1887

Chapter 7 : Lambdoid Phages and Shiga Toxin

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Lambdoid Phages and Shiga Toxin, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap07-2.gif

Abstract:

This chapter summarizes what is known about -encoding phages, it is not all-inclusive. Researchers begin with a brief discussion of Shiga toxin-producing (STEC), present general information on lambdoid phages, and finally segue into a discussion of the main subject, -encoding phages. Shiga toxins are members of a family of bacterial toxins known as AB toxins, which are composed of one A subunit associated with five B subunits. In vitro studies suggest that, once it is in the lumen, Stx prevents the apoptosis of polymorphonuclear leukocytes (PMNs) and induces superoxide production by these cells, which can lead to increased endothelial damage. The excised phage genome enters the lytic cycle and is ready to be transcribed and replicated, leading to the packaging of progeny DNA into phage particles that are ultimately released by phage-directed lysis of the bacterial host. The induced fraction can be greatly increased if lysogens are treated with DNA-damaging agents that activate the expression of the SOS system. Specifically, the bacterial RecA protein activated by bound single-stranded DNA binds and facilitates autocleavage of the phage repressor, causing prophage induction. Clinically, the antibiotic treatment of STEC infections has been correlated with a significantly higher incidence of secondary sequelae such as HUS. The authors focus their discussion on the -encoding phages that have been best characterized biologically: H-19B and 933W.

Citation: Tyler J, Livny J, Freidman D. 2005. Lambdoid Phages and Shiga Toxin, p 131-164. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch7

Key Concept Ranking

Type III Secretion System
0.41005245
Restriction Fragment Length Polymorphism
0.4069223
0.41005245
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Composite genetic map of lambdoid phages showing the regulatory region and associated genes, including (see the text for details; not drawn to scale). ORFs identified by sequence analyses are shown as block arrows. Genes identified in only some Stx-encoding phages, including and the tRNA genes, are shown as block arrows with a dotted line border. Arrows are oriented in the direction of transcription of the indicated gene, based primarily on transcription studies with λ and with other phages where appropriate. Promoters are represented as line arrows, and transcription terminators are represented as lollipop structures. Transcription patterns during lysogeny (A) and during prophage induction leading to lytic growth and following the action of the N and Q antitermination proteins (B) are shown by lines below the genome maps. The mRNA NUT sequences are included as gray squares. The curved arrow spanning the I region indicates the interaction between repressor proteins bound at and that further stabilizes repression. Transcription initiating at , which has been observed for phages encoding Stx1 under both prophage-repressing and -inducing conditions, is indicated as a dotted line. For simplicity, the genes encoding the recombination proteins Exo, Bet, and Gam are included in the drawing as a single ORF designated “*.” In addition to repressing I transcription, Cro binding at and later during lytic growth turns down transcription from and ( ).

Citation: Tyler J, Livny J, Freidman D. 2005. Lambdoid Phages and Shiga Toxin, p 131-164. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(Left) Comparison of the operator regions of λ, H-19B, and 933W depicting relative positions and spacing of the repressor binding repeats (not drawn to scale). (Right) Consensus sequences of operator repeats for each of the phages.

Citation: Tyler J, Livny J, Freidman D. 2005. Lambdoid Phages and Shiga Toxin, p 131-164. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

SIVET action. (A) Altered prophage carrying . (B) The induced prophage expresses TnpR. (C) Insert of cassette at a distal site on the bacterial chromosome. A single nucleotide change in each site (resulting in ) was required to allow expression of a functional gene product from the reconstituted gene. (D) Action of TnpR removes the cassette from within the gene, leaving a functional gene. The DNA circle with the gene does not replicate and is lost by segregation. (E) Action of TnpR makes a scoreable and heritable change, converting the bacterium from Tet Cam to Cam Tet.

