1887

Chapter 8 : Prophage Arsenal of Serovar Typhimurium

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Prophage Arsenal of Serovar Typhimurium, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555816506/9781555813079_Chap08-2.gif

Abstract:

The emergence in the last two decades of new epidemic strains with enhanced virulence traits is indicative of the fast pace of the evolutionary process. This chapter reviews the evidence pointing to a central role played by temperate phages in the dissemination of virulence determinants in the complex. The lysogenic condition of most strains was recognized prior to an understanding of the genetic bases of lysogeny. Early studies also indicated that some genes of certain prophages escape lysogenic repression and express functions that modify the host bacterium. Since phage and chromosomal sequences near the attachment sites of most prophages are conserved, PCR can be used to assess the phage occupancy of these sites. This approach is particularly attractive because the reaction can be designed in such a way as to always give a signal, and the presence or absence of the prophage can be deduced from the size of the amplified fragment. Preliminary analyses confirmed that the sequences of the three prophages diverge considerably in the portion corresponding to the immunity module. serovar Typhimurium expresses a second periplasmic [Cu, Zn] superoxide dismutase, SodC2, which is encoded by a chromosomal gene. A disruption of the locus was shown to render serovar Typhimurium more virulent in mice.

Citation: Bossi L, Figueroa-Bossi N. 2005. Prophage Arsenal of Serovar Typhimurium, p 165-186. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch8

Key Concept Ranking

Type III Secretion System
0.41018295
0.41018295
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic diagram showing the prophages in the serovar Typhimurium chromosome.The prophage left-right orientation (L/R) is shown according to the convention used for the prophage map of bacteriophage lambda ( ). Genetic symbols specify the genes flanking the insertion sites, with arrows indicating their orientations. An asterisk on the left or right side of the symbol indicates that the gene is truncated at its 5′ end or its 3′ end, respectively.

Citation: Bossi L, Figueroa-Bossi N. 2005. Prophage Arsenal of Serovar Typhimurium, p 165-186. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Immunity relationships among Gifsy phages from three representative strains of serovar Typhimurium. Phages isolated from the indicated strains were used to infect strains that carried or lacked their resident Gifsy prophages. Open circles, phage forms plaques on the strain carrying the specified prophage; closed circles, phage does not form plaques unless the strain is cured of the specified prophage. Phage Gifsy-2 could not be obtained from strains LT2 and SL1344.

