Chapter 12 : Mycobacteriophages: Pathogenesis and Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mycobacteriophages: Pathogenesis and Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap12-2.gif


It is noteworthy that mycobacteriophages—viruses of mycobacteria—were instrumental in early genetic studies of mycobacteria and have continued to provide useful applications. This chapter focuses on the following three aspects of mycobacteriophage biology: insights into the diversity and evolution of mycobacteriophages gained from recent genomic studies, the possible involvement of mycobacteriophages in mycobacterial pathogenesis, and the numerous applications that have been derived from mycobacteriophage studies, including both genetic and clinical tools. Most selectable markers used in mycobacterial genetics are antibiotic resistance genes. However, there are some concerns regarding the use of these markers that are unique to manipulating mycobacteria. Mycobacteriophages can help to address some of these problems by providing additional genetically selectable markers that are not based on antibiotic selection. A phage-based assay has been developed with the intent of rapid determinations of drug susceptibility profiles that will overcome problems such as the slow growth of the organism that can lead to a difficult decision of whether to delay the treatment of a patient or prescribe an antibiotic regimen that may not be ineffective. Recent genomic studies of mycobacteriophages suggest that we have much to learn about the biology of these viruses. The population appears to be large and diverse, encompassing vast numbers of genes of unknown functions as well as genes that have not previously been observed in phage genomes. These observations raise numerous questions about the nature of the mycobacteriophages, the ways in which they interact with their mycobacterial hosts, and their possible roles in mycobacterial virulence.

Citation: Hatfull G. 2005. Mycobacteriophages: Pathogenesis and Applications, p 238-255. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch12

Key Concept Ranking

Nitric Oxide Synthase
Infectious Center Assay
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Mycobacteriophage virion morphologies.The mycobacteriophages Che9c, Bxz1, and Cjw1 are representatives of three different virion morphologies. Most mycobacteriophages have an isometric head and a long flexible tail, as seen in Cjw1.The phages Corndog and Che9c have prolate heads, while Bxz1 and Catera have a larger isometric head and a contractile tail.

