1887

Chapter 5 : Phage Ecology and Bacterial Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Phage Ecology and Bacterial Pathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap05-2.gif

Abstract:

Bacteriophages (phages) are the viruses of bacteria. The impact of phages on bacterial pathogenesis may be divided into two major themes, transduction and predation. In this chapter, the authors take a phage-centered view of the ecology of the phage-bacterium relationship, looking in particular for unappreciated subtleties that might impact pathogen formation, disease progression, or the phage-induced destruction of bacterial populations. The impact of phages on bacterial pathogenesis occurs primarily over the course of phage infection. Transduction is described as the phage-mediated movement of genetic material from one bacterium to another. Generalized transduction consequently does not result in DNA serial transfer except via subsequent accidental means. Researchers need to be aware not just of the traditional laboratory characterization of phage biology but also of how to interpret that biology from an ecological perspective. Phages are also often compared by restriction fragment length polymorphism analysis and Southern blotting. The major advantage of working with cultured phages is the potential for further investigations into phage biology. Metagenomic analyses are another way to identify uncultured phages within environmental communities. Population modeling also suggests that uncultured phage genomes from the environment may be sequenced to completion by the shotgun approach. Obtaining and propagating more virulence factor (VF)-encoding phages in culture, including currently unidentified toxin-carrying phages sequenced from the environment, will provide valuable information concerning host range and other aspects of phage biology that are relevant to bacterial pathogenesis.

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.40741697
0.40741697
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Overview of phage-bacterium interactions and the rise of bacterial virulence. Phage-bacterium interactions include infection, transduction, and phage conversion (indicated by black lines and accompanying text) plus phage release to a free phage pool, toxin release, and nutrient release upon lysis (release is indicated by dashed lines and accompanying text).For lytic phages, release occurs via bacterial lysis, resulting in bacterial death (note that the intervening infection between adsorption and the lysis of avirulent bacteria [upper right part of figure] is not explicitly shown). For filamentous phages, free phage release occurs without bacterial lysis (continuous release). Reduction to lysogeny can result in extensive delays between phage adsorption and phage progeny release, during which time changes in the bacterial phenotype can occur as a consequence of phage infection (lysogenic conversion). The induction of lysogens results in free phage production. Note that neither transduction nor lysogenic conversion obligately results in an increase in bacterial virulence. Although it is not indicated, the curing of phage infections (prophage loss) may result in changes in bacterial virulence, such as virulence reduction. Various consequences of phage-associated increases in bacterial virulence are indicated on the lower right.

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Overview of phage and bacterial pools and their interactions. The figure shows, from a distinctly anthropocentric perspective, the various environmental pools of phages and bacteria. “Organism” refers to human, animal, plant, protozoan, etc., hosts of bacteria, and “bacteria” includes both phage-infected and non-phage-infected varieties. Phage or bacterial movement among individual organisms, including between members of the same species of organism, is assumed to involve entrance into an extraorganismal pool, even if only briefly (movement via the transfer of body fluids or tissues may be exceptional). Two such phage-containing pools exist: a free phage pool and an infected bacterium pool, with the latter pool including bacterial lysogens. The pools can also be divided into intraorganismal and extraorganismal forms, with the various free phage pools connected in the figure via solid arrows and the various bacterial pools connected via dotted arrows. In any of these pools, virion decay can occur with or without phage association with phage-susceptible bacteria. Bacterial death can also occur, although this is not indicated in the diagram. Phage sequestration can occur intracellularly via lysogeny (or, more temporarily, via pseudolysogeny or a carrier state), but free phage sequestration generally occurs via associations with materials other than susceptible bacteria (e.g., burying within aquatic sediments).

