1887

Chapter 21 : Phage Display: a Molecular Fashion Show

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Phage Display: a Molecular Fashion Show, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap21-2.gif

Abstract:

The display of peptides and proteins on the surfaces of bacteriophages is a powerful technique for the identification of specific ligands. Today, phage display technology is a well established method that has revolutionized our capability of selecting specific molecules. Phage display technology has enjoyed enormous success in recent years and has been used in countless studies. Alternative phage display systems utilizing bacteriophages such as λ, T4, and T7, which assemble in the host cytosol and are released via cell lysis, have now been developed. Recently, microbial cell surface displays for peptide library screening, bioadsorption, and live vaccine development have been reported. The filamentous bacteriophage M13 is the most popular and widely used display vehicle. The use of M13 vectors for the display of cDNA-encoded libraries is also not well established because of the lack of efficient C-terminal display in M13. Alternative systems based on large-genome phages, mainly T7, T4, and λ, have been used recently. The commercial availability of the T7 phage display system, optimized protocols, and ready-made libraries for selections has led to an increasing use of this system for a variety of studies. Apparently, HOC and SOC provide additional stability to T4 phage under adverse conditions such as extreme pH or osmotic shock. Lambda display has been used for epitope mapping of monoclonal antibodies against a large number of human and microbial proteins.

Citation: Gupta A, Chaudhary V, Oppenheim A. 2005. Phage Display: a Molecular Fashion Show, p 415-429. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch21

Key Concept Ranking

Human immunodeficiency virus 1
0.46011758
0.46011758
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of the filamentous bacteriophage M13. The single-stranded circular DNA core is coated with five viral coat proteins. The schematic locations of the different proteins are shown. The gpVIII protein is present at about 2,700 copies, while gpIII, gpVI, gpVII, and gpIX are present at about 5 copies each. All of the coat proteins can be used as platforms for protein display. With the exception of gpIII, the capsid proteins are small, with 33 to 112 amino acids.

Citation: Gupta A, Chaudhary V, Oppenheim A. 2005. Phage Display: a Molecular Fashion Show, p 415-429. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Arrangement of the bacteriophage lambda head proteins D and E. Both the D and E proteins are present at over 400 copies. The D protein serves as an efficient platform for display. Arrangements of the trimeric D protein surrounding the hexameric E protein are shown. The figure shows one face of the icosahedral head, with the vertices of the E pentamers. The three corners of the face are shown as triangles.

Citation: Gupta A, Chaudhary V, Oppenheim A. 2005. Phage Display: a Molecular Fashion Show, p 415-429. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap21
1. Aina, O. H.,, T. C. Sroka,, M. L. Chen,, and K. S. Lam. 2002. Therapeutic cancer targeting peptides. Biopolymers 66: 184 199.
2. Baker, A. H. 2002. Development and use of gene transfer for treatment of cardiovascular disease. J. Card. Surg. 17: 543 548.
3. Barbas, C. F. 2001. Phage Display: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y.
4. Brown, K. C. 2000. New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr. Opin. Chem. Biol. 4: 16 21.
5. Burnouf, T.,, and M. Radosevich. 2001. Affinity chromatography in the industrial purification of plasma proteins for therapeutic use. J. Biochem. Biophys. Methods 49: 575 586.
6. Carrera, M. R.,, G. F. Kaufmann,, J. M. Mee,, M. M. Meijler,, G. F. Koob,, and K. D. Janda. 2004. Treating cocaine addiction with viruses. Proc. Natl. Acad. Sci. USA 101: 10416 10421.
7. Casjens, S. R.,, and R. W. Hendrix. 1974. Locations and amounts of major structural proteins in bacteriophage lambda. J. Mol. Biol. 88: 535 545.
8. Castagnoli, L.,, A. Zucconi,, M. Quondam,, M. Rossi,, P. Vaccoro,, S. Panni,, S. Paoluzi,, E. Santonico,, L. Dente,, and G. Cesareni. 2001. Alternative bacteriophage display systems. Comb. Chem. High-Throughput Screen. 4: 121 133.
9. Clackson, T.,, and H. B. Lowman. 2004. Phage Display: a Practical Approach. Oxford University Press, Oxford, United Kingdom.