Citation: Hatfull G. 2005. Mycobacteriophages: Pathogenesis and Applications, p 238-255. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albay, A.,, O. Kisa,, O. Baylan,, and L. Doganci. 2003. The evaluation of FASTPlaqueTB test for the rapid diagnosis of tuberculosis. Diagn. Microbiol. Infect. Dis. 46:211215.
2. Albert, H.,, A. Heydenrych,, R. Brookes,, R. J. Mole,, B. Harley,, E. Subotsky,, R. Henry,, and V. Azevedo. 2002. Performance of a rapid phage-based test, FASTPlaqueTB, to diagnose pulmonary tuberculosis from sputum specimens in South Africa. Int. J. Tuberc. Lung Dis. 6:529537.
3. Alcaide, F.,, N. Gali,, J. Dominguez,, P. Berlanga,, S. Blanco,, P. Orus,, and R. Martin. 2003. Usefulness of a new mycobacteriophage-based technique for rapid diagnosis of pulmonary tuberculosis. J. Clin. Microbiol. 41:28672871.
4. Bachrach, G.,, M. J. Colston,, H. Bercovier,, D. Bar-Nir,, C. Anderson,, and K. G. Papavinasasundaram. 2000.A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology 146:297303.
5. Banaiee, N.,, M. Bobadilla-Del-Valle,, S. Bardarov, Jr.,, P. F. Riska,, P. M. Small,, A. Ponce-De-Leon,, W. R. Jacobs, Jr.,, G. F. Hatfull,, and J. Sifuentes-Osornio. 2001. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol. 39:38833888.
6. Banaiee, N.,, M. Bobadilla-del-Valle,, P. F. Riska,, S. Bardarov, Jr.,, P. M. Small,, A. Ponce-de-Leon,, W. R. Jacobs, Jr.,, G. F. Hatfull,, and J. Sifuentes-Osornio. 2003. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J. Med. Microbiol. 52:557561.
7. Banerjee, A.,, E. Dubnau,, A. Quemard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle,, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263:227230.
8. Bardarov, S.,, S. Bardarov, Jr.,, M. S. Pavelka, Jr.,, V. Sambandamurthy,, M. Larsen,, J. Tufariello,, J. Chan,, G. Hatfull,, and W. R. Jacobs, Jr. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148:30073017.
9. Bardarov, S., Jr.,, H. Dou,, K. Eisenach,, N. Banaiee,, S. Ya,, J. Chan,, W. R. Jacobs, Jr.,, and P. F. Riska. 2003. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn. Microbiol. Infect. Dis. 45:5361.
10. Bardarov, S.,, J. Kriakov,, C. Carriere,, S. Yu,, C. Vaamonde,, R. A. McAdam,, B. R. Bloom,, G. F. Hatfull,, and W. R. Jacobs, Jr. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94:1096110966.
11. Barsom, E. K.,, and G. F. Hatfull. 1996. Characterization of Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol. Microbiol. 21:159170.
12. Bertani, G. 1999.Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181:29923002.
13. Bibb, L.A.,, and G. F. Hatfull. 2002. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol. Microbiol. 45:15151526.
14. Brosch, R.,, S.V. Gordon,, M. Marmiesse,, P. Brodin,, C. Buchrieser,, K. Eiglmeier,, T. Garnier,, C. Gutierrez,, G. Hewinson,, K. Kremer,, L. M. Parsons,, A. S. Pym,, S. Samper,, D. van Soolingen,, and S.T. Cole. 2002.A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl.Acad. Sci. USA 99:36843689.
15. Brown, J. E.,, J. F. Klement,, and W.T. McAllister. 1986. Sequences of three promoters for the bacteriophage SP6 RNA polymerase. Nucleic Acids Res. 14:35213526.
16. Brown, K. L.,, G. J. Sarkis,, C. Wadsworth,, and G. F. Hatfull. 1997.Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J. 16:59145921.
17. Broxmeyer, L.,, D. Sosnowska,, E. Miltner,, O. Chacon,, D. Wagner,, J. McGarvey,, R. G. Barletta,, and L. E. Bermudez. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J. Infect. Dis. 186:11551160.
18. Bull, J. J.,, B.R. Levin,, T. DeRouin,, N. Walker,, and C. A. Bloch. 2002. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2:35.
19. Chattopadhyay, C.,, S. Sau,, and N.C. Mandal. 2003. Cloning and characterization of the promoters of temperate mycobacteriophage L1. J. Biochem. Mol. Biol. 36:586592.
20. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, B. G. Barrell, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
21. Donnelly-Wu, M. K.,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1993. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol. Microbiol. 7:407417.
22. Duckworth, D. H.,, and P.A. Gulig. 2002. Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:5762.
23. Dye, C.,, S. Scheele,, P. Dolin,, V. Pathania,, and M. C. Raviglione. 1999. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282:677686.
24. Eltringham, I. J.,, S.M. Wilson,, and F.A. Drobniewski. 1999. Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 37:35283532.