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap5
1. Abedon, S.T. 1990. Selection for lysis inhibition in bacteriophage. J.Theor. Biol. 146: 501 511.
2. Abedon, S. T. 1992. Lysis of lysis-inhibited bacteriophage T4-infected cells. J. Bacteriol. 174: 8073 8080.
3. Abedon, S. T., 1994. Lysis and the interaction between free phages and infected cells, p. 397 405. In J. D. Karam (ed.), The Molecular Biology of Bacteriophage T4. ASM Press, Washington, D.C.
4. Abedon, S. T. 1999. Bacteriophage T4 resistance to lysis-inhibition collapse. Genet. Res. 74: 1 11.
5. Abedon, S.T. Phage ecology. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
6. Abedon, S. T.,, T. D. Herschler,, and D. Stopar. 2001. Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 67: 4233 4241.
7. Abedon, S. T.,, P. Hyman,, and C. Thomas. 2003. Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl. Environ. Microbiol. 69: 7499 7506.
8. Abedon, S. T.,, and J. T. LeJeune. Why bacteriophage encode toxins and other virulence factors. Submitted for publication.
9. Acheson, D.W. K.,, J. Reidl,, X. Zhang,, G.T. Keusch,, J. J. Mekalanos,, and M. K. Waldor. 1998. In vivo transduction with Shiga toxin 1-encoding phage. Infect. Immun. 66: 4496 4498.
10. Ackermann, H.-W. 2001. Frequency of morphological phage descriptions in the year 2000. Brief review. Arch.Virol. 146: 843 857.
11. Ackermann, H.-W. 2003. Bacteriophage observations and evolution. Res. Microbiol. 154: 245 251.
12. Adesiyun, A.,, W. Lenz,, and K. Schaal. 1992. Phage type enterotoxigenicity and antibiograms of Staphylococcus aureus strains isolated from animals in Nigeria. Isr. J.Vet. Med. 47: 143 149.
13. Allison, H. E.,, M. J. Sergeant,, C. E. James,, J. R. Saunders,, D. L. Smith,, R. J. Sharp,, T. S. Marks,, and A. J. McCarthy. 2003. Immunity profiles of wild-type and recombinant Shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens. Infect. Immun. 71: 3409 3418.
14. Asakura, H.,, S.-I. Makino,, H. Kobori,, M. Watarai,, T. Shirahata,, T. Ikeda,, and K. Takeshi. 2001. Phylogenetic diversity and similarity of active sites of Shiga toxin (Stx) in Shiga toxin-producing Escherichia coli (STEC) isolates from humans and animals. Epidemiol. Infect. 127: 27 36.
15. Ashelford, K. E.,, M. J. Day,, and J. C. Fry. 2003. Elevated abundance of bacteriophage infecting bacteria in soil. Appl. Environ. Microbiol. 69: 285 289.
16. Bacher, J. M.,, J. J. Bull,, and A. D. Ellington. 2003. Evolution of phage with chemically ambiguous proteomes. BMC Evol. Biol. 3: 24.
17. Banks, D. J.,, B. Lei,, and J. M. Musser. 2003. Prophage induction and expression of prophageencoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect. Immun. 71: 7079 7086.
18. Barksdale, L.,, and S. B. Ardon. 1974. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 28: 265 299.
19. Basu, A.,, A. K. Mukhopadhyay,, P. Garg,, S. Chakraborty,, T. Ramamurthy,, S. Yamasaki,, Y. Takeda,, and G. B. Nair. 2000. Diversity in the arrangement of the CTX prophages in classical strains of Vibrio cholerae O1. FEMS Microbiol. Lett. 182: 35 40.
20. Beckers, H.,, F. Van Leusden,, and P. Tips. 1992. Growth and enterotoxin production of Staphylococcus aureus in shrimp. J. Hyg. 3: 685 694.
21.Bergh, Ø., K.Y. Børsheim,G. Bratbak, and M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature ( London) 340: 467468.
22. Bishai, W. R.,, and J. R. Murphy,. 1988. Bacteriophage gene products that cause human disease, p. 683 724. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, N.Y.
23. Bossi, L.,, J. A. Fuentes,, G. Mora,, and N. Figuero-Bossi. 2003. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185: 6467 6471.
24. Boyd, E. F.,, B. M. Davis,, and B. Hochhut. 2001. Bacteriophage-bacteriophage interactions in the evolution of pathogenic bacteria. Trends Microbiol. 9: 137 144.
25. Boyd, E. F.,, K. E. Moyer,, L. Shi,, and M. K. Waldor. 2000. Infectious CTXPhi and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect.Immun. 68: 1507 1513.
26. Bratbak, G.,, M. Heldal,, T. F. Thingstad,, B. Riemann,, and O. H. Haslund. 1992. Incorporation of viruses into the budget of microbial Ctransfer. A first approach. Mar. Ecol. Prog. Ser. 83: 273 280.
27. Breitbart, M.,, B. Felts,, S. Kelley,, J. M. Mahaffy,, J. Nulton,, P. Salamon,, and F. Rohwer. 2004. Diversity and population structure of a nearshore marine sediment viral community. Proc.R. Soc. Lond. B Biol. Sci. 271: 565 574.