Citation: Tyler J, Livny J, Freidman D. 2005. Lambdoid Phages and Shiga Toxin, p 131-164. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap7
1. Acheson, D.W.,, and A. Donohue-Rolfe. 1989. Cancer-associated hemolytic uremic syndrome: a possible role of mitomycin in relation to Shigalike toxins. J. Clin. Oncol. 7:1943.
2. Acheson, D.W.,, R. Moore,, S. De Breucker,, L. Lincicome,, M. Jacewicz,, E. Skutelsky,, and G. T. Keusch. 1996.Translocation of Shiga toxin across polarized intestinal cells in tissue culture. Infect. Immun. 64:32943300.
3. Acheson, D. W.,, J. Reidl,, X. Zhang,, G. T. Keusch,, J. J. Mekalanos,, and M. K. Waldor. 1998. In vivo transduction with Shiga toxin 1-encoding phage. Infect. Immun. 66:44964498.
4. Acheson, W. K.,, A. Donohue-Rolfe,, and G.T. Keusch,. 1991. The family of Shiga and Shiga-like toxins, p. 415433. In J. E. Alouf, and J. H. Freer (ed.), Sourcebook of Bacterial Protein Toxins. Academic Press, London, United Kingdom.
5. Ammon, A. 1997. Surveillance of enterohaemorrhagic E. coli (EHEC) infections and haemolytic uraemic syndrome (HUS) in Europe. Euro. Surveill. 2:9196.
6. Barksdale, L.,, and S. B. Arden. 1974. Persisting bacteriophage infections, lysogeny, and phage conversion. Annu. Rev. Microbiol. 28:265297.
7. Barondess, J. J.,, and J. Beckwith. 1990.A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346:871874.
8. Barondess, J. J.,, and J. Beckwith. 1995. bor gene of phage lambda, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J. Bacteriol. 177:12471253.
9. Beutin, L.,, E. Strauch,, and I. Fischer. 1999. Isolation of Shigella sonnei lysogenic for a bacteriophage encoding gene for production of Shiga toxin. Lancet 353:1498.
10. Beutin, L.,, U. H. Stroeher,, and P. A. Manning. 1993. Isolation of enterohemolysin (Ehly2)-associated sequences encoded on temperate phages of Escherichia coli. Gene 132:9599.
11. Boerlin, P.,, S.A. McEwen,, F. Boerlin-Petzold,, J. B. Wilson,, R. P. Johnson,, and C. L. Gyles. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 37:497503.
12. Brachet, P.,, H. Eisen,, and A. Rambach. 1970. Mutations of coliphage lambda affecting the expression of replicative functions O and P. Mol. Gen. Genet. 108:266276.
13. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2001. Induction of lysogenic bacteriophage and phage-associated toxin from group A Streptococci during coculture with human pharyngeal cells. Infect. Immun. 69:14401443.
14. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2002.The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phageencoded extracellular DNase. Infect. Immun. 70:28052811.
15. Brunder, W.,, H. Schmidt,, and H. Karch. 1996. KatP, a novel catalase-peroxidase encoded by the large plasmid of enterohaemorrhagic Escherichia coli O157:H7. Microbiology 142:33053315.
16. Brunder, W.,, H. Schmidt,, and H. Karch. 1997. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24:767778.
17. Burland, V.,, Y. Shao,, N.T. Perna,, G. Plunkett,, H. J. Sofia,, and F. R. Blattner. 1998.The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26:41964204.
18. Butler, T.,, M. R. Islam,, M.A. Azad,, and P. K. Jones. 1987. Risk factors for development of hemolytic uremic syndrome during shigellosis. J. Pediatr. 110:894897.
19. Calderone, T. L.,, R.D. Stevens,, and T.G. Oas. 1996. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J. Mol. Biol. 262:407412.
20. Calderwood, S. B.,, F. Auclair,, A. Donohue-Rolfe,, G.T. Keusch,, and J. J. Mekalanos. 1987. Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc. Natl.Acad. Sci.USA 84:43644368.
21. Calderwood, S. B.,, and J. J. Mekalanos. 1987. Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. J. Bacteriol. 169:47594764.
22. Camilli, A.,, and J. J. Mekalanos. 1995. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18: 671683.
23. Campbell, A., 1988. Phage evolution and speciation, p. 114. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, N.Y.
24. Campbell, A. 1994. Comparative molecular biology of lambdoid phages. Annu. Rev. Microbiol. 48:193222.
25. Campbell, A.,, and D. Botstein,. 1983. Evolution of lambdoid phages, p. 365380. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
26. Campbell, A. M. 1962. Episomes. Adv. Genet. 11:101145.
27. Campbell, A. M., 1996. Cryptic prophages, p. 20412045. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
28. Campellone, K. G.,, D. Robbins,, and J. M. Leong. 2004. EspF(U) is a translocated EHEC effector that interacts with Tir and N-WASP and promotes Nck-independent actin assembly. Dev. Cell 7:217228.
29. Carter, A. O.,, A. A. Borczyk,, J. A. Carlson,, B. Harvey,, J. C. Hockin,, M. A. Karmali,, C. Krishnan,, D.A. Korn,, and H. Lior. 1987.A severe outbreak of Escherichia coli O157:H7-associated hemorrhagic colitis in a nursing home. N. Engl. J. Med. 317:14961500.
30. Cheng, S.C.,, D. L. Court,, and D. I. Friedman. 1995.Transcription termination signals in the nin region of bacteriophage lambda: identification of Rho-dependent termination regions. Genetics 140: 875887.
31. Cheng, S.C.,, E.C. Lynch,, K. R. Leason,, D. L. Court,, B. A. Shapiro,, and D. I. Friedman. 1991. Functional importance of sequence in the stem-loop of a transcription terminator. Science 254:12051207.
32. Clarke, S. C. 2001. Diarrhoeagenic Escherichia coli—an emerging problem? Diagn. Microbiol. Infect. Dis. 41:9398.
33. Clifford, D. P.,, and J. E. Repine. 1982. Hydrogen peroxide mediated killing of bacteria. Mol. Cell. Biochem. 49:143149.
34. Corrigan, J. J., Jr., and F.G. Boineau. 2001.Hemolyticuremic syndrome. Pediatr. Rev. 22:365369.
35. Court, D.,, C. Brady,, M. Rosenberg,, D. L. Wulff,, M. Behr,, M. Mahoney,, and S.U. Izumi. 1980. Control of transcription termination: a rhodependent termination site in bacteriophage lambda. J. Mol. Biol. 138:231254.
36. Court, D.,, and A. Oppenheim,. 1983. Phage lambda’s accessory genes, p. 251277. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
37. Cowden, J. M.,, S. Ahmed,, M. Donaghy,, and A. Riley. 2001. Epidemiological investigation of the central Scotland outbreak of Escherichia coli O157 infection, November to December 1996. Epidemiol. Infect. 126:335341.