10. Cochran, A. G. 2000. Antagonists of protein-protein interactions. Chem. Biol. 7: R85 R94.
11. Corey, D. R.,, A. K. Shiau,, Q. Yang,, B. A. Janowski,, and C. S. Craik. 1993. Trypsin display on the surface of bacteriophage. Gene 128: 129 134.
12. Crameri, R.,, and R. Kodzius. 2001. The powerful combination of phage surface display of cDNA libraries and high throughput screening. Comb. Chem. High-Throughput Screen. 4: 145 155.
13. Danner, S.,, and J. G. Belasco. 2001. T7 phage display: a novel genetic selection system for cloning RNA-binding proteins from cDNA libraries. Proc. Natl. Acad. Sci. USA 98: 12954 12959.
14. Deocharan, B.,, X. Qing,, E. Beger,, and C. Putterman. 2002. Antigenic triggers and molecular targets for anti-double-stranded DNA antibodies. Lupus 11: 865 871.
15. Deperthes, D. 2002. Phage display substrate: a blind method for determining protease specificity. Biol. Chem. 383: 1107 1112.
16. Ditzel, H. J. 2000. Human antibodies in cancer and autoimmune disease. Immunol. Res. 21: 185 193.
17. Dowd, C. S.,, W. Zhang,, C. Li,, and I. M. Chaiken. 2001. From receptor recognition mechanisms to bioinspired mimetic antagonists in HIV-1/cell docking. J. Chromatogr. B 753: 327 335.
18. Dunn, I. S. 1995. Assembly of functional bacteriophage lambda virions incorporating C-terminal peptide or protein fusions with the major tail protein. J. Mol. Biol. 248: 497 506.
19. Dunn, I. S. 1996. In vitro alpha-complementation of beta-galactosidase on a bacteriophage surface. Eur. J. Biochem. 242: 720 726.
20. Dunn, I. S. 1996. Phage display of proteins. Curr. Opin. Biotechnol. 7: 547 553.
21. Dunn, I. S. 1996. Total modification of the bacteriophage lambda tail tube major subunit protein with foreign peptides. Gene 183: 15 21.
22. Dunn, J. J.,, and F. W. Studier. 1983. Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J. Mol. Biol. 166: 477 535.
23. Edwards, M. R.,, A. M. Collins,, and R. L. Ward. 2001. The application of phage display in allergy research: characterization of IgE, identification of allergens and development of novel therapeutics. Curr. Pharm. Biotechnol. 2: 225 240.
24. Falke, D.,, and R. L. Juliano. 2003. Selective gene regulation with designed transcription factors: implications for therapy. Curr. Opin. Mol. Ther. 5: 161 166.
25. Felici, F.,, L. Castagnoli,, A. Musacchio,, R. Jappelli,, and G. Cesareni. 1991. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 222: 301 310.
26. Forrer, P.,, S. Jung,, and A. Pluckthun. 1999. Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. Curr. Opin. Struct. Biol. 9: 514 520.
27. Frenkel, D.,, and B. Solomon. 2002. Filamentous phage as vector-mediated antibody delivery to the brain. Proc. Natl. Acad. Sci. USA 99: 5675 5679.
28. Gao, C.,, S. Mao,, C. H. Lo,, P. Wirsching,, R. A. Lerner,, and K. D. Janda. 1999. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc. Natl. Acad. Sci. USA 96: 6025 6030.
29. Gearhart, D. A.,, P. F. Toole,, and J. Warren Beach. 2002. Identification of brain proteins that interact with 2-methylnorharman. An analog of the Parkinsonian-inducing toxin, MPP+. Neurosci. Res. 44: 255 265.
30. Gnanasekar, M.,, K. V. Rao,, Y. X. He,, P. K. Mishra,, T. B. Nutman,, P. Kaliraj,, and K. Ramaswamy. 2004. Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect. Immun. 72: 4707 4715.
31. Grabherr, R.,, W. Ernst,, C. Oker-Blom,, and I. Jones. 2001. Developments in the use of baculoviruses for the surface display of complex eukaryotic proteins. Trends Biotechnol. 19: 231 236.
32. Graddis, T. J.,, R. L. Remmele, Jr., and J. T. Mc- Grew. 2002. Designing proteins that work using recombinant technologies. Curr. Pharm. Biotechnol. 3: 285 297.