28. Breitbart, M.,, I. Hewson,, B. Felts,, J. M. Mahaffy,, J. Nulton,, P. Salamon,, and F. Rohwer. 2003. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185: 6220 6223.
29. Breitbart, M.,, J. H. Miyake,, and F. Rohwer. 2004. Global distribution of nearly identical phageencoded DNA sequences. FEMS Microbiol. Lett. 236: 249 256.
30. Breitbart, M.,, P. Salamon,, B. Andresen,, J. M. - Mahaffy,, A. M. Segall,, D. Mead,, F. Azam,, and F. Rohwer. 2002. Genomic analysis of uncultured marine viral communities. Proc. Natl.Acad. Sci.USA 99: 14250 14255.
31. Broudy, T. B.,, and V. A. Fischetti. 2003. In vivo lysogenic conversion of Tox - Streptococcus pyogenes to Tox - with lysogenic streptococci or free phage. Infect. Immun. 71: 3782 3786.
32. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2001. Induction of lysogenic bacteriophage and phage-associated toxin from group A streptococci during coculture with human pharyngeal cells. Infect. Immun. 69: 1440 1443.
33. Brown, S. P. 2001. Collective action in an RNA virus. J. Evol. Biol. 14: 821 828.
34. Buckling, A.,, and P. B. Rainey. 2002. Antagonistic coevolution between a bacterium and a bacteriophage. Proc.R. Soc. Lond.B Biol. Sci. 269: 931 936.
35. Buckling, A.,, and P. B. Rainey. 2002. The role of parasites in sympatric and allopatric host diversification. Nature ( London) 420: 496 499.
36. Bull, J. J.,, M. R. Badgett,, R. Springman,, and I. J. Molineux. 2004. Genome properties and the limits of adaptation in bacteriophages. Evolution 58: 692 701.
37. Bull, J. J.,, M. R. Badgett,, and H. A. Wichman. 2000. Big-benefit mutations in a bacteriophage inhibited with heat. Mol. Biol. Evol. 17: 942 950.
38. Bull, J. J.,, and I. J. Molineux. 1992. Molecular genetics of adaptation in an experimental model of cooperation. Evolution 46: 882 895.
39. Bull, J. J.,, D. W. Pfening,, and I. -W. Wang. 2004. Genetic details, optimization, and phage life histories. Trends Ecol. Evol. 19: 76 82.
40. Burch, C. L.,, and L. Chao. 1999. Evolution by small steps and rugged landscapes in the RNA virus phi6. Genetics 151: 921 927.
41. Burch, C. L.,, and L. Chao. 2000. Evolvability of an RNA virus is determined by its mutational neighbourhood. Nature ( London) 406: 625 628.
42. Casadesus, J.,, and R. D’Ari. 2002. Memory in bacteria and phage. Bioessays 24: 512 518.
43. Chen, F.,, C. A. Suttle,, and S. M. Short. 1996. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. Appl. Environ. Microbiol. 62: 2869 2874.
44. Cochran, P. K.,, C. A. Kellogg,, and J. H. Paul. 1998. Prophage induction of indigenous marine lysogenic bacteria by environmental pollutants. Mar. Ecol. Prog. Ser. 164: 125 133.
45. Cochran, P. K.,, and J. H. Paul. 1998. Seasonal abundance of lysogenic bacteria in a subtropical estuary. Appl. Environ. Microbiol. 64: 2308 2312.
46. Curtis, T.,, W. Sloan,, and J. Scannell. 2002. Estimating prokaryotic diversity and its limits. Proc. Natl.Acad. Sci. USA 99: 10494 10499.
47. Dalsgaard, A.,, O. Serichantalergs,, A. Forslund,, W. Lin,, J. Mekalanos,, E. Mintz,, T. Shimada,, and J. G. Wells. 2001. Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J. Clin. Microbiol. 39: 4086 4092.
48. Danovaro, R.,, and M. Serresi. 2000. Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. Appl. Environ. Microbiol. 66: 1857 1861.
49. Davis, B. M.,, and M. K. Waldor,. 2002. Mobile genetic elements and bacterial pathogenesis, p. 1040 1055. In N. L. Craig,, R. Gragie,, M. Gellert,, and A. M. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
50. de la Pena, M.,, S. F. Elena,, and A. Moya. 2000. Effect of deleterious mutation-accumulation on the fitness of RNA bacteriophage MS2. Evolution 54: 686 691.
51. Demuth, J.,, H. Neve,, and K. Witzel. 1993. Direct electron microscopy study on the morphological diversity of bacteriophage populations in Lake Plussee. Appl. Environ. Microbiol. 59: 3378 3384.
52. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Ferretti,, and H. Brüssow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288: 325 341.
53. Drees, K. P.,, M. Abbaszadegan,, and R. M. Maier. 2003. Comparative electrochemical inactivation of bacteria and bacteriophage. Water Res. 37: 2291 2300.
54. Faruque, S. M.,, M. J. Albert,, and J. J. Mekalanos. 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Mol. Biol. Rev. 62: 1301 1314.