25. Ford, M. E.,, G. J. Sarkis,, A. E. Belanger,, R.W. Hendrix,, and G. F. Hatfull. 1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279:143164.
26. Ford, M. E.,, C. Stenstrom,, R.W. Hendrix,, and G. F. Hatfull. 1998. Mycobacteriophage TM4: genome structure and gene expression. Tuber. Lung Dis. 79:6373.
27. Freitas-Vieira, A.,, E. Anes,, and J. Moniz- Pereira. 1998.The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144:33973406.
28. Garcia, M.,, M. Pimentel,, and J. Moniz-Pereira. 2002. Expression of mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J. Bacteriol. 184:30343043.
29. Garcia de Viedma, D. 2003. Rapid detection of resistance in Mycobacterium tuberculosis: a review discussing molecular approaches. Clin. Microbiol. Infect. 9:349359.
30. Gavigan, J.A.,, J.A. Ainsa,, E. Perez,, I. Otal,, and C. Martin. 1997. Isolation by genetic labeling of a new mycobacterial plasmid, pJAZ38, from Mycobacterium fortuitum. J. Bacteriol. 179:41154122.
31. Gicquel-Sanzey, B.,, J. Moniz-Pereira,, M. Gheorghiu,, and J. Rauzier. 1989. Structure of pAL5000, a plasmid from M. fortuitum and its utilization in transformation of mycobacteria. Acta Leprol. 7:208211.
32. Haeseleer, F.,, J. F. Pollet,, M. Haumont,, A. Bollen,, and P. Jacobs. 1993. Stable integration and expression of the Plasmodium falciparum circumsporozoite protein coding sequence in mycobacteria. Mol. Biochem. Parasitol. 57:117126.
33. Harris, N. B.,, Z. Feng,, X. Liu,, S. L. Cirillo,, J. D. Cirillo,, and R. G. Barletta. 1999. Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol. Lett. 175:2126.
34. Hatfull, G. F., 2000. Molecular genetics of mycobacteriophages, p. 354. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of the Mycobacteria. ASM Press, Washington, D.C.
35. Hatfull, G. F. 1994. Mycobacteriophage L5: a toolbox for tuberculosis. ASM News 60:255260.
36. Hatfull, G. F., 1999. Mycobacteriophages, p. 358. In C. Ratledge, and J. Dale (ed.), Mycobacteria: Molecular Biology and Virulence. Chapman and Hall, London, United Kingdom.
37. Hatfull, G. F., Mycobacteriophages. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
38. Hatfull, G. F., 2004. Mycobacteriophages and tuberculosis, p. 203218. In K. Eisenach,, S. T. Cole,, W. R. Jacobs, Jr.,, and D. McMurray (ed.),Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, D.C.
39. Hatfull, G. F.,, and W. R. Jacobs, Jr., 1994. Mycobacteriophages: cornerstones of mycobacterial research, p. 16183. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
40. Hatfull, G. F.,, and G. J. Sarkis. 1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7:395405.
41. Heifets, L. B.,, and G.A. Cangelosi. 1999.Drug susceptibility testing of Mycobacterium tuberculosis: a neglected problem at the turn of the century. Int. J.Tuberc. Lung Dis. 3:564581.
42. Hendrix, R.W. 2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61:471480.
43. Hendrix, R.W.,, and R. L. Duda. 1998. Bacteriophage HK97 head assembly: a protein ballet. Adv.Virus Res. 50:235288.
44. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8:504508.
45. Hendrix, R. W.,, M. C. Smith,, R. N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96:21922197.
46. Hinshelwood, S.,, and N. G. Stoker. 1992. An Escherichia coli-Mycobacterium shuttle cosmid vector, pMSC1. Gene 110:115118.
47. Jacobs, W. R., Jr. 1992.Advances in mycobacterial genetics: new promises for old diseases. Immunobiology 184:147156.
48. Jacobs, W. R., Jr., 2000. Mycobacterium tuberculosis: a once genetically intractable organism, p. 116. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of the Mycobacteria. ASM Press, Washington, D.C.
49. Jacobs, W. R., Jr.,, R. G. Barletta,, R. Udani,, J. Chan,, G. Kalkut,, G. Sosne,, T. Kieser,, G. J. Sarkis,, G. F. Hatfull,, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819822.
50. Jacobs, W. R., Jr.,, G. V. Kalpana,, J. D. Cirillo,, L. Pascopella,, S. B. Snapper,, R. A. Udani,, W. Jones,, R. G. Barletta,, and B. R. Bloom. 1991. Genetic systems for mycobacteria. Methods Enzymol. 204:537555.
51. Jacobs, W. R., Jr.,, M. Tuckman,, and B. R. Bloom. 1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532535.
52. Jain, S.,, and G. F. Hatfull. 2000.Transcriptional regulation and immunity in mycobacteriophage Bxb1. Mol. Microbiol. 38:971985.
53. Kalpana, G.V.,, B.R. Bloom,, and W. R. Jacobs, Jr. 1991. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88:54335437.
54. Katsura, I. 1987. Determination of bacteriophage lambda tail length by a protein ruler. Nature 327:7375.