38. Das, A. 1992. How the phage lambda N gene product suppresses transcription termination:communication of RNA polymerase with regulatory proteins mediated by signals in nascent RNA. J. Bacteriol. 174:67116716.
39. Datz, M.,, C. Janetzki-Mittmann,, S. Franke,, F. Gunzer,, H. Schmidt,, and H. Karch. 1996. Analysis of the enterohemorrhagic Escherichia coli O157 DNA region containing lambdoid phage gene P and Shiga-like toxin structural genes. Appl. Environ. Microbiol. 62:791797.
40. de Boer, H. A.,, and R. A. Kastelein,. 1986. Biased codon usage: an exploration of its role in optimization of translation, p. 225285. In W. S. Reznikoff, and L. Gold (ed.), Maximizing Gene Expression. Butterworth, Boston, Mass.
41. de Grandis, S.,, J. Ginsberg,, M. Toone,, S. Climie,, J. Friesen,, and J. Brunton. 1987. Nucleotide sequence and promoter mapping of the Escherichia coli Shiga-like toxin operon of bacteriophage H-19B. J. Bacteriol. 169:43134319.
41a. De Greve, H.,, C. Qizhi,, F. Deboeck,, and J. P. Hernalsteens. 2002. The Shiga-toxin VT2-encoding bacteriophage varphi297 integrates at a distinct position in the Escherichia coli genome. Biochim. Biophys.Acta 1579:196202.
42. Del Tito, B. J., Jr.,, J. M. Ward,, J. Hodgson,, C. J. Gershater,, H. Edwards,, L. A. Wysocki,, F. A. Watson,, G. Sathe,, and J. F. Kane. 1995. Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J. Bacteriol. 177:70867091.
43. DeVinney, I.,, I. Steele-Mortimer,, and B. B. Finlay. 2000. Phosphatases and kinases delivered to the host cell by bacterial pathogens.Trends Microbiol. 8:2933.
44. DeVinney, R.,, M. Stein,, D. Reinscheid,, A. Abe,, S. Ruschkowski,, and B. B. Finlay. 1999. Enterohemorrhagic Escherichia coli O157:H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67:23892398.
45. Dodd, I. B.,, A. J. Perkins,, D. Tsemitsidis,, and J. B. Egan. 2001. Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny. Genes Dev. 15:30133022.
46. Echols, H.,, L. Green,, A. B. Oppenheim,, A. Oppenheim,, and A. Honigman. 1973. Role of the cro gene in bacteriophage lambda development. J. Mol. Biol. 80:203216.
47. Elliott, S. P.,, M. Yu,, H. Xu,, and D. B. Haslam. 2003. Forssman synthetase expression results in diminished Shiga toxin susceptibility: a role for glycolipids in determining host-microbe interactions. Infect. Immun. 71:65436552.
48. Escolar, L.,, J. Perez-Martin,, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181:62236229.
49. Fattah, K.R.,, S. Mizutani,, F. J. Fattah,, A. Matsushiro, andY. Sugino. 2000.A comparative study of the immunity region of lambdoid phages including Shiga-toxin-converting phages:molecular basis for cross immunity. Genes Genet. Syst. 75:223232.
50. Figueroa-Bossi, N.,, and L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33:167176.
51. Flashman, S. M. 1978. Mutational analysis of the operators of bacteriophage lambda. Mol. Gen. Genet. 166:6173.
52. Frankel, G.,, A. D. Phillips,, I. Rosenshine,, G. Dougan,, J.B. Kaper,, and S. Knutton. 1998.Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30:911921.
53. Friedman, D. I., 1988. Regulation of phage gene expression by termination and antitermination of transcription, p. 263319. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, N.Y.
54. Friedman, D. I.,, and D. L. Court. 1995.Transcription antitermination: the lambda paradigm updated. Mol. Microbiol. 18:191200.
55. Friedman, D. I.,, and D. L. Court. 2001. Bacteriophage lambda: alive and well and still doing its thing. Curr. Opin. Microbiol. 4:201207.
56. Friedman, D. I.,, and M. Gottesman,. 1983. Lytic mode of lambda development, p. 2151. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
57. Friedman, D. I.,, E. R. Olson,, C. Georgopoulos,, K. Tilly,, I. Herskowitz,, and F. Banuett. 1984. Interactions of bacteriophage and host macromolecules in the growth of bacteriophage lambda. Microbiol. Rev. 48:299325.
58. Friedrich, A. W.,, M. Bielaszewska,, W. L. Zhang,, M. Pulz,, T. Kuczius,, A. Ammon,, and H. Karch.. 2002. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J. Infect. Dis. 185:7484.
59. Fuchs, S.,, I. Muhldorfer,, A. Donohue-Rolfe,, M. Kerenyi,, L. Emody,, R. Alexiev,, P. Nenkov,, and J. Hacker. 1999. Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. Microb. Pathog. 27:1323.
60. Furth, M. E.,, and S. H. Wickner,. 1983. Lambda DNA replication, p. 145173. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
61. Galas, D. J.,, and M. Chandler,. 1989. Bacterial insertion sequences, p. 109162. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. ASM Press, Washington, D.C.
62. Gannon, V. P.,, C. Teerling,, S. A. Masri,, and C. L. Gyles. 1990. Molecular cloning and nucleotide sequence of another variant of the Escherichia coli Shiga-like toxin II family. J. Gen. Microbiol. 136:11251135.
63. Gottesman, M. 1999. Bacteriophage lambda: the untold story. J. Mol. Biol. 293:177180.
64. Grindley, N.D. 1983.Transposition of Tn3 and related transposons. Cell 32:35.
65. Gruenheid, S.,, I. Sekirov,, N. A. Thomas,, W. Deng,, P. O’Donnell,, D. Goode,, Y. Li,, E. A. Frey,, N. F. Brown,, P. Metalnikov,, T. Pawson,, K. Ashman,, and B. B. Finlay. 2004. Identification and characterization of NleA, a non-LEE encoded type III translocated virulence factor of enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 51:12331249.
66. Gussin, G.N.,, A.D. Johnson,, C.O. Pabo,, and R. T. Sauer,. 1983. Repressor and Cro protein: structure, function, and role in lysogenization, p. 93121. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
67. Hayashi, T.,, K. Makino,, M. Ohnishi,, K. Kurokawa,, K. Ishii,, K. Yokoyama,, C. G. Han,, E. Ohtsubo,, K. Nakayama,, T. Murata,, M. Tanaka,, T. Tobe,, T. Iida,, H. Takami,, T. Honda,, C. Sasakawa,, N. Ogasawara,, T. Yasunaga,, S. Kuhara,, T. Shiba,, M. Hattori,, and H. Shinagawa. 2001. Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain, K-12. DNA Res. 8:1122.
68. Head, S. C.,, S. Richardson,, M. Roscoe,, and M.A. Karmali. 1988. Purification and characterization of verocytotxin 2. FEMS Microbiol. Lett. 51:211215.
69. Hendrix, R.W. 2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61:471480.
70. Hendrix, R.W.,, J.W. Roberts,, F.W. Stahl,, and R. A. Weisberg. 1983. Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
