Chapter 12 : Mycobacteriophages: Pathogenesis and Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mycobacteriophages: Pathogenesis and Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap12-2.gif


It is noteworthy that mycobacteriophages—viruses of mycobacteria—were instrumental in early genetic studies of mycobacteria and have continued to provide useful applications. This chapter focuses on the following three aspects of mycobacteriophage biology: insights into the diversity and evolution of mycobacteriophages gained from recent genomic studies, the possible involvement of mycobacteriophages in mycobacterial pathogenesis, and the numerous applications that have been derived from mycobacteriophage studies, including both genetic and clinical tools. Most selectable markers used in mycobacterial genetics are antibiotic resistance genes. However, there are some concerns regarding the use of these markers that are unique to manipulating mycobacteria. Mycobacteriophages can help to address some of these problems by providing additional genetically selectable markers that are not based on antibiotic selection. A phage-based assay has been developed with the intent of rapid determinations of drug susceptibility profiles that will overcome problems such as the slow growth of the organism that can lead to a difficult decision of whether to delay the treatment of a patient or prescribe an antibiotic regimen that may not be ineffective. Recent genomic studies of mycobacteriophages suggest that we have much to learn about the biology of these viruses. The population appears to be large and diverse, encompassing vast numbers of genes of unknown functions as well as genes that have not previously been observed in phage genomes. These observations raise numerous questions about the nature of the mycobacteriophages, the ways in which they interact with their mycobacterial hosts, and their possible roles in mycobacterial virulence.

Citation: Hatfull G. 2005. Mycobacteriophages: Pathogenesis and Applications, p 238-255. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch12

Key Concept Ranking

Nitric Oxide Synthase
Infectious Center Assay
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Mycobacteriophage virion morphologies.The mycobacteriophages Che9c, Bxz1, and Cjw1 are representatives of three different virion morphologies. Most mycobacteriophages have an isometric head and a long flexible tail, as seen in Cjw1.The phages Corndog and Che9c have prolate heads, while Bxz1 and Catera have a larger isometric head and a contractile tail.

Citation: Hatfull G. 2005. Mycobacteriophages: Pathogenesis and Applications, p 238-255. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Albay, A.,, O. Kisa,, O. Baylan,, and L. Doganci. 2003. The evaluation of FASTPlaqueTB test for the rapid diagnosis of tuberculosis. Diagn. Microbiol. Infect. Dis. 46: 211 215.
2. Albert, H.,, A. Heydenrych,, R. Brookes,, R. J. Mole,, B. Harley,, E. Subotsky,, R. Henry,, and V. Azevedo. 2002. Performance of a rapid phage-based test, FASTPlaqueTB, to diagnose pulmonary tuberculosis from sputum specimens in South Africa. Int. J. Tuberc. Lung Dis. 6: 529 537.
3. Alcaide, F.,, N. Gali,, J. Dominguez,, P. Berlanga,, S. Blanco,, P. Orus,, and R. Martin. 2003. Usefulness of a new mycobacteriophage-based technique for rapid diagnosis of pulmonary tuberculosis. J. Clin. Microbiol. 41: 2867 2871.
4. Bachrach, G.,, M. J. Colston,, H. Bercovier,, D. Bar-Nir,, C. Anderson,, and K. G. Papavinasasundaram. 2000. A new single-copy mycobacterial plasmid, pMF1, from Mycobacterium fortuitum which is compatible with the pAL5000 replicon. Microbiology 146: 297 303.
5. Banaiee, N.,, M. Bobadilla-Del-Valle,, S. Bardarov, Jr.,, P. F. Riska,, P. M. Small,, A. Ponce-De-Leon,, W. R. Jacobs, Jr.,, G. F. Hatfull,, and J. Sifuentes-Osornio. 2001. Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J. Clin. Microbiol. 39: 3883 3888.
6. Banaiee, N.,, M. Bobadilla-del-Valle,, P. F. Riska,, S. Bardarov, Jr.,, P. M. Small,, A. Ponce-de-Leon,, W. R. Jacobs, Jr.,, G. F. Hatfull,, and J. Sifuentes-Osornio. 2003. Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J. Med. Microbiol. 52: 557 561.
7. Banerjee, A.,, E. Dubnau,, A. Quemard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle,, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227 230.