55. Faruque, S. M.,, A. R. M. Asadulghani,, A. Alim,, M. J. Albert,, K. M. N. Islam,, and J. J. Mekalanos. 1998. Induction of the lysogenic phage encoding cholera toxin in naturally occurring strains of toxigenic Vibrio cholerae O1 and O139. Infect. Immun. 66: 3752 3757.
56. Faruque, S. M.,, A. M. M. Rahman,, M. K. Waldor,, and D. A. Sack. 2000. Sunlight-induced propagation of the lysogenic phage encoding cholera toxin. Infect. Immun. 68: 4795 4801.
57. Faruque, S. M.,, M. M. Rahman,, K. M. Asadulghani,, N. Islam,, and J. J. Mekalanos. 1999. Lysogenic conversion of environmental Vibrio mimicus strains by CTXφ. Infect. Immun. 67: 5723 5729.
58. Faruque, S. M.,, M. M. Rahman,, A. K. Hasan,, G. B. Nair,, J. J. Mekalanos,, and D. A. Sack. 2001. Diminished diarrheal response to Vibrio cholerae strains carrying the replicative form of the CTXφ genome instead of CTXφ lysogens in adult rabbits. Infect. Immun. 69: 6084 6090.
59. Frank, H.,, and K. Moebus. 1987. An electron microscopic study of bacteriophages from marine waters. Helgol. Meeresunters. 41: 385 414.
60. Franklin, N. C., 1971. Illegitimate recombination, p. 175 194. In A. H. Hershey (ed.), The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
61. Friedman, D. I.,, E. R. Olson,, C. Georgopoulos,, K. Tilly,, I. Hershowitz,, and F. Banuett. 1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage λ. Microbiol. Rev. 48: 299 325.
62. Fuhrman, J. A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature (London) 399: 541 548.
63. Fuhrman, J. A.,, and L. Campbell. 1998. Microbial diversity. Nature (London) 393: 410 411.
64. Fuhrman, J. A.,, J. Griffith,, and M. Schwalbach. 2002. Prokaryotic and viral diversity patterns in marine plankton. Ecol. Res. 17: 183 194.
65. Fuhrman, J. A.,, and R.T. Noble. 1995. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol. Oceanogr. 40: 1236 1242.
66. Gamage, S.,, J. E. Strasser,, C. L. Chalk,, and A. A. Weiss. 2003. Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. Infect. Immun. 71: 3107 3115.
67. Gentry-Weeks, C.,, P. S. Coburn,, and M. S. Gilmore. 2002. Phages and other mobile virulence elements in gram-positive pathogens. Curr.Top. Microbiol. Immunol. 264: 79 94.
68. Gill, J. J.,, and S. T. Abedon. 2003. Bacteriophage ecology and plants. APSnet [Online.] http://www.apsnet.org/online/feature/phages/.
69. González, J. M.,, and C. A. Suttle. 1993. Grazing by marine nanoflagellates on viruses and virussized particles: ingestion and digestion. Mar. Ecol. Prog. Ser. 94: 1 10.
70. Goodridge, L.,, and S.T. Abedon. 2003. Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. SIM News 53: 254 262.
71. Green, E. P.,, and A. W. Bruckner. 2000. The significance of coral disease epizootiology for coral reef conservation. Biol. Conserv. 96: 347 361.
72. Grundling, A.,, M. D. Manson,, and R. Young. 2001. Holins kill without warning. Proc. Natl.Acad. Sci. USA 98: 9348 9352.
73. Hacker, J.,, G. Blum-Oehler,, B. Janke,, G. Nagy,, and W. Goebel,. 1999. Pathogenicity islands of extraintestinal Escherichia coli, p. 59 77. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Genetic Elements. ASM Press, Washington, D.C.
74. Hadas, H.,, M. Einav,, I. Fishov,, and A. Zaritsky. 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143: 179 185.
75. Hahn, M. W.,, M. D. Rausher,, and C. W. Cunningham. 2002. Distinguishing between selection and population expansion in an experimental lineage of bacteriophage T7. Genetics 161: 11 20.
76. Harvell, C. D.,, K. Kim,, J. M. Burkholder,, R. R. Colwell,, P. R. Epstein,, D. J. Grimes,, E. E. Hofmann,, E. K. Lipp,, A. D. M. E. Osterhaus,, R. M. Overstreet,, J. W. Porter,, G. W. Smith,, and G. R. Vasta. 1999. Emerging marine diseases—climate links and anthropogenic factors. Science 285: 1510.
77. Hayashi, Y.,, H. Sakata,, Y. Makino,, I. Urabe,, and T. Yomo. 2003. Can an arbitrary sequence evolve towards acquiring a biological function? J. Mol. Evol. 56: 162 168.
78. Hendrix, R.W.,, and S. Casjens,. Bacteriophage λ and its genetic neighborhood. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
79. Hewson, I.,, J. M. O’Neil,, J. A. Fuhrman,, and W. C. Dennison. 2001. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46: 1734 1746.