33. Greenwood, J.,, A. E. Willis,, and R. N. Perham. 1991. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J. Mol. Biol. 220: 821 827.
34. Gupta, A.,, M. Onda,, I. Pastan,, S. Adhya,, and V. K. Chaudhary. 2003. High-density functional display of proteins on bacteriophage lambda. J. Mol. Biol. 334: 241 254.
35. Gupta, S.,, K. Arora,, A. Sampath,, S. Khurana,, S. S. Singh,, A. Gupta,, and V. K. Chaudhary. 1999. Simplified gene-fragment phage display system for epitope mapping. Biotechniques 27: 328 330, 332 334.
35a.. Hanes, J.,, L. Jermutus,, S. Weber-Bornhauser,, H. R. Bosshard,, and A. Pluckthun. 1998. Ribosome display efficiently selects and evolves high-affinity antibodies in vitro from immune libraries. Proc. Natl. Acad. Sci. USA 95: 14130 14135.
36. Hauet, T.,, J. Liu,, H. Li,, M. Gazouli,, M. Culty,, and V. Papadopoulos. 2002. PBR, StAR, and PKA: partners in cholesterol transport in steroidogenic cells. Endocr. Res. 28: 395 401.
37. Hoess, R. H. 2002. Bacteriophage lambda as a vehicle for peptide and protein display. Curr. Pharm. Biotechnol. 3: 23 28.
38. Hoess, R. H.,, A. Wierzbicki,, and K. Abremski. 1986. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14: 2287 2300.
39. Hoogenboom, H. R. 2002. Overview of antibody phage-display technology and its applications. Methods Mol. Biol. 178: 1 37.
40. Hoogenboom, H. R.,, and P. Chames. 2000. Natural and designer binding sites made by phage display technology. Immunol. Today 21: 371 378.
41. Houshmand, H.,, and A. Bergqvist. 2003. Interaction of hepatitis C virus NS5A with La protein revealed by T7 phage display. Biochem. Biophys. Res. Commun. 309: 695 701.
42. Iannolo, G.,, O. Minenkova,, R. Petruzzelli,, and G. Cesareni. 1995. Modifying filamentous phage capsid: limits in the size of the major capsid protein. J. Mol. Biol. 248: 835 844.
43. Imber, R.,, A. Tsugita,, M. Wurtz,, and T. Hohn. 1980. Outer surface protein of bacteriophage lambda. J. Mol. Biol. 139: 277 295.
44. Jacobsson, K.,, and L. Frykberg. 2001. Shotgun phage display cloning. Comb. Chem. High-Throughput Screen. 4: 135 143.
45. Jespers, L. S.,, J. H. Messens,, A. De Keyser,, D. Eeckhout,, I. Van den Brande,, Y. G. Gansemans,, M. J. Lauwereys,, G. P. Vlasuk,, and P. E. Stanssens. 1995. Surface expression and ligand-based selection of cDNAs fused to filamentous phage geneVI. Biotechnology (NewYork) 13: 378 382.
45a.. Jiang, J.,, L. Abu-Shilbayeh,, and V. B. Rao. 1997. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect. Immun. 65: 4770 4777.
46. Kallen, K. J.,, J. Grotzinger,, and S. Rose-John. 2000. New perspectives on the design of cytokines and growth factors. Trends Biotechnol. 18: 455 461.
47. Kang, H. T.,, W. K. Bang,, and Y. G. Yu. 2004. Identification and characterization of a novel angiostatin-binding protein by the display cloning method. J. Biochem. Mol. Biol. 37: 159 166.
48. Katsura, I. 1976. Isolation of lambda prophage mutants defective in structural genes: their use for the study of bacteriophage morphogenesis. Mol. Gen. Genet. 148: 31 42.
49. Katsura, I. 1981. Structure and function of the major tail protein of bacteriophage lambda. Mutants having small major tail protein molecules in their virion. J. Mol. Biol. 146: 493 512.
50. Kay, B. K.,, J. Winter,, and J. McCafferty. 1996. Phage Display of Peptides and Proteins: a Laboratory Manual. Academic Press, San Diego, Calif.