8. Bardarov, S.,, S. Bardarov, Jr.,, M. S. Pavelka, Jr.,, V. Sambandamurthy,, M. Larsen,, J. Tufariello,, J. Chan,, G. Hatfull,, and W. R. Jacobs, Jr. 2002. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiology 148: 3007 3017.
9. Bardarov, S., Jr.,, H. Dou,, K. Eisenach,, N. Banaiee,, S. Ya,, J. Chan,, W. R. Jacobs, Jr.,, and P. F. Riska. 2003. Detection and drug-susceptibility testing of M. tuberculosis from sputum samples using luciferase reporter phage: comparison with the Mycobacteria Growth Indicator Tube (MGIT) system. Diagn. Microbiol. Infect. Dis. 45: 53 61.
10. Bardarov, S.,, J. Kriakov,, C. Carriere,, S. Yu,, C. Vaamonde,, R. A. McAdam,, B. R. Bloom,, G. F. Hatfull,, and W. R. Jacobs, Jr. 1997. Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 94: 10961 10966.
11. Barsom, E. K.,, and G. F. Hatfull. 1996. Characterization of Mycobacterium smegmatis gene that confers resistance to phages L5 and D29 when overexpressed. Mol. Microbiol. 21: 159 170.
12. Bertani, G. 1999. Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181: 2992 3002.
13. Bibb, L.A.,, and G. F. Hatfull. 2002. Integration and excision of the Mycobacterium tuberculosis prophage-like element, phiRv1. Mol. Microbiol. 45: 1515 1526.
14. Brosch, R.,, S.V. Gordon,, M. Marmiesse,, P. Brodin,, C. Buchrieser,, K. Eiglmeier,, T. Garnier,, C. Gutierrez,, G. Hewinson,, K. Kremer,, L. M. Parsons,, A. S. Pym,, S. Samper,, D. van Soolingen,, and S.T. Cole. 2002. A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc. Natl.Acad. Sci. USA 99: 3684 3689.
15. Brown, J. E.,, J. F. Klement,, and W.T. McAllister. 1986. Sequences of three promoters for the bacteriophage SP6 RNA polymerase. Nucleic Acids Res. 14: 3521 3526.
16. Brown, K. L.,, G. J. Sarkis,, C. Wadsworth,, and G. F. Hatfull. 1997. Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J. 16: 5914 5921.
17. Broxmeyer, L.,, D. Sosnowska,, E. Miltner,, O. Chacon,, D. Wagner,, J. McGarvey,, R. G. Barletta,, and L. E. Bermudez. 2002. Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J. Infect. Dis. 186: 1155 1160.
18. Bull, J. J.,, B.R. Levin,, T. DeRouin,, N. Walker,, and C. A. Bloch. 2002. Dynamics of success and failure in phage and antibiotic therapy in experimental infections. BMC Microbiol. 2: 35.
19. Chattopadhyay, C.,, S. Sau,, and N.C. Mandal. 2003. Cloning and characterization of the promoters of temperate mycobacteriophage L1. J. Biochem. Mol. Biol. 36: 586 592.
20. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, B. G. Barrell, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
21. Donnelly-Wu, M. K.,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1993. Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol. Microbiol. 7: 407 417.
22. Duckworth, D. H.,, and P.A. Gulig. 2002. Bacteriophages: potential treatment for bacterial infections. BioDrugs 16: 57 62.
23. Dye, C.,, S. Scheele,, P. Dolin,, V. Pathania,, and M. C. Raviglione. 1999. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282: 677 686.
24. Eltringham, I. J.,, S.M. Wilson,, and F.A. Drobniewski. 1999. Evaluation of a bacteriophage-based assay (phage amplified biologically assay) as a rapid screen for resistance to isoniazid, ethambutol, streptomycin, pyrazinamide, and ciprofloxacin among clinical isolates of Mycobacterium tuberculosis. J. Clin. Microbiol. 37: 3528 3532.
25. Ford, M. E.,, G. J. Sarkis,, A. E. Belanger,, R.W. Hendrix,, and G. F. Hatfull. 1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279: 143 164.
26. Ford, M. E.,, C. Stenstrom,, R.W. Hendrix,, and G. F. Hatfull. 1998. Mycobacteriophage TM4: genome structure and gene expression. Tuber. Lung Dis. 79: 63 73.