80. Holder, K. K.,, and J. J. Bull. 2001. Profiles of adaptation in two similar viruses. Genetics 159: 1393 1404.
81. James, C. E.,, H. E. Allison,, A. J. McCarthy,, R. J. Sharp,, and J. R. Saunders. 2002. Bacteriophage survival and transfer of verocytotoxin genes amongst diverse enteric bacterial hosts and in soil microcosms, p. 301. Abstr. 102nd Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, D.C.
82. James, C. E.,, K. N. Stanley,, H. E. Allison,, H. J. Flint,, C. S. Stewart,, R. J. Sharp,, J. R. Saunders,, and A. J. McCarthy. 2001. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl. Environ. Microbiol. 67: 4335 4337.
83. Jensen, E.C.,, H. S. Schrader,, B. Rieland,, T. L. Thompson,, K. W. Lee,, K. W. Nickerson,, and T. A. Kokjohn. 1998. Prevalence of broad-hostrange lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 64: 575 580.
84. Jiang, S. C.,, and J. H. Paul. 1994. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar. Ecol. Prog. Ser. 104: 163 172.
85. Jiang, S. C.,, and J. H. Paul. 1998. Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64: 2780 2787.
86. Kajiura, T.,, M. Tanaka,, H. Wada,, K. Ito,, Y. Koyama,, and F. Kato. 2001. Effects of disinfectants on Shiga-like toxin converting phage from enterohemorrhagic Escherichia coli O157:H7. J. Health Sci. 47: 203 207.
87. Kasman, L. M. 2001. Bacteriophage lysogeny in the mammalian gastrointestinal tract, p. 474. Abstr. 101st Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, D.C.
88. Kasman, L. M.,, A. Kasman,, C. Westwater,, J. Dolan,, M. G. Schmidt,, and J. S. Norris. 2002. Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J.Virol. 76: 5557 5564.
89. Kellogg, C. A.,, J. B. Rose,, S. C. Jiang,, J. M. Thurmond,, and J. H. Paul. 1995. Genetic diversity of related vibriophages isolated from marine environments around Florida and Hawaii, USA. Mar. Ecol. Prog. Ser. 120: 89 98.
90. Kohler, B.,, H. Karch,, and H. Schmidt. 2000. Antibacterials that are used as growth promoters in animal husbandry can affect the release of Shigatoxin-2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains. Microbiology 146: 1085 1090.
91. Korona, R.,, and B. R. Levin. 1993. Phagemediated selection and the evolution and maintenance of restriction-modification. Evolution 47: 556 575.
92. Krylov, V. 2003. Role of horizontal gene transfer by bacteriophages in the origin of pathogenic bacteria. Genetika 39: 595 620.
93. Kuo, M. Y.,, M. K. Yang,, W. P. Chen,, and T. T. Kuo. 2000. High-frequency interconversion of turbid and clear plaque strains of bacteriophage f1 and associated host cell death. Can. J. Microbiol. 46: 841 847.
94. Kutter, E.,, E. Kellenberger,, K. Carlson,, S. Eddy,, J. Neitzel,, L. Messinger,, J. North,, and B. Guttman,. 1994. Effects of bacterial growth conditions and physiology on T4 infection, p. 406 418. In J. D. Karam (ed.), The Molecular Biology of Bacteriophage T4. ASM Press, Washington, D.C.
95. Lawrence, J. G.,, R. W. Hendrix,, and S. Casjens. 2001. Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9: 535 540.
96. Lazar, S.,, and M. K. Waldor. 1998. ToxR-independent expression of cholera toxin from the replicative form of CTXϕ. Infect.Immun. 66: 394 397.
97. Lehnherr, H., Bacteriophage P1. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
98. Levin, B. R.,, and C.T. Bergstrom. 2000. Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc. Natl. Acad. Sci. USA 97: 6981 6985.
99. Los, M.,, G. Wegrzyn,, and P. Neubauer. 2003. A role for bacteriophage T4 rI gene function in the control of phage development during pseudolysogeny and in slowly growing host cells. Res. Microbiol. 154: 547 552.
100. Makino, S.,, H. Kobori,, H. Asakura,, M. Watarai,, T. Shirahata,, T. Ikeda,, K. Takeshi,, and T. Tsukamoto. 2000. Detection and characterization of Shiga toxin-producing Escherichia coli from seagulls. Epidemiol. Infect. 125: 55 61.
101. Maranger, R.,, and D. E. Bird. 1996. High concentrations of viruses in the sediments of Lac Gilbert, Quebec. Microb. Ecol. 31: 141 151.
102. Martin, A. P. 2002. Phylogenetic approaches for describing and comparing the diversity of microbial communities. Appl. Environ. Microbiol. 68: 3673 3682.
103. Masters, M., 1996. Generalized transduction, p. 2421 2441. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
104. Masui, S.,, S. Kamoda,, T. Sasaki,, and H. Ishikawa. 2000. Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J. Mol. Evol. 51: 491 497.