71. Heyderman, R. S.,, M. Soriani,, and T. R. Hirst. 2001. Is immune cell activation the missing link in the pathogenesis of post-diarrhoeal HUS? Trends Microbiol. 9:262266.
72. Ho, Y. S.,, and M. Rosenberg,. 1988. Structure and function of the transcription activator protein cII and its regulatory signal, p. 725756. In R. Calendar (ed.), The Bacteriophages. Plenum Press, New York, N.Y.
73. Hoopes, B.C.,, and W. R. McClure. 1985.A cIIdependent promoter is located within the Q gene of bacteriophage lambda. Proc. Natl.Acad. Sci.USA 82:31343138.
74. Hopkins, N.,, and M. Ptashne,. 1971. Genetics of virulence, p. 571574. In A. D. Hershey (ed.), The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
75. Huang, A.,, S. de Grandis,, J. Friesen,, M. Karmali,, M. Petric,, R. Congi,, and J. L. Brunton. 1986. Cloning and expression of the genes specifying Shiga-like toxin production in Escherichia coli H19. J. Bacteriol. 166:375379.
76. Huang, A.,, J. Friesen,, and J. L. Brunton. 1987. Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin I in Escherichia coli. J. Bacteriol. 169:43084312.
77. Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 146:121.
78. Imlay, J.A.,, and S. Linn. 1987. Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J. Bacteriol. 169:29672976.
79. Ito, H.,, A. Terai,, H. Kurazono,, Y. Takeda,, and M. Nishibuchi. 1990. Cloning and nucleotide sequencing of Vero toxin 2 variant genes from Escherichia coli O91:H21 isolated from a patient with the hemolytic uremic syndrome. Microb. Pathog. 8:4760. (Erratum, 8:449.)
80. Iyoda, S.,, K. Tamura,, K. Itoh,, H. Izumiya,, N. Ueno,, K. Nagata,, M. Togo,, J. Terajima,, and H. Watanabe. 2000. Inducible stx2 phages are lysogenized in the enteroaggregative and other phenotypic Escherichia coli O86:HNM isolated from patients. FEMS Microbiol. Lett. 191:710.
81. Jacewicz, M.,, H. Clausen,, E. Nudelman,, A. Donohue-Rolfe,, and G. T. Keusch. 1986. Pathogenesis of Shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriaosylceramide. J.Exp.Med. 163:13911404.
82. Jackson, M. P.,, J.W. Newland,, R. K. Holmes,, and A. D. O’Brien. 1987. Nucleotide sequence analysis of the structural genes for Shiga-like toxin I encoded by bacteriophage 933J from Escherichia coli. Microb. Pathog. 2:147153.
83. Jacob, F.,, and E. L. Wollman. 1954. Etude génétique d’um bactériophage tempéré d’Escherichia coli. I. L’système génétique du bactériophage λ. Ann. Inst. Pasteur 85:653673.
84. James, C. E.,, K. N. Stanley,, H. E. Allison,, H. J. Flint,, C. S. Stewart,, R. J. Sharp,, J. R. Saunders,, and A. J. McCarthy. 2001. Lytic and lysogenic infection of diverse Escherichia coli and Shigella strains with a verocytotoxigenic bacteriophage. Appl. Environ. Microbiol. 67:43354337.
85. Jarvis, K.G.,, and J. B. Kaper. 1996. Secretion of extracellular proteins by enterohemorrhagic Escherichia coli via a putative type III secretion system. Infect. Immun. 64:48264829.
86. Jerse, A. E.,, J. Yu,, B. D. Tall,, and J. B. Kaper. 1990. A genetic locus of enteropathogenic Escherichia coli necessary for the production of attaching and effacing lesions on tissue culture cells. Proc. Natl.Acad Sci. USA 87:78397843.
87. Johannes, L.,, and B. Goud. 1998. Surfing on a retrograde wave:how does Shiga toxin reach the endoplasmic reticulum? Trends Cell Biol. 8:158162.
88. Johansen, B. K.,, Y. Wasteson,, P. E. Granum,, and S. Brynestad. 2001. Mosaic structure of Shiga-toxin-2-encoding phages isolated from Escherichia coli O157:H7 indicates frequent gene exchange between lambdoid phage genomes. Microbiology 147:19291936.
89. Johnson, R. P.,, R.C. Clarke,, J. B. Wilson,, S.C. Read,, K. Rhan,, S. Renwick,, J. R. Saunders,, D. Alves,, M.A. Karmali,, H. Lior,, S.A. McEwen,, J. S. Spika,, and C. L. Gyles. 1996.Growing concerns and recent outbreaks involving non-O157:H7 serotypes of verotoxinic Escherichia coli. J. Food Prot. 59:11121122.
90. Kaper, J. B.,, and A.D. O’Brien. 1998. Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains. American Society for Microbiology, Washington, D.C.
91. Kaplan, B. S.,, K. E. Meyers,, and S. L. Schulman. 1998.The pathogenesis and treatment of hemolytic uremic syndrome. J. Am. Soc. Nephrol. 9:11261133.
92. Karch, H.,, M. Bielaszewska,, M. Bitzan,, and H. Schmidt. 1999. Epidemiology and diagnosis of Shiga toxin-producing Escherichia coli infections. Diagn. Microbiol. Infect. Dis. 34:229243.
93. Karch, H.,, H. Schmidt,, C. Janetzki-Mittmann,, J. Scheef,, and M. Kroger. 1999. Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol. Gen. Genet. 262:600607.
94. Karmali, M. A. 1989. Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2:1538.
95. Kelly, J.,, A. Oryshak,, M. Wenetsek,, J. Grabiec,, and S. Handy. 1990.The colonic pathology of Escherichia coli O157:H7 infection. Am. J. Surg. Pathol. 14:8792.
96. Kenny, B.,, R. DeVinney,, M. Stein,, D. J. Reinscheid,, E.A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511520.
97. Kimmitt, P.T.,, C. R. Harwood,, and M. R. Barer. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6:458465.
98. King, A. J.,, S. Sundaram,, M. Cendoroglo,, D.W. Acheson,, and G.T. Keusch. 1999. Shiga toxin induces superoxide production in polymorphonuclear cells with subsequent impairment of phagocytosis and responsiveness to phorbol esters. J. Infect. Dis. 179:503587.
99. Kobayashi, H.,, J. Shimada,, M. Nakazawa,, T. Morozumi,, T. Pohjanvirta,, S. Pelkonen,, and K. Yamamoto. 2001. Prevalence and characteristics of Shiga toxin-producing Escherichia coli from healthy cattle in Japan. Appl. Environ. Microbiol. 67:484489.
100. Koch, C.,, S. Hertwig,, R. Lurz,, B. Appel,, and L. Beutin. 2001. Isolation of a lysogenic bacteriophage carrying the stx1OX3 gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. J. Clin. Microbiol. 39:39923998.
101. Kohler, B.,, H. Karch,, and H. Schmidt. 2000. Antibacterials that are used as growth promoters in animal husbandry can affect the release of Shiga-toxin-2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains. Microbiology 146:10851090.
102. Kokai-Kun, J. F.,, A. R. Melton-Celsa,, and A. D. O’Brien. 2000. Elastase in intestinal mucus enhances the cytotoxicity of Shiga toxin type 2d. J. Biol. Chem. 275:37133721.