51. Kolonin, M.,, R. Pasqualini,, and W. Arap. 2001. Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5: 308 313.
52. Kolonin, M. G.,, P. K. Saha,, L. Chan,, R. Pasqualini,, and W. Arap. 2004. Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10: 625 632.
53. Kost, T. A.,, and J. P. Condreay. 1999. Recombinant baculoviruses as expression vectors for insect and mammalian cells. Curr. Opin. Biotechnol. 10: 428 433.
54. Krajcikova, D.,, and R. W. Hartley. 2004. A new member of the bacterial ribonuclease inhibitor family from Saccharopolyspora erythraea. FEBS Lett. 557: 164 168.
55. Kramer, R. A.,, F. Cox,, M. van der Horst,, S. van der Oudenrijn,, P. C. Res,, J. Bia,, T. Logtenberg,, and J. de Kruif. 2003. A novel helper phage that improves phage display selection efficiency by preventing the amplification of phages without recombinant protein. Nucleic Acids Res. 31: e59.
56. Kretzschmar, T.,, and T. von Ruden. 2002. Antibody discovery: phage display. Curr. Opin. Biotechnol. 13: 598 602.
57. Kristensen, P.,, P. Ravn,, K. B. Jensen,, and K. Jensen. 2000. Applying phage display technology in aging research. Biogerontology 1: 67 78.
58. Kuwabara, I.,, H. Maruyama,, S. Kamisue,, M. Shima,, A. Yoshioka,, and I. N. Maruyama. 1999. Mapping of the minimal domain encoding a conformational epitope by lambda phage surface display: factor VIII inhibitor antibodies from haemophilia A patients. J. Immunol. Methods 224: 89 99.
59. Kuwabara, I.,, H. Maruyama,, Y. G. Mikawa,, R. I. Zuberi,, F. T. Liu,, and I. N. Maruyama. 1997. Efficient epitope mapping by bacteriophage lambda surface display. Nat. Biotechnol. 15: 74 78.
60. Lambkin, I.,, and C. Pinilla. 2002. Targeting approaches to oral drug delivery. Expert Opin. Biol. Ther. 2: 67 73.
61. Lang, H. 2000. Outer membrane proteins as surface display systems. Int. J. Med. Microbiol. 290: 579 585.
62. Larocca, D.,, M. A. Burg,, K. Jensen-Pergakes,, E. P. Ravey,, A. M. Gonzalez,, and A. Baird. 2002. Evolving phage vectors for cell targeted gene delivery. Curr. Pharm. Biotechnol. 3: 45 57.
63. Lee, S. Y.,, J. H. Choi,, and Z. Xu. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45 52.
64. Lin, J. T.,, and J. T. Lis. 1999. Glycogen synthase phosphatase interacts with heat shock factor to activate CUP1 gene transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 3237 3245.
65. Lohse, P. A.,, and M. C. Wright. 2001. In vitro protein display in drug discovery. Curr. Opin. Drug Dev. 4: 198 204.
66. Malys, N.,, D. Y. Chang,, R. G. Baumann,, D. Xie,, and L. W. Black. 2002. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction. J. Mol. Biol. 319: 289 304.
67. Maruyama, I. N.,, H. I. Maruyama,, and S. Brenner. 1994. Lambda foo: a lambda phage vector for the expression of foreign proteins. Proc. Natl. Acad. Sci. USA 91: 8273 8277.
68. Mertens, P.,, D. Walgraffe,, T. Laurent,, N. Deschrevel,, J. J. Letesson,, and X. De Bolle. 2001. Selection of phage-displayed peptides recognised by monoclonal antibodies directed against the lipopolysaccharide of Brucella. Int. Rev. Immunol. 20: 181 199.
69. Mikawa, Y. G.,, I. N. Maruyama,, and S. Brenner. 1996. Surface display of proteins on bacteriophage lambda heads. J. Mol. Biol. 262: 21 30.
70. Moe, G. R.,, S. Tan,, and D. M. Granoff. 1999. Molecular mimetics of polysaccharide epitopes as vaccine candidates for prevention of Neisseria meningitidis serogroup B disease. FEMS Immunol. Med. Microbiol. 26: 209 226.