105. Maurelli, A. T.,, R. E. Fernández,, C. A. Bloch,, C. K. Rode,, and A. Fasano. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp. and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 3943 3948.
106. Merril, C. R.,, D. Scholl,, and S. L. Adhya. 2003. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. 2: 489 497.
107. Messenger, S. L.,, I. J. Molineux,, and J. J. Bull. 1999. Virulence evolution in a virus obeys a trade-off. Proc. R. Soc. Lond. B Biol. Sci. 266: 397 404.
108. Mesyanzhinov, V. V.,, J. Robben,, B. Grymonprez,, V. A. Kostyuchenko,, M. V. Bourkaltseva,, N. N. Sykilinda,, V. N. Krylov,, and G. Volckaert. 2002. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa. J. Mol. Biol. 317: 1 19.
109. Mira, A.,, L. Klasson,, and S. G. E. Andersson. 2002. Microbial genome evolution: sources of variability. Curr. Opin. Microbiol. 5: 506 512.
110. Moebus, K.,, and H. Nattkemper. 1981. Bacteriophage sensitivity patterns among bacteria isolated from marine waters. Helgol. Meeresunters. 34: 375 385.
111. Mosig, G.,, and F. Eiserling,. T4 and related phages: structure and development. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
112. Muniesa, M.,, and J. Jofre. 1998. Presented at the 98th General Meeting of the American Society for Microbiology.
113. Muniesa, M.,, and J. Jofre. 1998. Abundance in sewage of bacteriophages that infect Escherichia coli O157:H7 and that carry the Shiga toxin 2 gene. Appl. Environ. Microbiol. 64: 2443 2448.
114. Muniesa, M.,, and J. Jofre. 2000. Occurrence of phages infecting Escherichia coli O157:H7 carrying the Stx2 gene in sewage from different countries. FEMS Microbiol. Lett. 183: 197 200.
115. Muniesa, M.,, F. Lucena,, and J. Jofre. 1999. Comparative survival of free Shiga toxin 2-encoding phages and Escherichia coli strains outside the gut. Appl. Environ. Microbiol. 65: 5615 5618.
116. Muniesa, M.,, F. Lucena,, and J. Jofre. 1999. Study of the potential relationship between the morphology of infectious somatic coliphages and their persistence in the environment. J. Appl. Microbiol. 87: 402 409.
117. Murphy, F. A.,, C. M. Fauquet,, D. H. L. Bishop,, S. A. Ghabrial,, A. W. Jarvis,, G. P. Martelli,, M. A. Mayo,, and M. D. Summers. 1995. Virus taxonomy. Classification and nomenclature of viruses. Sixth report of the International Committee on Taxonomy of Viruses. Arch. Virol. 10(Suppl.): 51 54.
118. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49: 93 105.
119. Novotny, V.,, Y. Basset,, S. Miller,, G. Weiblen,, B. Bremer,, L. Cizek,, and P. Drozd. 2002. Low host specificity of herbivorous insects in a tropical forest. Nature (London) 416: 841 844.
120. Oakley, T. H.,, and C. W. Cunningham. 2000. Independent contrasts succeed where ancestor reconstruction fails in a known bacteriophage phylogeny. Evolution 54: 397 405.
121. Ochman, H.,, and N. A. Moran. 2001. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292: 1096 1099.
122. Ogunseitan, O. A.,, G. S. Sayler,, and R. V. Miller. 1990. Dynamic interactions of Pseudomonas aeruginosa and bacteriophages in lake water. Microb. Ecol. 19: 171 186.
123. Ohnishi, M.,, K. Kurokawa,, and T. Hayashi. 2001. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9: 481 485.
124. O’Shea, Y. A.,, and E. F. Boyd. 2002. Mobilization of the Vibrio pathogenicity island between Vibrio cholerae isolates mediated by CP-T1 generalized transduction. FEMS Microbiol. Lett. 214: 153 157.
125. Paddison, P.,, S. T. Abedon,, H. K. Dressman,, K. Gailbreath,, J. Tracy,, E. Mosser,, J. Neitzel,, B. Guttman,, and E. Kutter. 1998. Lysis inhibition and fine-structure genetics in bacteriophage T4. Genetics 148: 1539 1550.
126. Pappenheimer, A. M., Jr.,, and J. R. Murphy. 1983. Studies on the molecular epidemiology of diphtheria. Lancet 2: 923 926.
127. Patterson, K.,, J. Porter,, K. Ritchie,, S. Polson,, E. Mueller,, E. Peters,, D. Santavy,, and G. Smith. 2002. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata. Proc. Natl.Acad. Sci.USA 99: 8725 8730.
128. Paul, J. H. 1999. Microbial gene transfer: an ecological perspective. J. Mol. Microbiol. Biotechnol. 1: 45 50.
129. Pavlova, S. I.,, and L. Tao. 2000. Induction of vaginal Lactobacillus phages by the cigarette smoke chemical benzo[a]pyrene diol epoxide. Mutat. Res. 466: 57 62.