55. Katsura, I.,, and R.W. Hendrix. 1984. Length determination in bacteriophage lambda tails. Cell 39:691698.
56. Kim, A.,, P. Ghosh,, M.A. Aaron,, L.A. Bibb,, S. Jain,, and G. F. Hatfull. 2003. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol. Microbiol. 50:463473.
57. Kleckner, N.,, J. Bender,, and S. Gottesman. 1991. Uses of transposons with emphasis on Tn10. Methods Enzymol. 204:139180.
58. Lamichhane, G.,, M. Zignol,, N. J. Blades,, D. E. Geiman,, A. Dougherty,, J. Grosset,, K.W. Broman,, and W. R. Bishai. 2003. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci.USA 100:72137218.
59. Lang, A. S.,, and J. T. Beatty. 2000. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97:859864.
60. Lee, M. H.,, and G. F. Hatfull. 1993. Mycobacteriophage L5 integrase-mediated site-specific integration in vitro. J. Bacteriol. 175:68366841.
61. Lee, M. H.,, L. Pascopella,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1991. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88:31113115.
62. Lewis, J. A.,, and G. F. Hatfull. 2001. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res. 29:22052216.
63. Lewis, J. A.,, and G. F. Hatfull. 2000. Identification and characterization of mycobacteriophage L5 excisionase. Mol. Microbiol. 35:350360.
64. Mahairas, G.G.,, P. J. Sabo,, M. J. Hickey,, D.C. Singh,, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178:12741282.
65. Malaga, W.,, E. Perez,, and C. Guilhot. 2003. Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol. Lett. 219:261268.
66. Marei, A. M.,, E. M. El-Behedy,, H.A. Mohtady,, and A. F. Afify. 2003. Evaluation of a rapid bacteriophage- based method for the detection of Mycobacterium tuberculosis in clinical samples. J. Med. Microbiol. 52:331335.
67. McAdam, R.A.,, S. Quan,, D.A. Smith,, S. Bardarov,, J. C. Betts,, F. C. Cook,, E. U. Hooker,, A. P. Lewis,, P. Woollard,, M. J. Everett,, P. T. Lukey,, G. J. Bancroft,, W. R. Jacobs, Jr.,, and K. Duncan. 2002. Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148:29752986.
68. McNerney, R. 2002. Phage tests for diagnosis and drug susceptibility testing. Int. J.Tuberc. Lung Dis. 6:11291130.
69. McNerney, R. 1999.TB: the return of the phage. A review of fifty years of mycobacteriophage research. Int. J.Tuberc. Lung Dis. 3:179184.
70. Mederle, I.,, I. Bourguin,, D. Ensergueix,, E. Badell,, J. Moniz-Peireira,, B. Gicquel,, and N. Winter. 2002. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect. Immun. 70:303314.
71. Mediavilla, J.,, S. Jain,, J. Kriakov,, M. E. Ford,, R. L. Duda,, W. R. Jacobs, Jr.,, R. W. Hendrix,, and G. F. Hatfull. 2000. Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 38:955970.
72. Mukamolova, G.V.,, A. S. Kaprelyants,, D. I. Young,, M. Young,, and D. B. Kell. 1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95:89168921.
73. Nesbit, C. E.,, M. E. Levin,, M. K. Donnelly- Wu,, and G. F. Hatfull. 1995.Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol. Microbiol. 17:10451056.
74. Otero, J.,, W. R. Jacobs, Jr.,, and M. S. Glickman. 2003. Efficient allelic exchange and transposon mutagenesis in Mycobacterium avium by specialized transduction. Appl. Environ. Microbiol. 69:50395044.
75. Parish, T.,, J. Lewis,, and N.G. Stoker. 2001. Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinburgh) 81:359364.
76. Pascopella, L.,, F. M. Collins,, J. M. Martin,, M. H. Lee,, G. F. Hatfull,, C. K. Stover,, B. R. Bloom,, and W. R. Jacobs, Jr. 1994. Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect. Immun. 62:13131319.
77. Pearson, R. E.,, S. Jurgensen,, G. J. Sarkis,, G. F. Hatfull,, and W. R. Jacobs, Jr. 1996. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183:129136.
78. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs,, R.W. Hendrix,, and G. F. Hatfull. 2003.Origins of highly mosaic mycobacteriophage genomes. Cell 113:171182.
79. Peña, C. E.,, M. H. Lee,, M. L. Pedulla,, and G. F. Hatfull. 1997. Characterization of the mycobacteriophage L5 attachment site, attP. J. Mol. Biol. 266:7692.
80. Peña, C. E.,, J. Stoner,, and G. F. Hatfull. 1998. Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration. Gene 225:143151.
81. Picardeau, M.,, C. Le Dantec,, and V. Vincent. 2000.Analysis of the internal replication region of a mycobacterial linear plasmid. Microbiology 146:305313.
82. Qin, M.,, H. Taniguchi,, and Y. Mizuguchi. 1994.Analysis of the replication region of a mycobacterial plasmid, pMSC262. J. Bacteriol. 176:419425.