27. Freitas-Vieira, A.,, E. Anes,, and J. Moniz- Pereira. 1998. The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144: 3397 3406.
28. Garcia, M.,, M. Pimentel,, and J. Moniz-Pereira. 2002. Expression of mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J. Bacteriol. 184: 3034 3043.
29. Garcia de Viedma, D. 2003. Rapid detection of resistance in Mycobacterium tuberculosis: a review discussing molecular approaches. Clin. Microbiol. Infect. 9: 349 359.
30. Gavigan, J.A.,, J.A. Ainsa,, E. Perez,, I. Otal,, and C. Martin. 1997. Isolation by genetic labeling of a new mycobacterial plasmid, pJAZ38, from Mycobacterium fortuitum. J. Bacteriol. 179: 4115 4122.
31. Gicquel-Sanzey, B.,, J. Moniz-Pereira,, M. Gheorghiu,, and J. Rauzier. 1989. Structure of pAL5000, a plasmid from M. fortuitum and its utilization in transformation of mycobacteria. Acta Leprol. 7: 208 211.
32. Haeseleer, F.,, J. F. Pollet,, M. Haumont,, A. Bollen,, and P. Jacobs. 1993. Stable integration and expression of the Plasmodium falciparum circumsporozoite protein coding sequence in mycobacteria. Mol. Biochem. Parasitol. 57: 117 126.
33. Harris, N. B.,, Z. Feng,, X. Liu,, S. L. Cirillo,, J. D. Cirillo,, and R. G. Barletta. 1999. Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol. Lett. 175: 21 26.
34. Hatfull, G. F., 2000. Molecular genetics of mycobacteriophages, p. 3 54. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of the Mycobacteria. ASM Press, Washington, D.C.
35. Hatfull, G. F. 1994. Mycobacteriophage L5: a toolbox for tuberculosis. ASM News 60: 255 260.
36. Hatfull, G. F., 1999. Mycobacteriophages, p. 3 58. In C. Ratledge, and J. Dale (ed.), Mycobacteria: Molecular Biology and Virulence. Chapman and Hall, London, United Kingdom.
37. Hatfull, G. F., Mycobacteriophages. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
38. Hatfull, G. F., 2004. Mycobacteriophages and tuberculosis, p. 203 218. In K. Eisenach,, S. T. Cole,, W. R. Jacobs, Jr.,, and D. McMurray (ed.), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, D.C.
39. Hatfull, G. F.,, and W. R. Jacobs, Jr., 1994. Mycobacteriophages: cornerstones of mycobacterial research, p. 16 183. In B. R. Bloom (ed.), Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
40. Hatfull, G. F.,, and G. J. Sarkis. 1993. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol. Microbiol. 7: 395 405.
41. Heifets, L. B.,, and G.A. Cangelosi. 1999. Drug susceptibility testing of Mycobacterium tuberculosis: a neglected problem at the turn of the century. Int. J.Tuberc. Lung Dis. 3: 564 581.
42. Hendrix, R.W. 2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61: 471 480.
43. Hendrix, R.W.,, and R. L. Duda. 1998. Bacteriophage HK97 head assembly: a protein ballet. Adv.Virus Res. 50: 235 288.
44. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504 508.
45. Hendrix, R. W.,, M. C. Smith,, R. N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96: 2192 2197.
46. Hinshelwood, S.,, and N. G. Stoker. 1992. An Escherichia coli-Mycobacterium shuttle cosmid vector, pMSC1. Gene 110: 115 118.
47. Jacobs, W. R., Jr. 1992. Advances in mycobacterial genetics: new promises for old diseases. Immunobiology 184: 147 156.
48. Jacobs, W. R., Jr., 2000. Mycobacterium tuberculosis: a once genetically intractable organism, p. 1 16. In G. F. Hatfull, and W. R. Jacobs, Jr. (ed.), Molecular Genetics of the Mycobacteria. ASM Press, Washington, D.C.
49. Jacobs, W. R., Jr.,, R. G. Barletta,, R. Udani,, J. Chan,, G. Kalkut,, G. Sosne,, T. Kieser,, G. J. Sarkis,, G. F. Hatfull,, and B. R. Bloom. 1993. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260: 819 822.
