1887

Chapter 4 : Bacteriophage Evolution and the Role of Phages in Host Evolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Bacteriophage Evolution and the Role of Phages in Host Evolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap04-2.gif

Abstract:

Comparative analyses of phage genome sequences imply that a major component of phage evolution is large numbers of intrinsically very improbable events. In addition, there are comparable numbers of prophage sequences that are found in the genomic sequences of bacteria and, sometimes, archaea. There are stretches of sequence that match well, with abrupt transitions to regions with no detectable similarity or sometimes a different level of similarity. These transition points are considered the products of nonhomologous recombination events in the ancestry of one of the phages being compared; in this sense, they are fossils of past events in the history of the genome. It is believed that there are at least two factors that can restrict the horizontal flow of genes across the expanses of phage sequence space. Many of the beneficial genes carried by prophages appear to be morons, i.e., the genes that have entered the genome recently and are typically flanked by a transcription promoter and a terminator. The understanding of how phages evolve began in the late 1960s with the hetero duplex mapping of the chromosomes of phage lambda and some close relatives, showing that these molecules are mosaic with respect to each other. Genome sequences for such phages are just now becoming available, and the largest genome to date is 10 times as big as that of phage lambda, with a corresponding increase in gene number.

Citation: Hendrix R. 2005. Bacteriophage Evolution and the Role of Phages in Host Evolution, p 55-65. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch4

Key Concept Ranking

Two-Component Signal Transduction Systems
0.43348277
0.43348277
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Hypothesis on the origin of the sequence around the end of the HK97 gene. (A) The DNA sequence crossing the ends of the HK97 gene is shown, with three frames of translation represented below. The N protein amino acid sequence is shown in the top translation frame and ends in the middle of the line. The corresponding part of the P22 gene region is shown at the top, with amino acid identities indicated in bold and underlined. The end of the 21 gene is shown at the bottom, with the termination codon near the right end of the line and identities indicated as described above. (B) The out-of-register nonhomologous recombination event that is hypothesized to have given rise to the HK97 sequence in this region is shown in the first reaction. The second reaction shows a hypothetical future deletion that would give this region of HK97 the appearance of having arisen through a single in-register nonhomologous recombination event.

Citation: Hendrix R. 2005. Bacteriophage Evolution and the Role of Phages in Host Evolution, p 55-65. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap4
1. Benzer, S. 1955. Fine structure of a genetic region in bacteriophage. Proc. Natl. Acad. Sci.USA 41:344.
2. Bergh, O.,, K. Y. Borsheim,, G. Bratbak,, and M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature 340:467468.
3. Bertani, G. 1999.Transduction-like gene transfer in the methanogen Methanococcus voltae. J. Bacteriol. 181:29923002.
4. Canchaya, C.,, C. Proux,, G. Fournous,, A. Bruttin,, and H. Brussow. 2003. Prophage genomics. Microbiol. Mol. Biol. Rev. 67:238276.
5. Casjens, S. 2003. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49:277300.
6. Duda, R. L. 1998. Protein chainmail: catenated protein in viral capsids. Cell 94:5560.
7. Duda, R. L.,, J. Hempel,, H. Michel,, J. Shabanowitz,, D. Hunt,, and R. W. Hendrix. 1995. Structural transitions during bacteriophage HK97 head assembly. J. Mol. Biol. 247:618635.
8. Eiserling, F.,, A. Pushkin,, M. Gingery,, and G. Bertani. 1999. Bacteriophage-like particles associated with the gene transfer agent of Methanococcus voltae PS. J. Gen.Virol. 80:33053308.
9. Hashemolhosseini, S.,, Y. D. Stierhof,, I. Hindennach,, and U. Henning. 1996. Characterization of the helper proteins for the assembly of tail fibers of coliphages T4 and lambda. J. Bacteriol. 178: 62586265.
10. Hendrix, R. W. 1999. Evolution: the long evolutionary reach of viruses. Curr. Biol. 9:R914R917.
11. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8:504508.
12. Hendrix, R. W.,, M.C. Smith,, R. N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999.Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl. Acad. Sci. USA 96:21922197.
13. Humphrey, S. B.,, T. B. Stanton,, N. S. Jensen,, and R. L. Zuerner. 1997. Purification and characterization of VSH-1, a generalized transducing bacteriophage of Serpulina hyodysenteriae. J. Bacteriol. 179:323329.
14. Juhala, R. J.,, M. E. Ford,, R. L. Duda,, A. Youlton,, G. F. Hatfull,, and R. W. Hendrix. 2000.Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299:2751.
15. Lang, A. S.,, and J. T. Beatty. 2002.A bacterial signal transduction system controls genetic exchange and motility. J. Bacteriol. 184:913918.
16. Lang, A. S.,, and J. T. Beatty. 2001. The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch. Microbiol. 175:241249.
17. Lang, A. S.,, and J. T. Beatty. 2000. Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97:859864.
18. Lawrence, J. G.,, G. F. Hatfull,, and R. W. Hendrix. 2002. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184:48914905.
19. Lawrence, J. G.,, R. W. Hendrix,, and S. Casjens. 2001. Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9:535540.
20. Liu, J.,, and A. Mushegian. 2004. Displacements of prohead protease genes in the late operons of double-stranded-DNA bacteriophages. J. Bacteriol. 186:43694375.
21. Luria, S. E. 1945. Mutations of bacterial viruses affecting their host range. Genetics 30:84.
22. Müller, H. J. 1950. Our load of mutations. Am. J. Hum. Gen. 2:111176.
23. Nakayama, K.,, K. Takashima,, H. Ishihara,, T. Shinomiya,, M. Kageyama,, S. Kanaya,, M. Ohnishi,, T. Murata,, H. Mori,, and T. Hayashi. 2000.The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38:213231.
24. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J. A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs, Jr.,, R. W. Hendrix,, and G. F. Hatfull. 2003.Origins of highly mosaic mycobacteriophage genomes. Cell 113:171182.
25. Rapp, B. J.,, and J. D. Wall. 1987. Genetic transfer in Desulfovibrio desulfuricans. Proc. Natl.Acad. Sci. USA 84:91289130.
26. Ravin, V.,, N. Ravin,, S. Casjens,, M. E. Ford,, G. F. Hatfull,, and R. W. Hendrix. 2000. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol. Biol. 299:5373.
27. Wagner, P. L.,, J. Livny,, M. N. Neely,, D. W. Acheson,, D. I. Friedman,, and M. K. Waldor. 2002. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44:957970.
28. Wagner, P. L.,, M. N. Neely,, X. Zhang,, D. W. Acheson,, M. K. Waldor,, and D. I. Friedman. 2001. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J. Bacteriol. 183:20812085.
29. Wikoff, W. R.,, L. Liljas,, R. L. Duda,, H. Tsuruta,, R. W. Hendrix,, and J. E. Johnson. 2000. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289:21292133.
30. Wilhelm, S. W.,, and C. A. Suttle. 1999. Viruses and nutrient cycles in the sea. Bioscience 49:781.
31. Wommack, K. E.,, and R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69114.
32. Yagil, E.,, S. Dolev,, J. Oberto,, N. Kislev,, N. Ramaiah,, and R. A. Weisberg. 1989. Determinants of site-specific recombination in the lambdoid coliphage HK022. An evolutionary change in specificity. J. Mol. Biol. 207:695717.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error