Citation: Bossi L, Figueroa-Bossi N. 2005. Prophage Arsenal of Serovar Typhimurium, p 165-186. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816506.chap8
1. Ackermann, H.W. 1998. Tailed bacteriophages: the order Caudovirales. Adv.Virus Res. 51: 135 201.
2. Alonso, A. M. G. Pucciarelli,, N. Figueroa-Bossi, and F. García del Portillo. Increased excision of the Salmonella defective prophage ST64B caused by a deficiency in Dam methylase. Submitted for publication.
3. Ammendola, S.,, N. Figueroa-Bossi,, A. Battistoni,, and L. Bossi. Unpublished data.
4. Anderson, E. S.,, L.R. Ward,, M. J. de Saxe,, and J. D. de Sa. 1977. Bacteriophage-typing designations of Salmonella typhimurium. J.Hyg. 78: 297 300.
5. Bacciu, D.,, G. Falchi,, A. Spazziani,, L. Bossi,, G. Marogna,, G. S. Leori,, S. Rubino,, and S. Uzzau. 2004. Transposition of the heat-stable toxin astA gene into a gifsy-2-related prophage of Salmonella enterica serovar Abortusovis. J. Bacteriol. 186: 4568 4574.
6. Bakshi, C. S.,, V. P. Singh,, M.W. Wood,, P.W. Jones,, T. S. Wallis,, and E. E. Galyov. 2000. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol. 182: 2341 2344.
7. Bäumler, A. J. 1997. The record of horizontal gene transfer in Salmonella.Trends Microbiol. 5: 318 322.
8. Bäumler, A. J.,, R. M. Tsolis,, T. A. Ficht,, and L. G. Adams. 1998. Evolution of host adaptation in Salmonella enterica. Infect. Immun. 66: 4579 4587.
9. Beltran, P.,, S. A. Plock,, N. H. Smith,, T. S. Whittam,, D.C. Old,, and R. K. Selander. 1991. Reference collections of strains of the Salmonella typhimurium complex from natural sources. J. Gen. Microbiol. 137: 601 606.
10. Blanc-Potard, A. B.,, and E. A. Groisman. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16: 5376 5385.
11. Blattner, F. R.,, G. Plunkett III,, C. A. Bloch,, N.T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J.D. Glasner,, C.K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M.A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453 1474.
12. Bossi, L.,, J. A. Fuentes,, G. Mora,, and N. Figueroa-Bossi. 2003. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185: 6467 6471.
13. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann.N.Y.Acad.Sci. 354: 484 491.
14. Boyd, J. S. 1950. The symbiotic bacteriophages of Salmonella typhi-murium. J. Pathol. Bacteriol. 62: 501 517.
15. Brody, H.,, and C.W. Hill. 1988. Attachment site of the genetic element e14. J. Bacteriol. 170: 2040 2044.
16. Brumby, A. M.,, I. Lamont,, I. B. Dodd,, and J. B. Egan. 1996. Defining the SOS operon of coliphage 186. Virology 219: 105 114.
17. Bueno, S. M.,, C.A. Santiviago,, A.A. Murillo,, J. A. Fuentes,, A. N. Trombert,, P. I. Rodas,, P. Youderian,, and G. C. Mora. 2004. Precise excision of the large pathogenicity island, SPI7, in Salmonella enterica serovar Typhi. J. Bacteriol. 186: 3202 3213.
18. Bumann, D. 2002. Examination of Salmonella gene expression in an infected mammalian host using the green fluorescent protein and two-colour flow cytometry. Mol. Microbiol. 43: 1269 1283.
19. Bunny, K.,, J. Liu,, and J. Roth. 2002. Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage. J. Bacteriol. 184: 6235 6249.
20. Casjens, S. Personal communication.
21. Casjens, S.,, G. Hatfull,, and R. Hendrix. 1992. Evolution of the dsDNA tailed-bacteriophage genomes. Semin.Virol. 3: 383 397.
22. Chai, S.,, L. Bossi,, and F. Heffron. Unpublished data.
23. Collazo, C. M.,, and J. E. Galán. 1997. The invasion- associated type-III protein secretion system in Salmonella. Gene 192: 51 59.
23a.. Coombes, B. K.,, M. E. Wickham,, N. F. Brown,, S. Lemire,, L. Bossi,, W. W. Hsiao,, F. S. Brinkman,, and B. Finlay. Genetic and molecular analysis of GogB, a phage-encoded type III-secreted substrate in Salmonella enterica serovar Typhimurium with autonomous expression from its associated phage. J. Mol. Biol., in press.
24. Daniels, D. L.,, J. L. Schroeder,, W. Szybalski,, F. Sanger,, and F. R. Blattner,. 1983. A molecular map of coliphage lambda, p. 469 676. In R.W. Hendrix,, J.W. Roberts,, F.W. Stahl,, and R.A. Weisberg (ed.), Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor,N.Y.
25. Datsenko, K.A.,, and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K12 using PCR products. Proc. Natl.Acad. Sci. USA 97: 6640 6645.