103. Koudelka, A. P.,, L. A. Hufnagel,, and G. B. Koudelka. 2004.Purification and characterization of the repressor of the Shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage. J. Bacteriol. 186:76597669.
104. Kozlov, Y.V.,, A.A. Kabishev,, E.V. Lukyanov,, and A.A. Bayev. 1988.The primary structure of the operons coding for Shigella dysenteriae toxin and temperature phage H30 Shiga-like toxin. Gene 67:213221.
105. Landy, A. 1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem. 58:913949.
106. Lesesne, J. B.,, N. Rothschild,, B. Erickson,, S. Korec,, R. Sisk,, J. Keller,, M. Arbus,, P.V. Woolley,, L. Chiazze,, P. S. Schein, et al. 1989. Cancer-associated hemolytic-uremic syndrome: analysis of 85 cases from a national registry. J. Clin. Oncol. 7:781789.
107. Lindgren, S.W.,, J. E. Samuel,, C. K. Schmitt,, and A.D. O’Brien. 1994.The specific activities of Shiga-like toxin type II (SLT-II) and SLT-IIrelated toxins of enterohemorrhagic Escherichia coli differ when measured by Vero cell cytotoxicity but not by mouse lethality. Infect. Immun. 62:623631.
108. Lingwood, C.A. 1996.Role of verotoxin receptors in pathogenesis.Trends Microbiol. 4:147153.
109. Livny, J. 2003. Characterizing the role of the lambdoid prophage H-19B in the production and release of Shiga toxin. Ph.D. thesis. University of Michigan, Ann Arbor.
110. Livny, J.,, and D. I. Friedman. 2004. Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol. Microbiol. 51:16911704.
111. Low, D. A.,, N. J. Weyand,, and M. J. Mahan. 2001. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69:71977204.
112. Lwoff, A. 1953.Lysogeny. Bacteriol. Rev. 17:269337.
113. Lwoff, A., 1966. The prophage and I, p. 8899. In J. Cairns,, G. S. Stent,, and J. D. Watson (ed.), Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory of Molecular Biology, Cold Spring Harbor, N.Y.
114. Makino, K.,, K. Yokoyama,, Y. Kubota,, C. H. Yutsudo,, S. Kimura,, K. Kurokawa,, K. Ishii,, M. Hattori,, I. Tatsuno,, H. Abe,, T. Iida,, K. Yamamoto,, M. Onishi,, T. Hayashi,, T. Yasunaga,, T. Honda,, C. Sasakawa,, and H. Shinagawa. 1999. Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic Escherichia coli O157:H7 derived from the Sakai outbreak. Genes Genet. Syst. 74:227239.
115. Marches, O.,, T. N. Ledger,, M. Boury,, M. Ohara,, X. Tu,, F. Goffaux,, J. Mainil,, I. Rosenshine,, M. Sugai,, J. De Rycke,, and E. Oswald. 2003. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol. Microbiol. 50:15531567.
116. Matsushiro, A. 1963. Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage phi-80. Virology 19:475482.
117. Matsushiro, A.,, K. Sato,, H. Miyamoto,, T. Yamamura,, and T. Honda. 1999. Induction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacin. J. Bacteriol. 181:22572260.
118. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnenberg,, and J. B. Kaper. 1995.A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92:16641668.
119. McDaniel, T. K.,,and J.B. Kaper. 1997.A cloned pathogenicity island from enterpathogenic Escherichia coli confers the attaching and effacing phenotype on E.coli K12.Mol.Microbiol.23:399407.
120. McDonough, M. A.,, and J. R. Butterton. 1999. Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1. Mol. Microbiol. 34:10581069.
121. McQuigge, M. 2002. The Walkerton disaster and family physicians. Can. Fam. Physician 48:15961597, 16051607.
122. Melton-Celsa, A. R.,, S.C. Darnell,, and A.D. O’Brien. 1996.Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91:H21 isolates in orally infected, streptomycin-treated mice. Infect.Immun. 64:15691576.
123. Melton-Celsa, A. R.,,and A.D. O’Brien,. 1998. Structure, biology, and relative toxicity of Shiga toxin family members, p. 121128. In J. B. Kaper, and A. D. O’Brien (ed.), Escherichia coli O157:H7 and Other ShigaToxin-Producing E.coli Strains. American Society for Microbiology, Washington, D.C.
124. Miller, C.,, L. E. Thomsen,, C. Gaggero,, R. Mosseri,, H. Ingmer,, and S.N. Cohen. 2004. SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305:16291631.
125. Mitchell, T. J.,, J. E. Alexander,, P. J. Morgan,, and P.W. Andrew. 1997. Molecular analysis of virulence factors of Streptococcus pneumoniae. Soc. Appl. Bacteriol. Symp. Ser. 26:62S71S.
126. Miyamoto, H.,, W. Nakai,, N. Yajima,, A. Fujibayashi,, T. Higuchi,, K. Sato,, and A. Matsushiro. 1999. Sequence analysis of Stx2-converting phage VT2-Sa shows a great divergence in early regulation and replication regions. DNA Res. 6:235240.
127. Mizutani, S.,, N. Nakazono,, and Y. Sugino. 1999.The so-called chromosomal verotoxin genes are actually carried by defective prophages.DNA Res. 6:141143.
128. Morabito, S.,, H. Karch,, P. Mariani-Kurkdjian,, H. Schmidt,, F. Minelli,, E. Bingen,, and A. Caprioli. 1998. Enteroaggregative, Shiga toxin-producing Escherichia coli O111:H2 associated with an outbreak of hemolytic-uremic syndrome. J. Clin. Microbiol. 36:840842.
129. Morandi, E.,, C. Grassi,, P. Cellerino,, P. P. Massara,, F. Corsi,, and E. Trabucchi. 2003. Verocytotoxin-producing Escherichia coli EH O157:H7 colitis. J. Clin. Gastroenterol. 36:4446.
130. Mosig, G., 1994. Synthesis and maturation of T4-encoded tRNAs, p. 182185. In J. D. Karam (ed.), Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington, D.C.
131. Mühldorfer, I.,, J. Hacker,, G.T. Keusch,, D.W. Acheson,, H. Tschape,, A.V. Kane,, A. Ritter,, T. Olschlager,, and A. Donohue-Rolfe. 1996. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect. Immun. 64:495502.
132. Mundy, R.,, L. Petrovska,, K. Smollett,, N. Simpson,, R. K. Wilson,, J. Yu,, X. Tu,, I. Rosenshine,, S. Clare,, G. Dougan,, and G. Frankel. 2004. Identification of a novel Citrobacter rodentium type III secreted protein, EspI, and roles of this and other secreted proteins in infection. Infect.Immun. 72:22883202.
133. Muniesa, M.,, M. de Simon,, G. Prats,, D. Ferrer,, H. Panella,, and J. Jofre. 2003. Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157:H7 strains of human origin isolated from a single outbreak. Infect. Immun. 71:45544562.
134. Muniesa, M.,, J. Recktenwald,, M. Bielaszewska,, H. Karch,, and H. Schmidt. 2000. Characterization of a Shiga toxin 2e-converting bacteriophage from an Escherichia coli strain of human origin. Infect. Immun. 68:48504855.
135. Nash, H. A., 1996. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments, p. 23632376. In F. W. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