50. Jacobs, W. R., Jr.,, G. V. Kalpana,, J. D. Cirillo,, L. Pascopella,, S. B. Snapper,, R. A. Udani,, W. Jones,, R. G. Barletta,, and B. R. Bloom. 1991. Genetic systems for mycobacteria. Methods Enzymol. 204: 537 555.
51. Jacobs, W. R., Jr.,, M. Tuckman,, and B. R. Bloom. 1987. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327: 532 535.
52. Jain, S.,, and G. F. Hatfull. 2000. Transcriptional regulation and immunity in mycobacteriophage Bxb1. Mol. Microbiol. 38: 971 985.
53. Kalpana, G.V.,, B.R. Bloom,, and W. R. Jacobs, Jr. 1991. Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc. Natl. Acad. Sci. USA 88: 5433 5437.
54. Katsura, I. 1987. Determination of bacteriophage lambda tail length by a protein ruler. Nature 327: 73 75.
55. Katsura, I.,, and R.W. Hendrix. 1984. Length determination in bacteriophage lambda tails. Cell 39: 691 698.
56. Kim, A.,, P. Ghosh,, M.A. Aaron,, L.A. Bibb,, S. Jain,, and G. F. Hatfull. 2003. Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol. Microbiol. 50: 463 473.
57. Kleckner, N.,, J. Bender,, and S. Gottesman. 1991. Uses of transposons with emphasis on Tn10. Methods Enzymol. 204: 139 180.
58. Lamichhane, G.,, M. Zignol,, N. J. Blades,, D. E. Geiman,, A. Dougherty,, J. Grosset,, K.W. Broman,, and W. R. Bishai. 2003. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci.USA 100: 7213 7218.
59. Lang, A. S.,, and J. T. Beatty. 2000. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97: 859 864.
60. Lee, M. H.,, and G. F. Hatfull. 1993. Mycobacteriophage L5 integrase-mediated site-specific integration in vitro. J. Bacteriol. 175: 6836 6841.
61. Lee, M. H.,, L. Pascopella,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1991. Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc. Natl. Acad. Sci. USA 88: 3111 3115.
62. Lewis, J. A.,, and G. F. Hatfull. 2001. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res. 29: 2205 2216.
63. Lewis, J. A.,, and G. F. Hatfull. 2000. Identification and characterization of mycobacteriophage L5 excisionase. Mol. Microbiol. 35: 350 360.
64. Mahairas, G.G.,, P. J. Sabo,, M. J. Hickey,, D.C. Singh,, and C. K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178: 1274 1282.
65. Malaga, W.,, E. Perez,, and C. Guilhot. 2003. Production of unmarked mutations in mycobacteria using site-specific recombination. FEMS Microbiol. Lett. 219: 261 268.
66. Marei, A. M.,, E. M. El-Behedy,, H.A. Mohtady,, and A. F. Afify. 2003. Evaluation of a rapid bacteriophage- based method for the detection of Mycobacterium tuberculosis in clinical samples. J. Med. Microbiol. 52: 331 335.
67. McAdam, R.A.,, S. Quan,, D.A. Smith,, S. Bardarov,, J. C. Betts,, F. C. Cook,, E. U. Hooker,, A. P. Lewis,, P. Woollard,, M. J. Everett,, P. T. Lukey,, G. J. Bancroft,, W. R. Jacobs, Jr.,, and K. Duncan. 2002. Characterization of a Mycobacterium tuberculosis H37Rv transposon library reveals insertions in 351 ORFs and mutants with altered virulence. Microbiology 148: 2975 2986.
68. McNerney, R. 2002. Phage tests for diagnosis and drug susceptibility testing. Int. J.Tuberc. Lung Dis. 6: 1129 1130.
69. McNerney, R. 1999. TB: the return of the phage. A review of fifty years of mycobacteriophage research. Int. J.Tuberc. Lung Dis. 3: 179 184.
70. Mederle, I.,, I. Bourguin,, D. Ensergueix,, E. Badell,, J. Moniz-Peireira,, B. Gicquel,, and N. Winter. 2002. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect. Immun. 70: 303 314.
71. Mediavilla, J.,, S. Jain,, J. Kriakov,, M. E. Ford,, R. L. Duda,, W. R. Jacobs, Jr.,, R. W. Hendrix,, and G. F. Hatfull. 2000. Genome organization and characterization of mycobacteriophage Bxb1. Mol. Microbiol. 38: 955 970.
