity into the phage tail fiber protein that binds to bacterial receptors. It is tempting to speculate that the adaptation of mobility to generate protein variability has allowed DGRs to evolve an alternative strategy as stable and beneficial components of host genomes.

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10

Key Concept Ranking

Type III Secretion System
0.4106216
0.4106216
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

BPP-1 virion morphology. The images show negative-stain transmission electron micrographs of an intact phage particle (A), an isolated tail (side view) with partially dissociated tail fibers (B), and isolated tails with tail fibers (top view) (C and D).

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Predicted phage coding sequences. Arrows represent predicted coding sequences (49 total) encoding proteins of >7 kDa. Most predicted coding sequences are named with the prefix bbp (for phage). The genome is organized in a major leftward unit of transcription, which includes to , and a rightward unit of transcription, containing I through . Functional assignments for several gene clusters are indicated. For detailed information, see reference .

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Tropism switching by bacteriophage. Specificities and tropism switching frequencies are depicted above the BvgAS-mediated phase transition. Bvg-regulated gene products, including adhesins and toxins in the Bvg phase and lipopolysaccharide and flagellum in the Bvg phase, are depicted schematically.

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Cross-neutralization of ϕ3865 and ϕ214 with antisera against ϕ3865 (A) and ϕ214 (B), measured as PFU remaining as a function of incubation time. Reprinted from reference (in Russian) with permission of the publisher.

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Components of the VGC. The 3′ portion of is expanded and the 134-bp VR sequence is underlined.Variable bases (in bold; 23 total) occur in the first two positions of a codon and correspond to adenine residues in TR ( ).

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Nucleotide sequence alignment of VRs from various BPP, BMP, and BIP phages. All sequences are aligned with the VR of BPP-1 (top) and with TR (middle). Nucleotides in highly variable positions are shown in bold. For an expanded data set and the pedigree of strains, see reference .

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

In wild-type (wt) BPP-1, information is transferred unidirectionally from TR to VR and is accompanied by adenine-specific mutagenesis (white lines). Replacement of the 9-bp sequence at the 3′ end of VR (IMH) with the corresponding TR sequence (asterisk) abolishes the variation in VR (BPP-3′TR), whereas the introduction of an IMH site into TR generates de novo variability in TR (BPP-3′VR).

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Schematic of the proposed diversity-generating mechanism. Asterisks represent heteroduplexes formed during complementary base pairing between a mutagenized cDNA and genomic DNA. See the text for details.

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Phylogenetic tree of DGRs and other classes of retroelements. GenBank accession numbers are shown. G2, group II introns; Rpls, mitochondrial retroplasmids; Rtn, retrons;NLTR,non-LTR elements;LTR,LTR retroelements;Telo, telomerases; PLE, -like elements. RT domains were analyzed by the neighbor-joining algorithm of PHYLIP 3.6b with 1,000 bootstrap samplings, which are expressed as percentages. DGRs form a well-defined clade with 92% bootstrap support.

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Nine putative DGRs are shown for comparison to the phage DGR. All DGRs include an ORF that contains a 103- to 190-bp VR (gray arrows) which is always located at the C terminus, a spacer region which in some cases contains an ortholog, and a TR (black arrows) of equal length to the VR in close proximity to an RT domain.