136. Nataro, J. P.,, and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11:142201.
137. Neely, M. N.,, and D. I. Friedman. 1998. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223:105113.
138. Neely, M.N.,, and D. I. Friedman. 1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28:12551267.
139. Neely, M. N.,, and D. I. Friedman. 2000. Nmediated transcription antitermination in lambdoid phage H-19B is characterized by alternative NUT RNA structures and a reduced requirement for host factors. Mol. Microbiol. 38:10741085.
140. Newland, J.W.,, and R. J. Neill. 1988. DNA probes for Shiga-like toxins I and II and for toxinconverting bacteriophages. J. Clin. Microbiol. 26:12921297.
141. O’Brien, A.D.,, and R. K. Holmes. 1987.Shiga and Shiga-like toxins. Microbiol.Rev. 51:206220.
142. O’Brien, A. D.,, L. R. Marques,, C. F. Kerry,, J.W. Newland,, and R. K. Holmes. 1989. Shigalike toxin converting phage of enterohemorrhagic Escherichia coli strain 933. Microb. Pathog. 6:381390.
143. O’Brien, A. D.,, J.W. Newland,, S. F. Miller,, R. K. Holmes,, H.W. Smith,, and S. B. Formal. 1984. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226:694696.
144. O’Brien, A.D.,, V. L. Tesh,, A. Donohue-Rolfe,, M. P. Jackson,, S. Olsnes,, K. Sandvig,, A. A. Lindberg,, and G.T. Keusch. 1992. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr.Top. Microbiol.Immunol. 180:6594.
145. Ohnishi, M.,, K. Kurokawa,, and T. Hayashi. 2001. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9:481485.
146. Ohnishi, M.,, J. Terajima,, K. Kurokawa,, K. Nakayama,, T. Murata,, K. Tamura,, Y. Ogura,, H. Watanabe,, and T. Hayashi. 2002. Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc. Natl.Acad. Sci. USA 99:1704317048.
147. Oku, Y.,, T. Yutsudo,, T. Hirayama,, A. D. O’Brien,, and Y. Takeda. 1989. Purification and some properties of a Vero toxin from a human strain of Escherichia coli that is immunologically related to Shiga-like toxin II (VT2). Microb.Pathog. 6:113122.
148. Oscarsson, J.,, M. Westermark,, L. Beutin,, and B. E. Uhlin. 2002.The bacteriophage-associated ehly1 and ehly2 determinants from Escherichia coli O26:H- strains do not encode enterohemolysins per se but cause release of the ClyA cytolysin. Int. J. Med. Microbiol. 291:625631.
149. Paton, A.W.,, L. Beutin,, and J.C. Paton. 1995. Heterogeneity of the amino-acid sequences of Escherichia coli Shiga-like toxin type-I operons. Gene 153:7174.
150. Paton, A.W.,, and J.C. Paton. 1996. Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolyticuremic syndrome. J. Clin. Microbiol. 34:463465.
151. Paton, A.W.,, P. Srimanote,, M. C. Woodrow,, and J. C. Paton. 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shigatoxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69:69997009.
152. Paton, J. C.,, and A.W. Paton. 1998. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11:450479.
153. Pavia, A.T.,, C.R. Nichols,, D. P. Green,, R.V. Tauxe,, S. Mottice,, K. D. Greene,, J. G. Wells,, R. L. Siegler,, E.D. Brewer,, D. Hannon, et al. 1990. Hemolytic-uremic syndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J. Pediatr. 116:544551.
154. Perna, N.T.,, G. Plunkett III,, V. Burland,, B. Mau,, J.D. Glasner,, D. J. Rose,, G. F. Mayhew,, P. S. Evans,, J. Gregor,, H. A. Kirkpatrick,, G. Posfai,, J. Hackett,, S. Klink,, A. Boutin,, Y. Shao,, L. Miller,, E. J. Grotbeck,, N.W. Davis,, A. Lim,, E.T. Dimalanta,, K. D. Potamousis,, J. Apodaca,, T. S. Anantharaman,, J. Lin,, G. Yen,, D. C. Schwartz,, R. A. Welch,, and F. R. Blattner. 2001. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529533.
155. Pierard, D.,, L. Huyghens,, S. Lauwers,, and H. Lior. 1991. Diarrhoea associated with Escherichia coli producing porcine oedema disease verotoxin. Lancet 338:762.
156. Pierard, D.,, G. Muyldermans,, L. Moriau,, D. Stevens,, and S. Lauwers. 1998. Identification of new verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates. J. Clin. Microbiol. 36:33173322.
157. Plunkett, G., III,, D. J. Rose,, T. J. Durfee,, and F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181:17671778.
158. Pruimboom-Brees, I. M.,, T. W. Morgan,, M. R. Ackermann,, E. D. Nystrom,, J. E. Samuel,, N. A. Cornick,, and H.W. Moon. 2000. Cattle lack vascular receptors for Escherichia coli O157:H7 Shiga toxins. Proc. Natl. Acad. Sci. USA 97:1032510329.
159. Ptashne, M. 2004. The Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
160. Recktenwald, J.,, and H. Schmidt. 2002. The nucleotide sequence of Shiga toxin (Stx) 2eencoding phage phiP27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. Infect. Immun. 70:18961908.
161. Reichardt, L. F. 1975. Control of bacteriophage lambda repressor synthesis after phage infection: the role of the N, cII, cIII and cro products. J. Mol. Biol. 93:267288.
162. Reid, S.D.,, C. J. Herbelin,, A.C. Bumbaugh,, R. K. Selander,, and T. S. Whittam. 2000.Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406:6467.
163. Reisbig, R.,, S. Olsnes,, and K. Eiklid. 1981. The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60S ribosomal subunit. J. Biol. Chem. 256:87398744.
164. Revet, B.,, B. von Wilcken-Bergmann,, H. Bessert,, A. Barker,, and B. Müller-Hil. 1999. Four dimers of lambda repressor bound to two suitably spaced pairs of lambda operators form octamers and DNA loops over large distances. Curr. Biol. 9:151154.
165. Richardson, J. P.,, and J. Greenblatt,. 1996. Control of RNA chain elongation and termination, p. 822848. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C.
166. Rietra, P. J.,, G. A. Willshaw,, H. R. Smith,, A. M. Field,, S. M. Scotland,, and B. Rowe. 1989. Comparison of Vero-cytotoxin-encoding phages from Escherichia coli of human and bovine origin. J. Gen. Microbiol. 135:23072318.
167. Riley, L.W.,, R. S. Remis,, S. D. Helgerson,, H. B. McGee,, J. G. Wells,, B. R. Davis,, R. J. Hebert,, E. S. Olcott,, L. M. Johnson,, N. T. Hargrett,, P.A. Blake,, and M. L. Cohen. 1983. Hemorrhagic colitis associated with a rare Escherichia coli serotype. N. Engl. J. Med. 308:681685.
168. Ritchie, J. M.,, P. L. Wagner,, D.W. Acheson,, and M. K. Waldor. 2003. Comparison of Shiga toxin production by hemolytic-uremic syndromeassociated and bovine-associated Shiga toxinproducing Escherichia coli isolates. Appl. Environ. Microbiol. 69:10591066.