71. Monaci, P.,, L. Urbanelli,, and L. Fontana. 2001. Phage as gene delivery vectors. Curr. Opin. Mol. Ther. 3: 159 169.
72. Moriki, T.,, I. Kuwabara,, F. T. Liu,, and I. N. Maruyama. 1999. Protein domain mapping by lambda phage display: the minimal lactose-binding domain of galectin-3. Biochem. Biophys. Res. Commun. 265: 291 296.
73. Mullaney, B. P.,, and M. G. Pallavicini. 2001. Protein-protein interactions in hematology and phage display. Exp. Hematol. 29: 1136 1146.
74. Nakanishi, M.,, A. Eguchi,, T. Akuta,, E. Nagoshi,, S. Fujita,, J. Okabe,, T. Senda,, and M. Hasegawa. 2003. Basic peptides as functional components of non-viral gene transfer vehicles. Curr. Protein Pept. Sci. 4: 141 150.
75. Niwa, M.,, H. Maruyama,, T. Fujimoto,, K. Dohi,, and I. N. Maruyama. 2000. Affinity selection of cDNA libraries by lambda phage surface display. Gene 256: 229 236.
76. Nixon, A. E. 2002. Phage display as a tool for protease ligand discovery. Curr. Pharm. Biotechnol. 3: 1 12.
77. O’Brien, P. M.,, and R. Aitken. 2002. Antibody Phage Display: Methods and Protocols. Humana Press, Totowa, N. J.
78. Oggioni, M. R.,, D. Medaglini,, T. Maggi,, and G. Pozzi. 1999. Engineering the gram-positive cell surface for construction of bacterial vaccine vectors. Methods 19: 163 173.
79. Petrenko, V. A.,, and V. J. Vodyanoy. 2003. Phage display for detection of biological threat agents. J. Microbiol. Methods 53: 253 262.
80. Pini, A.,, and L. Bracci. 2000. Phage display of antibody fragments. Curr. Protein Pept. Sci. 1: 155 169.
81. Qiu, J.,, P. Luo,, K. Wasmund,, Z. Steplewski,, and T. Kieber-Emmons. 1999. Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccines. Hybridoma 18: 103 112.
82. Ren, Z.,, and L. W. Black. 1998. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 215: 439 444.
83. Ren, Z. J.,, G. K. Lewis,, P. T. Wingfield,, E. G. Locke,, A. C. Steven,, and L. W. Black. 1996. Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci. 5: 1833 1843.
84. Richardson, P. L. 2002. The determination and use of optimized protease substrates in drug discovery and development. Curr. Pharm. Des. 8: 2559 2581.
85. Rodi, D. J.,, L. Makowski,, and B. K. Kay. 2002. One from column A and two from column B: the benefits of phage display in molecular-recognition studies. Curr. Opin. Chem. Biol. 6: 92 96.
86. Rondot, S.,, J. Koch,, F. Breitling,, and S. Dubel. 2001. A helper phage to improve single-chain antibody presentation in phage display. Nat. Biotechnol. 19: 75 78.
87. Rosenberg, A.,, K. Griffin,, F. W. Studier,, M. McCormick,, J. Berg,, R. Novy,, and R. Mierendorf. 1996. T7Select phage display system: a powerful new protein display system based on bacteriophage T7. Innovations 6: 1 6.
88. Russel, M. 1995. Moving through the membrane with filamentous phages. Trends Microbiol. 3: 223 228.
89. Russel, M. 1993. Protein-protein interactions during filamentous phage assembly. J. Mol. Biol. 231: 689 697.
90. Russel, M.,, N. A. Linderoth,, and A. Sali. 1997. Filamentous phage assembly: variation on a protein export theme. Gene 192: 23 32.
91. Santi, E.,, S. Capone,, C. Mennuni,, A. Lahm,, A. Tramontano,, A. Luzzago,, and A. Nicosia. 2000. Bacteriophage lambda display of complex cDNA libraries: a new approach to functional genomics. J. Mol. Biol. 296: 497 508.
92. Santini, C.,, D. Brennan,, C. Mennuni,, R. H. Hoess,, A. Nicosia,, R. Cortese,, and A. Luzzago. 1998. Efficient display of an HCV cDNA expression library as C-terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282: 125 135.