Citation: Hodes A, Doulatov S, Miller J. 2005. Phages, p 206-222. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap10
1. Akerley, B. J.,, D. M. Monack,, S. Falkow,, and J. F. Miller. 1992. The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J. Bacteriol. 174:980990.
2. Boeke, J. D. 2003. The unusual phylogenetic distribution of retrotransposons: a hypothesis. Genome Res. 13:19751983.
3. Bonen, L.,, and J. Vogel. 2001. The ins and outs of group II introns. Trends Genet. 17:322331.
4. Cherry, J. D.,, and U. Heininger,. 2004. Pertussis, p. 15881602. In R. D. Feigin, and J. D. Cherry (ed.),Textbook of Pediatric Infectious Diseases, 5th ed. Saunders, Philadelphia, Pa.
5. Cotter, P. A.,, and A. M. Jones. 2003. Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol. 11:367373.
6. Cotter, P. A.,, and J. F. Miller. 1994. BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect. Immun. 62:33813390.
7. Cotter, P. A.,, M. H. Yuk,, S. Mattoo,, B. J. Akerley,, J. Boschwitz,, D. A. Relman,, and J. F. Miller. 1998. Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect. Immun. 66:59215929.
8. Cummings, C. A.,, M. M. Brinig,, P.W. Lepp,, S. van de Pas,, and D. A. Relman. 2003. Bordetella species are distinguished by patterns of substantial gene loss and host adaptation J. Bacteriol. 186:14841492.
9. Davis, B. M.,, and M. K. Waldor. 2003. Filamentous phages linked to virulence of Vibrio cholerae. Curr. Opin. Microbiol. 6:3542.
10. Deora, R.,, H. J. Bootsma,, J. F. Miller,, and P. A. Cotter. 2001. Diversity in the Bordetella virulence regulon: transcriptional control of a Bvg-intermediate phase gene. Mol. Microbiol. 40:669683.
11. Doulatov, S. R.,, A. Hodes,, L. Dai,, N. Mandhana,, M. Liu,, R. Deora,, R. W. Simons,, S. Zimmerly,, and J. F. Miller. 2004. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476481.
12. Drexler, K.,, J. Dannull,, I. Hindennach,, B. Mutschler,, and U. Henning. 1991. Single mutation in a gene for a tail fiber component of an Escherichia coli phage can cause an extension from a protein to a carbohydrate as a receptor. J. Mol. Biol. 219:655663.
13. Emsley, P.,, I. G. Charles,, N. F. Fairweather,, and N.W. Isaacs. 1996. Structure of Bordetella pertussis virulence factor P.69 pertactin. Nature 381:9092.
14. Everest, P.,, J. Li,, G. Douce,, I. Charles,, J. De Azavedo,, S. Chatfield,, G. Dougan,, and M. Roberts. 1996. Role of the Bordetella pertussis P.69 pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology 142:32613268.
15. Fairbrother, W. J.,, H. W. Christinger,, A. G. Cochran,, G. Fuh,, C. J. Keenan,, C. Quan,, S. K. Shriver,, J.Y. Tom,, J. A. Wells,, and B. C. Cunningham. 1998. Novel peptides selected to bind vascular endothelial growth factor target the receptor-binding site. Biochemistry 37:1775417764.
16. Gerlach, G.,, F. von Wintzingerode,, B. Middendorf,, and R. Gross. 2001. Evolutionary trends in the genus Bordetella. Microbes Infect. 3:6172.
17. Gol’tsmaier, T. A.,, G. I. Karataev,, M.N. Rozinov,, I. L. Moskvina,, and I. L. Shumakov. 1987. Lysogeny and conversion characteristics of microbes in the genus Bordetella. Zh. Mikrobiol. Epidemiol. Immunobiol. 1987:913.
18. Harvill, E. T.,, P. A. Cotter,, M. H. Yuk,, and J. F. Miller. 1999. Probing the function of Bordetella bronchiseptica adenylate cyclase toxin by manipulating host immunity. Infect. Immun. 67:14931500.
19. Hashemolhosseini, S.,, Z. Holmes,, B. Mutschler,, and U. Henning. 1994. Alterations of receptor specificities of coliphages of the T2 family. J. Mol. Biol. 240:105110.
20. Heiss, L. N.,, T. A. Flak,, J. R. Lancaster,, M. L. McDaniel,, and W. E. Goldman. 1993. Nitric oxide mediates Bordetella pertussis tracheal cytotoxin damage to the respiratory epithelium. Infect. Agents Dis. 2:173177.
21. Hellwig, S. M.,, M. E. Rodriguez,, G. A. Berbers,, J. G. van de Winkle,, and F. R. Mooi. 2003. Crucial role of antibodies to pertactin in Bordetella pertussis immunity. J. Infect. Dis. 188:738742.
22. Kazazian, H. H. J. 2004. Mobile elements: drivers of genome evolution. Science 303:16261632.
23. Kazazian, H. H. J.,, and J.V. Moran. 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19:1924.
24. King, A. J.,, G. Berbers,, H. F. van Oirschot,, P. Hoogerhout,, K. Knipping,, and F. R. Mooi. 2001. Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. Microbiology 147:28852895.
25. Lacerda, H. M.,, G. D. Pullinger,, A. J. Lax,, and E. Rozengurt. 1997. Cytotoxic necrotizing factor 1 from Escherichia coli and dermonecrotic toxin from Bordetella bronchiseptica induce p21(rho)-dependent tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 cells. J. Biol. Chem. 272:95879596.