83. Raj, C.V.,, and T. Ramakrishnan. 1970. Transduction in Mycobacterium smegmatis. Nature 228:280281.
84. Ranes, M. G.,, J. Rauzier,, M. Lagranderie,, M. Gheorghiu,, and B. Gicquel. 1990. Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini”mycobacterium-Escherichia coli shuttle vector. J. Bacteriol. 172:27932797.
85. Redmond, W. B.,, and D. M. Ward. 1966. Media and methods for phage-typing mycobacteria. Bull W. H.O. 35:563568.
86. Ribeiro, G.,, M. Viveiros,, H. L. David,, and J.V. Costa. 1997. Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5. Microbiology 143:27012708.
87. Riska, P. F.,, W. R. Jacobs, Jr.,, B. R. Bloom,, J. McKitrick,, and J. Chan. 1997. Specific identification of Mycobacterium tuberculosis with the luciferase reporter mycobacteriophage: use of p-nitro-alpha-acetylamino-beta-hydroxy propiophenone. J. Clin. Microbiol. 35:32253231.
88. Riska, P. F.,, Y. Su,, S. Bardarov,, L. Freundlich,, G. Sarkis,, G. Hatfull,, C. Carriere,, V. Kumar,, J. Chan,, and W. R. Jacobs, Jr. 1999. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx box. J. Clin. Microbiol. 37:11441149.
89. Rubin, E. J.,, B. J. Akerley,, V. N. Novik,, D. J. Lampe,, R. N. Husson,, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96:16451650.
90. Rybniker, J.,, M. Wolke,, C. Haefs,, and G. Plum. 2003. Transposition of Tn5367 in Mycobacterium marinum, using a conditionally recombinant mycobacteriophage. J. Bacteriol. 185:17451748.
91. Sarkis, G. J.,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15:10551067.
92. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98:1271212717.
93. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48:7784.
94. Saviola, B.,, and W. R. Bishai,. 2004. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res. 32:e11.
95. Smith, M. C.,, and H. M. Thorpe. 2002. Diversity in the serine recombinases. Mol. Microbiol. 44:299307.
96. Snapper, S. B.,, L. Lugosi,, A. Jekkel,, R. E. Melton,, T. Kieser,, B. R. Bloom,, and W. R. Jacobs, Jr. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. USA 85:69876991.
97. Snapper, S. B.,, R. E. Melton,, S. Mustafa,, T. Kieser,, and W. R. Jacobs, Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4:19111919.
98. Snider, D. E., Jr.,, W. D. Jones,, and R. C. Good. 1984.The usefulness of phage typing Mycobacterium tuberculosis isolates. Am. Rev. Respir. Dis. 130:10951099.
99. Springer, B.,, P. Sander,, L. Sedlacek,, K. Ellrott,, and E. C. Bottger. 2001. Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int. J. Med. Microbiol. 290:669675.
100. Stover, C. K.,, V. F. de la Cruz,, T. R. Fuerst,, J. E. Burlein,, L. A. Benson,, L. T. Bennett,, G. P. Bansal,, J. F. Young,, M. H. Lee,, G. F. Hatfull, et al. 1991. New use of BCG for recombinant vaccines. Nature 351:456460.
101. Su, W. J. 2002. Recent advances in the molecular diagnosis of tuberculosis. J. Microbiol. Immunol. Infect. 35:209214.
102. Sula, L.,, J. Sulova,, and M. Stolcpartova. 1981. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A,GR-21 T, My-327. Czech Med. 4:209214.
103. Sulakvelidze, A.,, and J. G. Morris, Jr. 2001. Bacteriophages as therapeutic agents. Ann. Med. 33:507509.
104. Thacker, P.D. 2003. Set a microbe to kill a microbe: drug resistance renews interest in phage therapy. JAMA 290:31833185.
105. Trollip, A.,, H. Albert,, and T. Maskell. 2001. Bacteriophage-based technologies for the rapid diagnosis and drug susceptibility testing of tuberculosis. Am. Clin. Lab. 20:3942.
106. Watterson, S. A.,, S. M. Wilson,, M. D. Yates,, and F. A. Drobniewski. 1998. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 36:19691973.
107. Xue, D.,, H. Shi,, J. D. Smith,, X. Chen,, D. A. Noe,, T. Cedervall,, D. D. Yang,, E. Eynon,, D. E. Brash,, M. Kashgarian,, R.A. Flavell,, and S. L. Wolin. 2003.A lupus-like syndrome develops in mice lacking the Ro 6-kDa protein, a major lupus autoantigen. Proc. Natl. Acad. Sci. USA 100:75037508.
108. Zemskova, Z. S.,, and I. R. Dorozhkova. 1991.Pathomorphological assessment of the therapeutic effect of mycobacteriophages in tuberculosis. Probl.Tuberk. 11:6366.


Generic image for table

Features of 29 sequenced mycobacteriophages

Most of the phage heads are isometric, with a diameter of approximately 60 nm.Two have larger heads (L), with an approximately 80-nm diameter.

Citation: Hatfull G. 2005. Mycobacteriophages: Pathogenesis and Applications, p 238-255. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error