72. Mukamolova, G.V.,, A. S. Kaprelyants,, D. I. Young,, M. Young,, and D. B. Kell. 1998. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95: 8916 8921.
73. Nesbit, C. E.,, M. E. Levin,, M. K. Donnelly- Wu,, and G. F. Hatfull. 1995. Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol. Microbiol. 17: 1045 1056.
74. Otero, J.,, W. R. Jacobs, Jr.,, and M. S. Glickman. 2003. Efficient allelic exchange and transposon mutagenesis in Mycobacterium avium by specialized transduction. Appl. Environ. Microbiol. 69: 5039 5044.
75. Parish, T.,, J. Lewis,, and N.G. Stoker. 2001. Use of the mycobacteriophage L5 excisionase in Mycobacterium tuberculosis to demonstrate gene essentiality. Tuberculosis (Edinburgh) 81: 359 364.
76. Pascopella, L.,, F. M. Collins,, J. M. Martin,, M. H. Lee,, G. F. Hatfull,, C. K. Stover,, B. R. Bloom,, and W. R. Jacobs, Jr. 1994. Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect. Immun. 62: 1313 1319.
77. Pearson, R. E.,, S. Jurgensen,, G. J. Sarkis,, G. F. Hatfull,, and W. R. Jacobs, Jr. 1996. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183: 129 136.
78. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs,, R.W. Hendrix,, and G. F. Hatfull. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171 182.
79. Peña, C. E.,, M. H. Lee,, M. L. Pedulla,, and G. F. Hatfull. 1997. Characterization of the mycobacteriophage L5 attachment site, attP. J. Mol. Biol. 266: 76 92.
80. Peña, C. E.,, J. Stoner,, and G. F. Hatfull. 1998. Mycobacteriophage D29 integrase-mediated recombination: specificity of mycobacteriophage integration. Gene 225: 143 151.
81. Picardeau, M.,, C. Le Dantec,, and V. Vincent. 2000. Analysis of the internal replication region of a mycobacterial linear plasmid. Microbiology 146: 305 313.
82. Qin, M.,, H. Taniguchi,, and Y. Mizuguchi. 1994. Analysis of the replication region of a mycobacterial plasmid, pMSC262. J. Bacteriol. 176: 419 425.
83. Raj, C.V.,, and T. Ramakrishnan. 1970. Transduction in Mycobacterium smegmatis. Nature 228: 280 281.
84. Ranes, M. G.,, J. Rauzier,, M. Lagranderie,, M. Gheorghiu,, and B. Gicquel. 1990. Functional analysis of pAL5000, a plasmid from Mycobacterium fortuitum: construction of a “mini”mycobacterium- Escherichia coli shuttle vector. J. Bacteriol. 172: 2793 2797.
85. Redmond, W. B.,, and D. M. Ward. 1966. Media and methods for phage-typing mycobacteria. Bull W. H.O. 35: 563 568.
86. Ribeiro, G.,, M. Viveiros,, H. L. David,, and J.V. Costa. 1997. Mycobacteriophage D29 contains an integration system similar to that of the temperate mycobacteriophage L5. Microbiology 143: 2701 2708.
87. Riska, P. F.,, W. R. Jacobs, Jr.,, B. R. Bloom,, J. McKitrick,, and J. Chan. 1997. Specific identification of Mycobacterium tuberculosis with the luciferase reporter mycobacteriophage: use of p-nitro-alpha-acetylamino-beta-hydroxy propiophenone. J. Clin. Microbiol. 35: 3225 3231.
88. Riska, P. F.,, Y. Su,, S. Bardarov,, L. Freundlich,, G. Sarkis,, G. Hatfull,, C. Carriere,, V. Kumar,, J. Chan,, and W. R. Jacobs, Jr. 1999. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx box. J. Clin. Microbiol. 37: 1144 1149.
89. Rubin, E. J.,, B. J. Akerley,, V. N. Novik,, D. J. Lampe,, R. N. Husson,, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96: 1645 1650.
90. Rybniker, J.,, M. Wolke,, C. Haefs,, and G. Plum. 2003. Transposition of Tn 5367 in Mycobacterium marinum, using a conditionally recombinant mycobacteriophage. J. Bacteriol. 185: 1745 1748.