169. Ritter, A.,, G. Blum,, L. Emody,, M. Kerenyi,, A. Bock,, B. Neuhierl,, W. Rabsch,, F. Scheutz,, and J. Hacker. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol. Microbiol. 17:109121.
170. Roberts, J.W.,, W. Yarnell,, E. Bartlett,, J. Guo,, M. Marr,, D. C. Ko,, H. Sun,, and C. W. Roberts. 1998.Antitermination by bacteriophage lambda Q protein. Cold Spring Harbor Symp. Quant. Biol. 63:319325.
171. Samadpour, M.,, L. M. Grimm,, B. Desai,, D. Alfi,, J. E. Ongerth,, and P. I. Tarr. 1993. Molecular epidemiology of Escherichia coli O157:H7 strains by bacteriophage lambda restriction fragment length polymorphism analysis: application to a multistate foodborne outbreak and a day-care center cluster. J. Clin. Microbiol. 31:31793183.
172. Samuel, J. E.,, L. P. Perera,, S. Ward,, A. D. O’Brien,, V. Ginsburg,, and H.C. Krivan. 1990. Comparison of the glycolipid receptor specificities of Shiga-like toxin type II and Shiga-like toxin type II variants. Infect. Immun. 58:611618.
173. Sandvig, K.,, S. Grimmer,, S. U. Lauvrak,, M. L. Torgersen,, G. Skretting,, B. van Deurs,, and T. G. Iversen. 2002. Pathways followed by ricin and Shiga toxin into cells. Histochem. Cell Biol. 117:131141.
174. Sato, T.,, T. Shimizu,, M. Watarai,, M. Kobayashi,, S. Kano,, T. Hamabata,, Y. Takeda,, and S. Yamasaki. 2003. Distinctiveness of the genomic sequence of Shiga toxin 2-converting phage isolated from Escherichia coli O157:H7 Okayama strain as compared to other Shiga toxin 2-converting phages. Gene 309:3548.
175. Sato, T.,, T. Shimizu,, M. Watarai,, M. Kobayashi,, S. Kano,, T. Hamabata,, Y. Takeda,, and S. Yamasaki. 2003. Genome analysis of a novel Shiga toxin 1 (Stx1)-converting phage which is closely related to Stx2-converting phages but not to other Stx1-converting phages. J. Bacteriol. 185:39663971.
176. Schmidt, H. 2001. Shiga-toxin-converting bacteriophages. Res. Microbiol. 152:687695.
177. Schmidt, H.,, L. Beutin,, and H. Karch. 1995. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun. 63:10551061.
178. Schmidt, H.,, M. Bielaszewska,, and H. Karch. 1999.Transduction of enteric Escherichia coli isolates with a derivative of Shiga toxin 2-encoding bacteriophage phi3538 isolated from E. coli O157:H7. Appl. Environ. Microbiol. 65:38553861.
179. Schmidt, H.,, M. Montag,, J. Bockemuhl,, J. Heesemann,, and H. Karch. 1993. Shiga-like toxin II-related cytotoxins in Citrobacter freundii strains from humans and beef samples. Infect. Immun. 61:534543.
180. Schmidt, H.,, J. Scheef,, C. Janetzki-Mittmann,, M. Datz,, and H. Karch. 1997.An ileX tRNA gene is located close to the Shiga toxin II operon in enterohemorrhagic Escherichia coli O157 and non-O157 strains. FEMS Microbiol. Lett. 149:3944.
181. Schmidt, H.,, J. Scheef,, S. Morabito,, A. Caprioli,, L. H. Wieler,, and H. Karch. 2000. A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. Appl. Environ. Microbiol. 66:12051208.
182. Schmidt, H.,, W. L. Zhang,, U. Hemmrich,, S. Jelacic,, W. Brunder,, P. I. Tarr,, U. Dobrindt,, J. Hacker,, and H. Karch. 2001. Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect. Immun. 69:68636873.
183. Schmitt, C. K.,, M. L. McKee,, and A. D. O’Brien. 1991.Two copies of Shiga-like toxin IIrelated genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157:H strain E32511. Infect. Immun. 59:10651073.
184. Scotland, S. M.,, H. R. Smith,, G. A. Willshaw,, and B. Rowe. 1983. Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. Lancet ii:216.
185. Sergueev, K.,, D. Court,, L. Reaves,, and S. Austin. 2002. E. coli cell-cycle regulation by bacteriophage lambda. J. Mol. Biol. 324:297307.
186. Shaikh, N.,, and P. I. Tarr. 2003. Escherichia coli O157:H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. J. Bacteriol. 185:35963605.
187. Shi, T.,, and D. I. Friedman. 2001.The operator-early promoter regions of Shiga-toxin bearing phage H-19B. Mol. Microbiol. 41:585599.
188. Sjogren, R.,, R. Neill,, D. Rachmilewitz,, D. Fritz,, J. Newland,, D. Sharpnack,, C. Colleton,, J. Fondacaro,, P. Gemski,, and E. Boedeker. 1994. Role of Shiga-like toxin I in bacterial enteritis: comparison between isogenic Escherichia coli strains induced in rabbits. Gastroenterology 106:306317.
189. Slilaty, S.N.,, and J.W. Little. 1987.Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proc. Natl.Acad. Sci. USA 84:39873991.
190. Smith, H.W.,, P. Green,, and Z. Parsell. 1983. Vero cell toxins in Escherichia coli and related bacteria: transfer by phage and conjugation and toxic action in laboratory animals, chickens and pigs. J. Gen. Microbiol. 129:31213137.
191. Smith, H.W.,, and M.A. Linggood. 1971.The transmissible nature of enterotoxin production in a human enteropathogenic strain of Escherichia coli. J. Med. Microbiol. 4:301305.
192. Sperandio, V.,, A. G. Torres,, J. A. Giron,, and J. B. Kaper. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 183:51875197.
193. Strauch, E.,, R. Lurz,, and L. Beutin. 2001. Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect. Immun. 69:75887595.
194. Stricklett, P. K.,, A. K. Hughes,, Z. Ergonul,, and D. E. Kohan. 2002. Molecular basis for upregulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression. J. Infect. Dis. 186:976982.
195. Sung, L. M.,, M. P. Jackson,, A. D. O’Brien,, and R. K. Holmes. 1990.Transcription of the Shiga-like toxin type II and Shiga-like toxin type II variant operons of Escherichia coli. J. Bacteriol. 172:63866395.
196. Susskind, M. M.,, and D. Botstein. 1978.Molecular genetics of bacteriophage P22. Microbiol. Rev. 42:385413.
197. Tarr, P. I. 1995. Escherichia coli O157:H7: clinical, diagnostic, and epidemiological aspects of human infection. Clin. Infect. Dis. 20:18.
198. Taylor, K.,, and G. Wegrzyn. 1995. Replication of coliphage lambda DNA. FEMS Microbiol. Rev. 17:109119.
199. Teel, L. D.,, A. R. Melton-Celsa,, C. K. Schmitt,, and A. D. O’Brien. 2002. One of two copies of the gene for the activatable Shiga toxin type 2d in Escherichia coli O91:H21 strain B2F1 is associated with an inducible bacteriophage. Infect. Immun. 70:42824291.