130. Pedulla, M. L.,, M. E. Ford,, J. M. Houtz,, T. Karthikeyan,, C. Wadsworth,, J.A. Lewis,, D. Jacobs-Sera,, J. Falbo,, J. Gross,, N. R. Pannunzio,, W. Brucker,, V. Kumar,, J. Kandasamy,, L. Keenan,, S. Bardarov,, J. Kriakov,, J. G. Lawrence,, W. R. Jacobs, Jr.,, R. W. Hendrix,, and G. F. Hatfull. 2003. Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171 182.
131. Pittman, M. 1984. The concept of pertussis as a toxin-mediated disease. Infect. Dis. J. 3: 467 473.
132. Plunkett, G., III,, D. J. Rose,, T. J. Durfee,, and F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181: 1767 1778.
133. Ravin, N. V. N15: the linear plasmid prophage. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
134. Riemann, L.,, and M. Middelboe. 2002. Temporal and spatial stability of bacterial and viral community compositions in Danish coastal waters as depicted by DNA fingerprinting techniques. Aquat. Microb. Ecol. 27: 219 232.
135. Rocke, T.,, N. J. Eulis,, and M. Samuel. 1999. Environmental characteristics associated with the occurrence of avian botulism in wetlands of a northern California range. J. Wildl. Manag. 63: 358 368.
136. Rohwer, F. 2003. Global phage diversity. Cell 113: 141.
137. Rohwer, F.,, and R. Edwards. 2002. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184: 4529 4535.
138. Rokyta, D.,, M. R. Badgett,, I. J. Molineux,, and J. J. Bull. 2002. Experimental genomic evolution: extensive compensation for loss of DNA ligase activity in a virus. Mol. Biol. Evol. 19: 230 238.
139. Russel, M.,, and P. Model,. Filamentous bacteriophages. In R. Calendar (ed.), The Bacteriophages, in press. Oxford University Press, New York, N.Y.
140. Sakoda, A.,, Y. Sakai,, K. Hayakawa,, and M. Suzuki. 1997. Adsorption of viruses in water environment onto solid surfaces. Water Sci.Technol. 35: 107 114.
141. Schmidt, H.,, M. Bielaszewska,, and H. Karch. 1999. Transduction of enteric Escherichia coli isolates with a derivative of Shiga toxin 2-encoding bacteriophage λ3538 isolated from E. coli O157:H7. Appl. Environ. Microbiol. 65: 3855 3861.
142. Shannon, C. E.,, and W. Weaver. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, Ill.
143. Short, S. M.,, and C.A. Suttle. 1999. Use of the polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities. Hydrobiologia 401: 19 32.
144. Short, S. M.,, and C.A. Suttle. 2002. Sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl. Environ. Microbiol. 68: 1290 1296.
145. Sinton, L. W.,, R. K. Finlay,, and P. A. Lynch. 1999. Sunlight inactivation of fecal bacteriophages and bacteria in sewage-polluted seawater. Appl. Environ. Microbiol. 65: 3605 3613.
146. Smarda, J.,, D. Smajs,, and H. Lhotova. 2002. Three recently acknowledged Escherichia species strikingly differ in the incidence of bacteriocinogenic and lysogenic strains. J. Basic Microbiol. 42: 429 433.
147. Smith, J. 2001. The social evolution of bacterial pathogenesis. Proc.R. Soc. Lond. B Biol. Sci. 268: 61 69.
148. Sobieszczanska, B.,, and R. Gryko. 2001. Ability of acceptance of bacteriophages during verotoxin production by bacilli of the Enterobacteriaceae family. Med. Dosw. Mikrobiol. 53: 269 276.
149. Staley, J. T.,, and A.-L. Reysenbach. 2002. Biodiversity of Microbial Life: Foundation of Earth’s Biosphere. Wiley, New York, N.Y.
150. Stent, G. 1963. Molecular Biology of Bacterial Viruses. W. H. Freeman and Co., San Francisco, Calif.
151. Stewart, F. M.,, and B. R. Levin. 1984. The population biology of bacterial viruses: why be temperate. Theor. Pop. Biol. 26: 93 117.
152. Steward, G.,, J. Montiel,, and F. Azam. 2000. Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments. Limnol. Oceanogr. 45: 1697 1706.
153. Tanji, Y.,, K. Mizoguchi,, T. Akitsu,, M. Morita,, K. Hori,, and H. Unno. 2002. Fate of coliphage in waste water treatment process and detection of phages carrying the Shiga toxin type 2 gene. Water Sci.Technol. 46: 285 289.
154. Tapper, M. A.,, and R. E. Hicks. 1998. Temperate viruses and lysogeny in Lake Superior bacterioplankton. Limnol. Oceanogr. 43: 95 103.
155. Thingstad, T. F.,, M. Heldal,, G. Bratbak,, and I. Dundas. 1993. Are viruses important partners in pelagic food webs? Trends Ecol. Evol. 8: 209 213.
156. Thingstad, T. F.,, and R. Lignell. 1997. Theoretical models for control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13: 19 27.