26. Li, N.,, and M. Stephens. 2003. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics 165:22132233.
27. Liu, M.,, R. Deora,, S. R. Doulatov,, M. Gingery,, F. A. Eiserling,, A. Preston,, J. Duncan,, R.W. Simons,, P. A. Cotter,, J. Parkhill,, and J. F. Miller. 2002. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:20912094.
28. Liu, M.,, M. Gingery,, S. R. Doulatov,, L. Liu,, A. Hodes,, S. Baker,, P. Davis,, M. Simmonds,, C. Churcher,, K. Mungall,, M. A. Quail,, A. Preston,, E. T. Harvill,, D. J. Maskell,, F. A. Eiserling,, J. Parkhill,, and J. F. Miller. 2004. Genomic and genetic analysis of Bordetella bacteriophages encoding reverse transcriptase-mediated tropism switching cassettes. J. Bacteriol. 186:15031517.
29. Mattick, J. S. 1994. Introns: evolution and function. Curr. Opin. Genet. Dev. 4:823831.
30. Mattoo, S.,, J. F. Miller,, and P. A. Cotter. 2000. Role of Bordetella bronchiseptica fimbriae in tracheal colonization and development of a humoral immune response. Infect. Immun. 68:20242033.
31. Mooi, F. R.,, I. H. van Loo, and, A. J. King. 2001. Adaptation of Bordetella pertussis to vaccination: a cause for its reemergence? Emerg. Infect. Dis. 7(Suppl.):526528.
32. Mooi, F. R.,, H. van Oirschot,, K. Heuvelman,, H. G. J. van der Heide,, W. Gaastra,, and R. J. L. Willems. 1998. Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect. Immun. 66:670675.
33. Orgel, L. E.,, and F. H. C. Crick. 1980. Selfish DNA: the ultimate parasite. Nature 284:604606.
34. Polyakova, Z. N. 1942. Experimental isolation of pertussis phage. Zh. Mikrobiol. 1:6468.
35. Russell, J.,, A. Booth,, J. Fuller,, B. Harrower,, P. Hedley,, G. Machray,, and L.W. Powel. 2004. A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley genome. Genome 47:389398.
36. Schafer, B.,, L. Gan,, and P. S. Perlman. 2003. Reverse transcriptase and reverse splicing activities encoded by the mobile group II intron COBI1 of fission yeast mitochondrial DNA. J. Mol. Biol. 329:191206.
37. Shelton, C. B.,, D. R. Crosslin,, J. L. Casey,, S. Ng,, L. M. Temple,, and P. E. Orndorff. 2000. Discovery, purification, and characterization of temperate transducing bacteriophage for Bordetella avium. J. Bacteriol. 182:61306136.
38. Shelton, C. B.,, L. M. Temple,, and P. E. Orndorff. 2002. Use of bacteriophage Ba1 to identify properties associated with Bordetella avium virulence. Infect. Immun. 70:12191224.
39. Siniashina, L. N.,, I. A. Lapaeva,, and S. M. Mebel’. 1982. Characterization of major biological properties of Bordetella bacteriophages. Zh. Mikrobiol. Epidemiol. Immunobiol. 1982:6669.
40. Stockbauer, K. E.,, A. K. Foreman-Wykert,, and J. F. Miller. 2003. Bordetella type III secretion induces caspase 1-independent necrosis. Cell Microbiol. 5:123132.
41. Stockbauer, K. E.,, B. Fuchslocher,, J. F. Miller,, and P. A. Cotter. 2001. Identification and characterization of BipA, a Bordetella Bvg-intermediate phase protein. Mol. Microbiol. 24:671685.
42. Tetart, F.,, F. Repoila,, C. Monod,, and H. M. Kirsch. 1996. Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin. J. Mol. Biol. 258:726731.
43. Uhl, M. A.,, and J. F. Miller. 1996. Central role of the BvgS receiver as a phosphorylated intermediate in a complex two-component phosphorelay. J. Biol. Chem. 271:3317633180.
44. Uhl, M. A.,, and J. F. Miller. 1996. Integration of multiple domains in a two-component sensor protein: the Bordetella pertussis BvgAS phosphorelay. EMBO J. 15:10281036.
45. Van Damme, P.,, and M. Burgess. 2004. Immunogenicity of a combined diphtheria-tetanus-acellular pertussis vaccine in adults.Vaccine 22:305308.
46. Werts, C.,, V. Michel,, M. Hofnung,, and A. Charbit. 1994. Adsorption of bacteriophage lambda on the LamB protein of Escherichia coli K-12: point mutations in gene J of lambda responsible for extended host range. J. Bacteriol. 176:941947.
47. Wrighton, N. C.,, F. X. Farrell,, R. Chang,, A. K. Kashyap,, F. P. Barbone,, L. S. Mulcahy,, D. L. Johnson,, R.W. Barrett,, L. K. Jolliffe,, and W. J. Dower. 1996. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273:458464.
48. Yang, J.,, S. Zimmerly,, P. S. Perlman,, and A. M. Lambowitz. 1996. Efficient integration of an intron RNA into double-stranded DNA by reverse splicing. Nature 381:332335.
49. Yuk, M. H.,, E. T. Harvill,, and J. F. Miller. 1998. The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol. Microbiol. 28:945959.
50. Zhong, J.,, and A. M. Lambowitz. 2003. Group II intron mobility using nascent strands at DNA replication forks to prime reverse transcription. EMBO J. 22:45554565.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error