91. Sarkis, G. J.,, W. R. Jacobs, Jr.,, and G. F. Hatfull. 1995. L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol. Microbiol. 15: 1055 1067.
92. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98: 12712 12717.
93. Sassetti, C. M.,, D. H. Boyd,, and E. J. Rubin. 2003. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48: 77 84.
94. Saviola, B.,, and W. R. Bishai,. 2004. Method to integrate multiple plasmids into the mycobacterial chromosome. Nucleic Acids Res. 32: e11.
95. Smith, M. C.,, and H. M. Thorpe. 2002. Diversity in the serine recombinases. Mol. Microbiol. 44: 299 307.
96. Snapper, S. B.,, L. Lugosi,, A. Jekkel,, R. E. Melton,, T. Kieser,, B. R. Bloom,, and W. R. Jacobs, Jr. 1988. Lysogeny and transformation in mycobacteria: stable expression of foreign genes. Proc. Natl. Acad. Sci. USA 85: 6987 6991.
97. Snapper, S. B.,, R. E. Melton,, S. Mustafa,, T. Kieser,, and W. R. Jacobs, Jr. 1990. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4: 1911 1919.
98. Snider, D. E., Jr.,, W. D. Jones,, and R. C. Good. 1984. The usefulness of phage typing Mycobacterium tuberculosis isolates. Am. Rev. Respir. Dis. 130: 1095 1099.
99. Springer, B.,, P. Sander,, L. Sedlacek,, K. Ellrott,, and E. C. Bottger. 2001. Instability and site-specific excision of integration-proficient mycobacteriophage L5 plasmids: development of stably maintained integrative vectors. Int. J. Med. Microbiol. 290: 669 675.
100. Stover, C. K.,, V. F. de la Cruz,, T. R. Fuerst,, J. E. Burlein,, L. A. Benson,, L. T. Bennett,, G. P. Bansal,, J. F. Young,, M. H. Lee,, G. F. Hatfull, et al. 1991. New use of BCG for recombinant vaccines. Nature 351: 456 460.
101. Su, W. J. 2002. Recent advances in the molecular diagnosis of tuberculosis. J. Microbiol. Immunol. Infect. 35: 209 214.
102. Sula, L.,, J. Sulova,, and M. Stolcpartova. 1981. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A,GR-21 T, My-327. Czech Med. 4: 209 214.
103. Sulakvelidze, A.,, and J. G. Morris, Jr. 2001. Bacteriophages as therapeutic agents. Ann. Med. 33: 507 509.
104. Thacker, P.D. 2003. Set a microbe to kill a microbe: drug resistance renews interest in phage therapy. JAMA 290: 3183 3185.
105. Trollip, A.,, H. Albert,, and T. Maskell. 2001. Bacteriophage-based technologies for the rapid diagnosis and drug susceptibility testing of tuberculosis. Am. Clin. Lab. 20: 39 42.
106. Watterson, S. A.,, S. M. Wilson,, M. D. Yates,, and F. A. Drobniewski. 1998. Comparison of three molecular assays for rapid detection of rifampin resistance in Mycobacterium tuberculosis. J. Clin. Microbiol. 36: 1969 1973.
107. Xue, D.,, H. Shi,, J. D. Smith,, X. Chen,, D. A. Noe,, T. Cedervall,, D. D. Yang,, E. Eynon,, D. E. Brash,, M. Kashgarian,, R.A. Flavell,, and S. L. Wolin. 2003. A lupus-like syndrome develops in mice lacking the Ro 6-kDa protein, a major lupus autoantigen. Proc. Natl. Acad. Sci. USA 100: 7503 7508.
108. Zemskova, Z. S.,, and I. R. Dorozhkova. 1991. Pathomorphological assessment of the therapeutic effect of mycobacteriophages in tuberculosis. Probl.Tuberk. 11: 63 66.


Generic image for table

Features of 29 sequenced mycobacteriophages

Most of the phage heads are isometric, with a diameter of approximately 60 nm.Two have larger heads (L), with an approximately 80-nm diameter.

Citation: Hatfull G. 2005. Mycobacteriophages: Pathogenesis and Applications, p 238-255. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error