200. Te Loo, D. M.,, V.W. van Hinsbergh,, L. P. van den Heuvel,, and L. A. Monnens. 2001. Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. J.Am. Soc. Nephrol. 12:800806.
201. Tesh, V. L. 1998.Virulence of enterohemorrhagic Escherichia coli: role of molecular crosstalk. Trends Microbiol. 6:228233.
202. Thomas, A.,, T. Cheasty,, H. Chart,, and B. Rowe. 1994. Isolation of Vero cytotoxin-producing Escherichia coli serotypes O9ab:H- and O101:H- carrying VT2 variant gene sequences from a patient with haemolytic uraemic syndrome. Eur. J. Clin. Microbiol. Infect. Dis. 13:10741076.
203. Tinker, J. K.,, and S. Clegg. 2001. Control of FimY translation and type 1 fimbrial production by the arginine tRNA encoded by fimU in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 40:757768.
204. Tobe, T.,, I. Tatsuno,, E. Katayama,, C.Y. Wu,, G. K. Schoolnik,, and C. Sasakawa. 1999. A novel chromosomal locus of enteropathogenic Escherichia coli (EPEC), which encodes a bfpTregulated chaperone-like protein,TrcA, involved in microcolony formation by EPEC. Mol. Microbiol. 33:741752.
205. Tyler, J. S.,, and D. I. Friedman. 2004. Characterization of a eukaryotic-like tyrosine protein kinase expressed by the Shiga toxin-encoding bacteriophage 933W. J. Bacteriol. 186:34723479.
206. Tyler, J. S.,, M. J. Mills,, and D. I. Friedman. 2004.The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression. J. Bacteriol. 186:76707679.
207. Tzipori, S.,, F. Gunzer,, M. S. Donnenberg,, L. de Montigny,, J. B. Kaper,, and A. Donohue-Rolfe. 1995.The role of the eaeA gene in diarrhea and neurological complications in a gnotobiotic piglet model of enterohemorrhagic Escherichia coli infection. Infect. Immun. 63:36213627.
208. Unkmeir, A.,, and H. Schmidt. 2000. Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. Infect. Immun. 68:48564864.
209. Vica Pacheco, S.,, O. Garcia Gonzalez,, and G. L. Paniagua Contreras. 1997.The lom gene of bacteriophage lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. FEMS Microbiol. Lett. 156:129132.
210. Wagner, P. L.,, D.W. Acheson,, and M. K. Waldor. 1999. Isogenic lysogens of diverse Shiga toxin 2-encoding bacteriophages produce markedly different amounts of Shiga toxin. Infect. Immun. 67:67106714.
211. Wagner, P. L.,, D.W. Acheson,, and M. K. Waldor. 2001. Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli. Infect.Immun. 69:19341937.
212. Wagner, P. L.,, J. Livny,, M. N. Neely,, D.W. Acheson,, D. I. Friedman,, and M. K. Waldor. 2002. Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli. Mol. Microbiol. 44:957970.
213. Wagner, P. L.,, M. N. Neely,, X. Zhang,, D.W. Acheson,, M. K. Waldor,, and D. I. Friedman. 2001. Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J. Bacteriol. 183:20812085.
214. Wagner, P. L.,, and M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70:39853993.
215. Waldor, M.K. 1998. Bacteriophage biology and bacterial virulence. Trends Microbiol. 6:295297.
216. Wang, I.N.,, D. L. Smith,, and R. Young. 2000. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54:799825.
217. Weinstein, D. L.,, M. P. Jackson,, J. E. Samuel,, R. K. Holmes,, and A. D. O’Brien. 1988. Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine. J. Bacteriol. 170:42234230.
218. Weisberg, R. A.,, and A. Landy,. 1983. Sitespecific recombination in phage lambda, p. 211250. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
219. Whatmore, A. M.,, and C. G. Dowson. 1999. The autolysin-encoding gene (lytA) of Streptococcus pneumoniae displays restricted allelic variation despite localized recombination events with genes of pneumococcal bacteriophage encoding cell wall lytic enzymes. Infect. Immun. 67:45514556.
220. Whittam, T. S.,, M. L. Wolfe,, I.K. Wachsmuth,, F. Orskov,, I. Orskov,, and R.A. Wilson. 1993. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect. Immun. 61:16191629.
221. Wong, C. S.,, S. Jelacic,, R. L. Habeeb,, S. L. Watkins,, and P. I. Tarr. 2000. The risk of the hemolytic- uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N. Engl. J. Med. 342:19301936.
222. Wulff, D. L.,, and M. Rosenberg,. 1983. Establishment of repressor synthesis, p. 5373. In R. W. Hendrix,, J. W. Roberts,, F. W. Stahl,, and R. A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
223. Xavier, K. B.,, and B. L. Bassler. 2003. LuxS quorum sensing:more than just a numbers game. Curr. Opin. Microbiol. 6:191197.
224. Yee, A. J.,, S. De Grandis,, and C. L. Gyles. 1993.Mitomycin-induced synthesis of a Shiga-like toxin from enteropathogenic Escherichia coli H.I.8. Infect. Immun. 61:45104513.
225. Yokoyama, K.,, K. Makino,, Y. Kubota,, M. Watanabe,, S. Kimura,, C. H. Yutsudo,, K. Kurokawa,, K. Ishii,, M. Hattori,, I. Tatsuno,, H. Abe,, M. Yoh,, T. Iida,, M. Ohnishi,, T. Hayashi,, T. Yasunaga,, T. Honda,, C. Sasakawa,, and H. Shinagawa. 2000. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli O157:H7 strain derived from the Sakai outbreak. Gene 258:127139.
226. Yu, D.,, H. M. Ellis,, E. C. Lee,, N.A. Jenkins,, N. G. Copeland,, and D. L. Court. 2000.An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl.Acad. Sci. USA 97:59785983.
227. Zhang, W.,, M. Bielaszewska,, T. Kuczius,, and H. Karch. 2002. Identification, characterization, and distribution of a Shiga toxin 1 gene variant (stx1c) in Escherichia coli strains isolated from humans. J. Clin. Microbiol. 40:14411446.
228. Zhang, X.,, A.D. McDaniel,, L. E. Wolf,, G.T. Keusch,, M. K. Waldor,, and D.W. Acheson. 2000. Quinolone antibiotics induce Shiga toxinencoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181:664670.

Tables

Generic image for table
TABLE 1

Relevant information from sequenced and partially sequenced Stx-encoding phage genomes

Data include the nature of the gene, the site of insertion in the bacterial genome (), the presence or absence of selected phage genes and, if known, their homology with a gene(s) in other lambdoid phages, and whether the phage carries putative tRNA genes.+, present and not related to a gene(s) in other known phages;−, absent;ND, not done.

This site is also used by phage HKO22 ( ).

The Stx2-encoding phage Φ297 also integrates at ( ).

ΦP27 contains and but not

Citation: Tyler J, Livny J, Freidman D. 2005. Lambdoid Phages and Shiga Toxin, p 131-164. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch7