1887

Chapter 18 : Phages: Basics and Applications

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Phages: Basics and Applications, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap18-2.gif

Abstract:

The genus consists of six species, of which only is considered a pathogen for humans. Implicated food products are primarily fermented dairy products, meat products, and other ready-to-eat foods that are not cooked before consumption. Recurrent outbreaks of listeriosis underscore the need for a better understanding of not only the molecular pathogenicity mechanisms of , but also the possible phenotypic variability of the organism resulting from interactions with both specific bacteriophages and the environment. Listeria phages were soon found to be useful for their first applications in phage typing schemes, which developed into a very useful differentiation tool, with many different phage sets being reported. Many of the temperate phages are capable of generalized transduction between susceptible cells of their target serovar group. The correlation between the packaging mechanism and the ability to perform generalized transduction has also been shown to exist for other phages. phages generally appear to contain portions resembling functional regions of other phage genomes, in particular those infecting lactic acid bacteria and other members of the low-G+C subbranch of gram-positive eubacteria. A novel approach for the biological control of in foods is the production and secretion of phage endolysin by fermenting bacteria such as .

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18

Key Concept Ranking

Sodium Dodecyl Sulfate
0.44493014
Bacterial Cell Wall
0.42550483
Lactic Acid Bacteria
0.40027463
0.44493014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Relationships of different phage endolysins. The functional domains are shown as three-dimensional bars; amino acid sequence homologies (indicated by vertical lines between bars) identify specific relationships of individual domains. The similarities correspond to either the type of hydrolytic activity or the host cell serovar group infected by the phage specifying the endolysin. The exception is Ply511, encoded by the polyvalent phage A511, which can infect both serovar groups: its amidase domain is only weakly related to the N terminus of PlyPSA.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Listeria cells were immobilized on the even surface of a surface plasmon resonance biochip (BIAcore) and exposed to HGFP-CBD500.This hybrid protein consists of the CBD of the Ply500 murein hydrolase fused to GFP and targets a serovar-correlated carbohydrate ligand which is evenly distributed on the cell wall of Listeria. Cells were imaged by fluorescence microscopy; the decorated cell wall structure of the rodshaped bacteria is clearly visible by GFP-mediated fluorescence.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(A) Electron micrograph of negatively stained phage A118 particles. This temperate bacteriophage belongs to the family and infects members of the serovar 1/2 subgroup of . The virion has a capsid diameter of approximately 60 nm and a long, rather flexible tail of roughly 300 nm. The baseplate at the distal end of the tail has a set of short tail fibers attached, which appear in a crown-like arrangement. These tail fibers mediate the specific recognition of, and binding to, teichoic acid sugar components present on the cell surface. (B) Schematic map of the temperate bacteriophage A118 genome. The virus features a terminally redundant, circularly permuted genome with a 40,834-bp unit length which displays a clearly defined life cycle-specific organization. The 72 ORFs are numbered consecutively and are indicated by arrows pointing in the direction of transcription. Black arrows indicate rightward transcription, and gray shaded ORFs point leftward. The site next to the integrase gene is indicated by a thin black arrow. Upon infection and formation of lysogens, the viral DNA integrates into a homologue and disrupts its reading frame. The A118 DNA represents a terminally redundant and circularly permuted collection of molecules without cohesive ends. Therefore, both arms must recombine by homologous recombination within the terminally redundant ends before the circularized molecule can initiate replication or integrate into the host chromosome. As a result of recombination, all of the formerly permuted molecules are transformed into identical unit-length molecules, which is absolutely critical for maintaining genomic integrity. The genetic map is therefore drawn as a circle, which properly reflects the mixture of permuted molecules contained in an A118 phage population.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

bacteriophage A511 belongs to the A1 subgroup of the and features a contractile, nonflexible tail and an isometric capsid. The approximate dimensions of the virion are indicated. This electron micrograph of a negatively stained A511 particle was digitally enhanced from the original image.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Plating phenotypes of a phage endolysin. (A) Plaques formed in a double-layer agar plate after infection of an host by phage A511. Note the distinct zones of secondary lysis around the core of the plaques.This is apparently due to the cell wall-hydrolyzing activity of the Ply511 endolysin, which is released from lysed cells and is able to diffuse into the soft agar layer. (B) Colonies of carrying a plasmid encoding the Ply511 endolysin. Cells were replica plated onto agar plates for the induction of enzyme synthesis, treated with chloroform to release cytoplasmic proteins, and overlaid with cells suspended in soft agar. Lysis of the cells is evident by the dark zones of clearing around the colonies. (C) Colonies of a recombinant strain growing on an agar plate with a suitable medium, in which cells were directly incorporated. The cells carry a plasmid specifying Ply511 to which an N-terminal signal peptide was fused, resulting in the synthesis and secretion of a processed, fully functional enzyme into the surrounding medium. This leads to lysis of the cells in the medium around the colonies.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic representation of the construction and function of A511::. An approximately 3-kb segment of the wild-type (wt) A511 genetic map is shown. The genetic fusion from was inserted immediately downstream of by homologous recombination from a plasmid carrying the fragment flanked by A511 DNA. Following infection of a host cell and transcription of this late gene region under control of the Pcps promoter, a bicistronic transcript is made, and Cps and bacterial luciferase are synthesized and accumulate within the cell, allowing for easy detection. T, transcription terminator; P, promoter.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Factors that increase the lytic activity of HPL118 on 10403S. For unknown reasons, this frequently used strain is slightly less sensitive to the action of the endolysin. (A) Detergents increase lytic action. Compared to the use of phosphate-buffered saline (PBS) alone, supplementing the buffer with Tween 20 and Triton X-100 can significantly enhance the lytic activity. Surprisingly, a mixture of nonionic, cationic, and anionic detergents containing a chelator and various protease inhibitors in RIPA buffer (used for the disruption of cell membranes for preparations of proteins) very strongly enhanced the lytic activity, indicating the insensitivity of the endolysins to these chemicals and enzymes. (B) Synergistic action of endolysins with different enzymatic specificities. The amount of enzyme added to each reaction was a total of 50 μl. When used alone, neither the HPL amidase nor the HPL118 peptidase achieved complete lysis in the measured time frame of 5 min. When used in combination, however, the different enzymatic activities complemented each other, and complete lysis was rapidly achieved.

Citation: Loessner M, Rees C. 2005. Phages: Basics and Applications, p 362-380. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap18
1. Ackermann, H.-W. 1999. Tailed bacteriophages: the order caudovirales. Adv. Virus Res. 51:135201.
2. Ackermann, H.-W.,, A. Audurier,, and J. Rocourt. 1981. Morphologie de bacteriophages de Listeria monocytogenes. Ann. Virol. Inst. Pasteur 132E: 371382.
3. Ackermann, H.-W.,, and M. S. DuBow. 1987. Viruses of Prokaryotes, vol. 2, p. 108113.CRC Press, Boca Raton, Fla.
4. Audurier, A.,, R. Chatelain,, F. Chalons,, and M. Pichaud. 1979. Lysotypie de 823 souches de Listeria monocytogenes isolées en France de 1958 a 1978. Ann. Microbiol. Inst. Pasteur 130B:179189.
5. Audurier, A.,, J. Rocourt,, and A. L. Courtieu. 1977. Isolement et characterisation de bacteriophages de Listeria monocytogenes. Ann. Microbiol. Inst. Pasteur 128A:185188.
6. Audurier, A.,, A. G. Taylor,, B. Carbonelle,, and J. McLauchlin. 1984. A phage typing system for Listeria monocytogenes and its use in epidemiological studies. Clin. Investig. Med. 7:229232.
7. Bradley, D. E. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 31:230314.
8. Bujnicki, J. M.,, and M. Radlinska. 2001. Cloning and characterization of M.LmoA118I, a novel DNA:m4C methyltransferase from the Listeria monocytogenes phage A118, a close homolog of M.NgoMXV. Acta Microbiol. Pol. 50:155160.
9.Centers for Disease Control and Prevention. 2000. Multistate outbreak of listeriosis—United States. Morb. Mortal.Wkly. Rep. 49:11291130.
10. Chiron, J. P.,, P. Maupas,, and J. L. Bind,. 1975. Phagic induction in Listeria monocytogenes, p. 271279. In M. Woodbine (ed.), Problems of Listeriosis. Leicester University Press, Leicester, United Kingdom.
11. Chiron, J. P.,, P. Maupas,, and F. Denis. 1977. Ultrastructure des bacteriophages de Listeria monocytogenes. C. R. Soc. Biol. (Paris) 1171:488491.
12. Clark, E. E.,, I. Wesley,, F. Fiedler,, N. Promadej,, and S. Kathariou. 2000. Absence of serotypespecific surface antigen and altered teichoic acid glycosylation among epidemic-associated strains of Listeria monocytogenes. J. Clin. Microbiol. 38:38563859.
13. Curtis, G. D. W.,, and R. G. Mitchell. 1992. Bacteriocin (monocin) interactions among Listeria monocytogenes strains. Int. J. Food Microbiol. 16:283292.
14. Dhar, G.,, K. F. Faull,, and O. Schneewind. 2000.Anchor structure of cell wall surface proteins in Listeria monocytogenes. Biochemistry 39:37253733.
15. Dietrich, G.,, A. Bubert,, I. Gentschev,, Z. Sokolovic,, A. Simm,, A. Catic,, S. H. E. Kaufmann,, J. Hess,, A. A. Szalay,, and W. Goebel. 1998. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat. Biotechnol. 16:181185.
16. Dramsi, S.,, and P. Cossart. 1998. Intracellular pathogens and the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 14:137166.
17. Estela, L. A.,, and J. N. Sofos. 1993. Comparison of conventional and reversed phage typing procedures for identification of Listeria spp. Appl. Environ. Microbiol. 59:617619.
18. Estela, L. A.,, J. N. Sofos,, and B. B. Flores. 1992. Bacteriophage typing of Listeria monocytogenes cultures isolated from seafoods. J. Food Prot. 55:1317.
19. Farber, J. M.,, and P. Peterkin. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55:476511.
20. Fiedler, F.,, and G. J. Ruhland. 1987. Structure of Listeria monocytogenes cell walls. Bull. Inst. Pasteur 85:287300.
21. Fleming, D. W.,, S. L. Cochi,, K. L. MacDonald,, J. Brondum,, P. S. Hayes,, B. D. Plikaytis,, M. B. Holmes,, A. Audurier,, C. V. Broome,, and A. L. Reingold. 1985. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N. Engl. J. Med. 312:404407.
22. Gaeng, S.,, S. Scherer,, H. Neve,, and M. J. Loessner. 2000. Gene cloning and expression and secretion of Listeria monocytogenes bacteriophagelytic enzymes in Lactococcus lactis. Appl. Environ. Microbiol. 66:29512958.
23. Gellin, B. G.,, and C. V. Broome. 1989. Listeriosis. JAMA 261:13131320.
24. Gerner-Smidt, P.,, V. T. Rosdahl,, and W. Frederiksen. 1993.A new Danish Listeria monocytogenes phage typing system. APMIS 101:160167.
25.Glaser P., L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F. Baquero, P. Berche, H. Bloecker, P. Brandt, T. Chakraborty, A. Charbit, F. Chetouani, E. Couvé, A. de Daruvar, P. Dehoux, E. Domann,G. Domínguez-Bernal, E. Duchaud, L. Durant, O. Dussurget, K.-D. Entian, H. Fsihi, F. Garcia-Del Portillo, P. Garrido, L. Gautier,W. Goebel, N. Gómez-López, T. Hain, J. Hauf, D. Jackson, L. M. Jones, U. Kaerst, J. Kreft, M. Kuhn, F. Kunst, G. Kurapkat, E. Madueño, A. Maitournam, J. Mata Vicente, E. N. H. Nedjari, G. Nordsiek, S. Novella, B. de Pablos, J.-C. Pérez-Diaz, R. Purcell, B. Remmel, M. Rose,T. Schlueter,N. Simoes, A. Tierrez, J.-A. Vázquez-Boland, H. Voss, J. Wehland, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294:849852.
26. Jarvis, A. W.,, L. J. Collins,, and H.-W. Ackermann. 1993. A study of five bacteriophages of the Myoviridae family which replicate on different gram-positive bacteria. Arch. Virol. 133:7584.
27. Hamoen, L. W.,, A. F. Van Werkhoven,, J. J. Bijlsma,, D. Dubnau,, and G. Venema. 1998. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev. 12:15391550.
28. Hamon, Y.,, and Y. Peron. 1966. Sur la nature des bacteriocines produites par Listeria. C. R. Acad. Sci. Ser. D 263:198200.
29. Hendrix, R. W.,, M. C. M. Smith,, R. N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96:21922197.
30. Highton, P. J.,, Y. Chang,, and R. J. Myers. 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Mol. Microbiol. 4:13291340.
31. Hill, P. J.,, S. Swift,, and G. S. A. B. Stewart. 1991. PCR based engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products. Mol. Gen. Genet. 226:4148.
32. Hodgson, D. 2000. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol. Microbiol. 35:312323.
33. Jasinska, S. 1964. Bacteriophages of lysogenic strains of Listeria monocytogenes. Acta Microbiol. Pol. 13:2944.
34. Kalmokoff, M. L.,, and J. Farber. 1999. Bacteriocin-like activities among various species of Listeria. Int. J. Food Microbiol. 50:191201.
35. Landthaler, M.,, and D. A. Shub. 1999. Unexpected abundance of self-splicing introns in the genome of bacteriophage Twort: introns in multiple genes, a single gene with three introns, and exon skipping by group I ribozymes. Proc. Natl. Acad. Sci. USA 96:70057010.
36. Lauer, P.,, M. Y. N. Chow,, M. J. Loessner,, D. A. Portnoy,, and R. Calendar. 2002. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184:41774186.
37. Lenz, L. L.,, and D. A. Portnoy. 2002. Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol. 45:10431056.
38. Leverentz, B.,, W. S. Conway,, M. J. Camp,, W. J. Janisiewicz,, T. Abuladze,, M. Yang,, R. Saftner,, and A. Sulakvelidze. 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. 69:45194526.
39. Loessner, M. J. 1991. Improved procedure for bacteriophage typing of Listeria strains and evaluation of new phages. Appl. Environ. Microbiol. 57:882884.
40. Loessner, M. J.,, and M. Busse. 1990. Bacteriophage typing of Listeria species. Appl. Environ. Microbiol. 56:19121918.
41. Loessner, M. J.,, L. A. Estela,, R. Zink,, and S. Scherer. 1994. Taxonomical classification of 20 newly isolated Listeria bacteriophages by electron microscopy and protein analysis. Intervirology 37:3135.
42. Loessner, M. J.,, S. Goeppl,, and M. Busse. 1991. Comparative inducibility of bacteriophage in naturally lysogenic and lysogenized strains of Listeria spp. by UV light and mitomycin C. Lett. Appl. Microbiol. 12:196199.
43. Loessner, M. J.,, S. Goeppl,, and M. Busse. 1991. The phagovar variability of Listeria strains under the influence of virulent and temperate bacteriophages. Lett.Appl. Microbiol. 12:192195.
44. Loessner, M. J.,, R. B. Inman,, P. Lauer,, and R. Calendar. 2000. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol. Microbiol. 35:324340.
45. Loessner, M. J.,, K. Kramer,, F. Ebel,, and S. Scherer. 2002. C-terminal domains of Listeria bacteriophage murein hydrolases determine specific recognition and high affinity binding to the bacterial cell wall carbohydrates. Mol. Microbiol. 44:335349.
46. Loessner, M. J.,, I. B. Krause,, T. Henle,, and S. Scherer. 1994. Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J. Gen.Virol. 75:701710.
47. Loessner, M. J.,, C. E. D. Rees,, G. S. A. B. Stewart,, and S. Scherer. 1996. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl. Environ. Microbiol. 62:11331140.
48. Loessner, M. J.,, M. Rudolf,, and S. Scherer. 1997. Evaluation of luciferase reporter bacteriophage A511::luxAB for detection of Listeria monocytogenes in contaminated foods. Appl. Environ. Microbiol. 63:29612965.
49. Loessner, M. J.,, and S. Scherer. 1995. Organization and transcriptional analysis of the Listeria phage A511 late gene region comprising the major capsid and tail sheath genes cps and tsh. J. Bacteriol. 177:66016609.
50. Loessner, M. J.,, A. Schneider,, and S. Scherer. 1995. A new procedure for efficient recovery of DNA, RNA, and proteins from Listeria cells by rapid lysis with a recombinant bacteriophage endolysin. Appl. Environ. Microbiol. 61:11501152.
51. Loessner, M. J.,, A. Schneider,, and S. Scherer. 1996.Modified Listeria bacteriophage lysin genes ply allow efficient overexpression and one-step purification of biochemically active fusion proteins. Appl. Environ. Microbiol. 62:30573060.
52. Loessner, M. J.,, G. Wendlinger,, and S. Scherer. 1995. Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol. Microbiol. 16:12311241.
53. McLauchlin, J.,, A. Audurier,, A. Frommelt,, P. Gerner-Smidt,, C. H. Jacquet,, M. J. Loessner,, N. van der Mee-Marquet,, J. Rocourt,, S. Shah,, and D. Wilhelms. 1996. WHO study on subtyping of Listeria monocytogenes: results of phage typing. Int. J. Food Microbiol. 32:289299.
54. Mereghetti, L.,, R. Quentin,, N. Marquet-Van der Mee,, and A. Audurier. 2000. Low sensitivity of Listeria monocytogenes to quaternary ammonium compounds. Appl. Environ. Microbiol. 66:50835086.
55. Ortel, S. 1978. Untersuchungen über Monocine. Zentbl. Bakteriol. Hyg.Abt 1 Ser.A 242:7278.
56. Ortel, S. 1981. Lysotypie von Listeria monocytogenes. Z. Ges. Hyg. 27:837840.
57. Ortel, S.,, and H. Ackermann. 1985. Morphologie von neuen Listeriaphagen. Zentbl. Bakteriol. Hyg.Abt. 1 Ser.A 260:423427.
58. Pilgrim, S.,, J. Stritzker,, C. Schoen,, A. Kolb-Mäurer,, G. Geginat,, M. J. Loessner,, I. Gentschev,, and W. Goebel. 2003. Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther. 10:20362045.
59. Rocourt, J. 1986. Bacteriophages et bacteriocines du genre Listeria. Zentbl. Bakteriol. Hyg.Abt. 1 Ser. A 261:1228.
60. Rocourt, J.,, H.-W. Ackermann,, M. Martin,, A. Schrettenbrunner,, and H. P. R. Seeliger. 1983. Morphology of Listeria innocua bacteriophages. Ann.Virol. 134E:245250.
61. Rocourt, J.,, A. Audurier,, A. L. Courtieu,, J. Durst,, S. Ortel,, A. Schrettenbrunner,, and A. G. Taylor. 1985.A multi-centre study on the phage typing of Listeria monocytogenes. Zentbl. Bakteriol. Hyg.Abt. 1 Ser.A 259:489497.
62. Rocourt, J.,, B. Catimel,, and A. Schrettenbrunner. 1985. Isolement de bacteriophages de Listeria seeligeri et L. welshimeri. Lysotypie de L. monocytogenes, L. ivanovii, L. innocua, L. seeligeri, L. welshimeri. Zentbl. Bakteriol. Hyg. Abt. 1 Ser. A 259:341350.
63. Rocourt, J.,, M. Gilmore,, W. Goebel,, and H. P. R. Seeliger. 1986. DNA relatedness among Listeria monocytogenes and L. innocua bacteriophages. Syst. Appl. Microbiol. 8:4247.
64. Rocourt, J.,, A. Schrettenbrunner,, and H. P. R. Seeliger. 1982. Isolation of bacteriophages from Listeria monocytogenes serovar 5 and L. innocua. Zentbl. Bakteriol. Hyg.Abt. 1 Ser. A 251:505511.
65. Roy, B.,, H.-W. Ackermann,, S. Pandian,, G. Picard,, and J. Goulet. 1993. Biological inactivation of adhering Listeria monocytogenes by Listeria phages and a quaternary ammonium compound. Appl. Environ. Microbiol. 59:29142917.
66. Schultz, E.W. 1945. Listerella infections: a review. Stanford Med. Bull. 3:135151.
67. Siegman-Igra, Y.,, R. Levin,, M. Weinberger,, Y. Golan,, D. Schwartz,, Z. Samra,, H. Konigsberger,, A. Yinnon,, G. Rahav,, N. Keller,, N. Bisharat,, J. Karpuch,, R. Finkelstein,, M. Alkan,, Z. Landau,, J. Novikov,, D. Hassin,, C. Rudnicki,, R. Kitzes,, S. Ovadia,, Z. Shimoni,, R. Lang,, and T. Shohat. 2002. Listeria monocytogenes infection in Israel and review of cases worldwide. Emerg. Infect. Dis. 8:305310.
68. Slutsker, L.,, and A. Schuchat,. 1999. Listeriosis in humans, p. 7595. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety. Marcel Dekker, New York, N.Y.
69. Smith, M. C. M.,, and C. E.D. Rees. 1999. Exploitation of bacteriophages and their components. Methods Microbiol. 29:97132.
70. Stewart, G. S. A. B.,, M. J. Loessner,, and S. Scherer. 1996.The bacterial lux gene bioluminescent biosensor revisited.ASM News 62:297301.
71. Subramanya, H. S.,, L. K. Arciszewska,, R. A. Baker,, L. E. Bird,, D. J. Sherratt,, and D. B. Wigley. 1997. Crystal structure of the site-specific recombinase, XerD. EMBO J. 16:51785187.
72. Sword, C. P.,, and M. J. Pickett. 1961. The isolation and characterization of bacteriophages from Listeria monocytogenes. J. Gen. Microbiol. 25:241248.
73. Theriot, J. A.,, T. J. Mitchinson,, L. G. Tilney,, and D. A. Portnoy. 1992.The rate of actin based motility of intracellular Listeria monocytogenes equals the rate of actin polymerisation. Nature 357:257260.
74. Tilney, L.G.,, and D. A. Portnoy. 1989.Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109:15971608.
75. Tran, H. L.,, F. Fiedler,, D. A. Hodgson,, and S. Kathariou. 1999.Transposon-induced mutations in two loci of Listeria monocytogenes serotype 1/2a result in phage resistance and lack of N-acetylglucosamine in the teichoic acid of the cell wall. Appl. Environ. Microbiol. 65:47934798.
76. Tubylewicz, H. 1963. Studies on the lysogeny of Listeria monocytogenes strains. Bull. Acad. Pol. Sci. Ser. 11:515518.
77. Van der Mee-Marquet, N.,, M. J. Loessner,, and A. Audurier. 1997. Evaluation of seven experimental phages for inclusion in the international phage set for epidemiological typing of Listeria monocytogenes. Appl. Environ. Microbiol. 63:33743377.
78. Van Sinderen, D.,, A. Luttinger,, L. Kong,, D. Dubnau,, G. Venema,, and L. Hamoen. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15:455462.
79. Vazquez-Boland, J. A.,, M. Kuhn,, P. Berche,, T. Chakraborty,, G. Dominguez-Bernal,, W. Goebel,, B. Gonzalez-Zorn,, J. Wehland,, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14:584640.
80. Vukov, N.,, I. Moll,, U. Blaesi,, S. Scherer,, and M. J. Loessner. 2003. Functional regulation of the Listeria monocytogenes bacteriophage A118 holin by an intragenic inhibitor lacking the first transmembrane domain. Mol. Microbiol. 48:173186.
81. Vukov, N.,, S. Scherer,, E. Hibbert,, and M. J. Loessner. 2000. Functional analysis of heterologous holin proteins in a λδS genetic background. FEMS Microbiol. Lett. 184:179186.
82. Wendlinger, G.,, M. J. Loessner,, and S. Scherer. 1996. Bacteriophage receptors on Listeria monocytogenes cells are the N-acetylglucosamine and rhamnose substituents of teichoic acids or the peptidoglycan itself. Microbiology 142:985992.
83. Wilhelms, D.,, and D. Sandow. 1989. Preliminary studies on monocin typing of Listeria monocytogenes strains. Acta Microbiol. Hung. 36:235238.
84. Young, R.,, and U. Bläsi. 1995. Holins: form and function in bacteriophage lysis. FEMS Microbiol. Rev. 17:191205.
85. Zimmer, M.,, E. Sattelberger,, R. Inman,, R. Calendar,, and M. J. Loessner. 2003. Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed +1 translational frameshifting in structural protein synthesis. Mol. Microbiol. 50:303317.
86. Zink, R.,, and M. J. Loessner. 1992. Classification of virulent and temperate bacteriophages of Listeria spp. on the basis of morphology and protein analysis. Appl. Environ. Microbiol. 58:296302.
87. Zink, R.,, M. J. Loessner,, I. Glas,, and S. Scherer. 1994. Supplementary Listeria-typing with defective Listeria phage particles (monocins). Lett. Appl. Microbiol. 19:99101.
88. Zink, R.,, M. J. Loessner,, and S. Scherer. 1995. Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/ endolysin gene. Microbiology 141:25772589.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error