157. Tóth, I.,, H. Schmidt,, M. Dow,, A. Malik,, E. Oswald,, and B. Nagy. 2003. Transduction of porcine enteropathogenic Escherichia coli with a derivative of a Shiga toxin 2-encoding bacteriophage in a porcine ligated ileal loop system. Appl. Environ. Microbiol. 69: 7242 7247.
158. Tree, J. A.,, M. R. Adams,, and D. N. Lees. 2003. Chlorination of indicator bacteria and viruses in primary sewage effluent. Appl. Environ. Microbiol. 69: 2038 2043.
159. Turner, P. E.,, and L. Chao. 1999. Prisoner’s dilemma in an RNA virus. Nature (London) 398: 441 443.
160. Turner, P. E.,, and L. Chao. 2003. Escape from Prisoner’s dilemma in RNA phage phi6. Am.Nat. 161: 497 505.
161. Tyson, G. W.,, J. Chapman,, P. Hugenholtz,, E. E. Allen,, R. J. Ram,, P. M. Richardson,, V. V. Solovyev,, E. M. Rubin,, D. S. Rokhsar,, and J. F. Banfield. 2004. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature (London) 428: 37 43.
162. Venter, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelsen,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, Y. -H. Rogers,, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66 74.
163. Wagner, P. L.,, and M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70: 3985 3993.
164. Wahl, L. M.,, and D. C. Krakauer. 2000. Models of experimental evolution: the role of genetic chance and selective necessity. Genetics 156: 1437 1448.
165. Wais, A. C.,, and E. B. Goldberg. 1973. An extended growth cycle in T4-infected Aerobacter aerogenes. Virology 55: 397 399.
166. Waldor, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 1914.
167. Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127 181.
168. Weinbauer, M. G.,, and C. A. Suttle. 1999. Lysogeny and prophage induction in coastal and offshore bacterial communities. Aquat. Microb. Ecol. 18: 217 225.
169. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578 6583.
170. Wichels, A.,, S. S. Biel,, H. R. Gelderblom,, T. Brinkhoff,, G. Muyzer,, and C. Schutt. 1998. Bacteriophage diversity in the North Sea. Appl. Environ. Microbiol. 64: 4128 4133.
171. Wichman, H. A.,, M. R. Badgett,, L. A. Scott,, C. M. Boulianne,, and J. J. Bull. 1999. Different trajectories of parallel evolution during viral adaptation. Science 285: 422 424.
172. Wichman, H. A.,, L. A. Scott,, C. D. Yarber,, and J. J. Bull. 2000. Experimental evolution recapitulates natural evolution. Philos.Trans. R. Soc. Lond. B Biol. Sci. 355: 1677 1684.
173. Wilhelm, S. W.,, and C. A. Suttle. 1999. Viruses and nutrient cycles in the sea. BioScience 49: 781 788.
174. Williams, S. T.,, A. M. Mortimer,, and L. Manchester,. 1987. Ecology of soil bacteriophages, p. 157 179. In S. M. Goyal,, C. P. Gerba,, and G. Bitton (ed.), Phage Ecology. John Wiley & Sons, New York, N.Y.
175. Wilson, W. H.,, N. G. Carr,, and N. H. Mann. 1996. The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803. J. Phycol. 32: 506 516.
176. Wommack, K. E.,, and R. R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64: 69 114.
177. Wommack, K. E.,, J. Ravel,, R. T. Hill,, and R. R. Colwell. 1999. Population dynamics of Chesapeake Bay virioplankton: total-community analysis by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 65: 231 240.
178. Yamamoto, T.,, S. Kohio,, I. Taneike,, S. Nakagawa,, N. Iwakura,, and N. Wakisaka-Saito. 2003. 60Co irradiation of Shiga toxin (Stx)-producing Escherichia coli induces Stx phage. FEMS Microbiol. Lett. 222: 115 121.
179. Zuercher, A. W.,, S. M. Miescher,, M. Vogel,, M. P. Rudolf,, M. B. Stadler,, and B. M. Stadler. 2000. Oral anti-IgE immunization with epitope-displaying phage. Eur. J. Immunol. 30: 128 135.

Tables

Generic image for table
TABLE 1a

Melding concepts of ecology with those of phage ecology and bacterial pathology

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5
Generic image for table
TABLE 1b

Melding concepts of ecology with those of phage ecology and bacterial pathology

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5
Generic image for table
TABLE 2

Recent phage-based experimental evolutionary biology literature

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5
Generic image for table
TABLE 3

Environmental ecology literature on VF-encoding phages

Citation: Breitbart M, Rohwer F, Abedon S. 2005. Phage Ecology and Bacterial Pathogenesis, p 66-91. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error