93. Santoso, S.,, and V. Kiefel. 2001. Human platelet alloantigens. Wien. Klin. Wochenschr. 113: 806 813.
94. Scholle, M. D.,, F. R. Collart,, and B. K. Kay. 2004. In vivo biotinylated proteins as targets for phage-display selection experiments. Protein Expr. Purif. 37: 243 252.
95. Scott, J. K.,, and G. P. Smith. 1990. Searching for peptide ligands with an epitope library. Science 249: 386 390.
96. Sheets, M. D.,, P. Amersdorfer,, R. Finnern,, P. Sargent,, E. Lindquist,, R. Schier,, G. Hemingsen,, C. Wong,, J. C. Gerhart,, J. D. Marks,, and E. Lindqvist. 1998. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95: 6157 6162.
97. Sidhu, S. 2001. Engineering M13 for phage display. Biomol. Eng. 18: 57 63.
98. Sidhu, S. S.,, G. A. Weiss,, and J. A. Wells. 2000. High copy display of large proteins on phage for functional selections. J. Mol. Biol. 296: 487 495.
99. Sioud, M.,, M. Hansen,, and A. Dybwad. 2000. Profiling the immune responses in patient sera with peptide and cDNA display libraries. Int. J. Mol. Med. 6: 123 128.
100. Smith, G. P. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315 1317.
101. Smith, G. P.,, and J. K. Scott. 1993. Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217: 228 257.
102. Soderlind, E.,, R. Carlsson,, C. A. Borrebaeck,, and M. Ohlin. 2001. The immune diversity in a test tube—non-immunised antibody libraries and functional variability in defined protein scaffolds. Comb. Chem. High-Throughput Screen. 4: 409 416.
103. Stahl, S.,, A. Robert,, E. Gunneriusson,, H. Wernerus,, F. Cano,, S. Liljeqvist,, M. Hansson,, T. N. Nguyen,, and P. Samuelson. 2000. Staphylococcal surface display and its applications. Int. J. Med. Microbiol. 290: 571 577.
104. Sternberg, N.,, and R. H. Hoess. 1995. Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Natl. Acad. Sci. USA 92: 1609 1613.
105. Stolz, J.,, A. Ludwig,, R. Stadler,, C. Biesgen,, K. Hagemann,, and N. Sauer. 1999. Structural analysis of a plant sucrose carrier using monoclonal antibodies and bacteriophage lambda surface display. FEBS Lett. 453: 375 379.
106. Turnbough, C. L., Jr. 2003. Discovery of phage display peptide ligands for species-specific detection of Bacillus spores. J. Microbiol. Methods 53: 263 271.
107. Turpen, T. H. 1999. Tobacco mosaic virus and the virescence of biotechnology. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 665 673.
108. Uppala, A.,, and E. Koivunen. 2000. Targeting of phage display vectors to mammalian cells. Comb. Chem. High-Throughput Screen. 3: 373 392.
109. Vaughan, T. J.,, J. K. Osbourn,, and P. R. Tempest. 1998. Human antibodies by design. Nat. Biotechnol. 16: 535 539.
110. Voorberg, J.,, and E. N. van den Brink. 2000. Phage display technology: a tool to explore the diversity of inhibitors to blood coagulation factor VIII. Semin. Thromb. Hemost. 26: 143 150.
111. Weetman, A. P. 2003. Autoimmune thyroid disease: propagation and progression. Eur. J. Endocrinol. 148: 1 9.
112. Westerlund-Wikstrom, B. 2000. Peptide display on bacterial flagella: principles and applications. Int. J. Med. Microbiol. 290: 223 230.
113. Wolfe, S. A.,, L. Nekludova,, and C. O. Pabo. 2000. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29: 183 212.
114. Yang, F.,, P. Forrer,, Z. Dauter,, J. F. Conway,, N. Cheng,, M. E. Cerritelli,, A. C. Steven,, A. Pluckthun,, and A. Wlodawer. 2000. Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD. Nat. Struct. Biol. 7: 230 237.
115. Zhang, Y.,, J. W. Pak,, I. N. Maruyama,, and M. Machida. 2000. Affinity selection of DNA-binding proteins displayed on bacteriophage lambda. J. Biochem. (Tokyo) 127: 1057 1063.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error