26. De Groote, M. A.,, U. A. Ochsner,, M. U. Shiloh,, C. Nathan,, J. M. McCord,, M. C. Dinauer,, S. J. Libby,, A. Vazquez-Torres,, Y. Xu,, and F.C. Fang. 1997. Periplasmic superoxide dismutase protects Salmonella from products of phagocyte NADPH-oxidase and nitric oxide synthase. Proc. Natl.Acad. Sci. USA 94: 13997 14001.
27. Deng, W.,, S.-R. Liou,, G. Plunkett III,, G. F. Mayhew,, D. J. Rose,, V. Burland,, V. Kodoyianni,, D. C. Schwartz,,and F.R. Blattner. 2003. Comparative genomics of Salmonella enterica serovarTyphi strainsTy2 and CT18. J. Bacteriol. 185: 2330 2337.
28. Dodd, I. B.,, M.R. Reed,, and J. B. Egan. 1993. The Cro-like repressor of coliphage 186 is required for prophage excision and binds near the phage attachment site. Mol. Microbiol. 10: 1139 1150.
29. Effantin G.,, N. Figueroa-Bossi,, L. Bossi,, and J. Conway. Unpublished data.
30. Fang, F. C.,, M.A. DeGroote,, J.W. Foster,, A. J. Bäumler,, U. Ochsner,, T. Testerman,, S. Bearson,, J. C. Giard,, Y. Xu,, G. Campbell,, and T. Laessig. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc. Natl.Acad. Sci. USA 96: 7502 7507.
31. Farrant, J. L.,, A. Sansone,, J. R. Canvin,, M. J. Pallen,, P. R. Langford,, T. S. Wallis,, G. Dougan,, and J. S. Kroll. 1997. Bacterial copper- and zinc-cofactored superoxide dismutase contributes to the pathogenesis of systemic salmonellosis. Mol. Microbiol. 25: 785 796.
32. Fields, P. I.,, R.V. Swanson,, C.G. Haidaris,, and F. Heffron. 1986. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc. Natl.Acad. Sci.USA 83: 5189 5193.
33. Figueroa-Bossi, N.,, E. Coissac,, P. Netter,, and L. Bossi. 1997. Unsuspected prophage-like elements in Salmonella typhimurium. Mol. Microbiol. 25: 161 173.
34. Figueroa-Bossi, N.,, and L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33: 167 176.
35. Figueroa-Bossi, N.,, S. Uzzau,, D. Maloriol,,and L. Bossi. 2001. Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella. Mol.Microbiol. 39: 260 272.
36. Figueroa-Bossi, N.,, and L. Bossi. 2004. Resuscitation of a defective prophage in Salmonella cocultures. J. Bacteriol. 186: 4038 4041.
37. Figueroa-Bossi, N.,, F.-X. Weill,., P. Grimont,, and L. Bossi. Unpublished data.
38. Figueroa-Bossi, N.,, and L. Bossi. Lysogenic relay: dislodgement of the Fels-2 prophage by the SopE_ phage. Submitted for publication.
39. Figueroa-Bossi, N.,, and L. Bossi. Unpublished data.
40. Galán, J. E. 2001. Salmonella interaction with host cells: type III secretion at work. Annu. Rev. Cell. Dev. Biol. 17: 53 86.
41. Galen, J. E.,, J. M. Ketley,, A. Fasano,, S. H. Richardson,, S. S. Wasserman,, and J. B. Kaper. 1992. Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect.Immun. 60: 406 415.
42. Godoy, V. G.,, M. M. Dallas,, T. A. Russo,, and M. H. Malamy. 1993. A role for Bacteroides fragilis neuraminidase in bacterial growth in two model systems. Infect. Immun. 61: 4415 4426.
43. Groisman, E.A.,, and H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791 794.
44. Groisman, E.A.,, and H. Ochman. 1997. How Salmonella became a pathogen. Trends Microbiol. 5: 343 349.
45. Gunn, J. S.,, C. M. Alpuche-Aranda,, W. P. Loomis,, W. J. Belden,, and S. I. Miller. 1995. Characterization of the Salmonella typhimurium pagC/ pagD chromosomal region. J. Bacteriol. 177: 5040 5047.
46. Gunn, J. S.,, W. J. Belden,, and S. I. Miller. 1998. Identification of PhoP-PhoQ activated genes within a duplicated region of the Salmonella typhimurium chromosome. Microb. Pathog. 25: 77 90.
47. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschäpe. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
48. Harada, K.,, M. Kameda,, M. Suzuki,, and S. Mitsuhashi. 1964. Mutant of Salmonella phage epsilon 34 with loss of converting ability. Jpn. J. Microbiol. 19: 125 130.
49. Haraga, A.,,and S. I. Miller. 2003. A Salmonella enterica serovarTyphimurium translocated leucine-rich repeat effector protein inhibits NF-κB-dependent gene expression. Infect. Immun. 71: 4052 4058.
50. Hardt, W.-D.,, and J. E. Galan. 1997. A secreted Salmonella protein with homology to an avirulence determinant of plant pathogenic bacteria. Proc. Natl. Acad. Sci. USA 94: 9887 9892.
51. Hardt, W.-D.,, H. Urlaub,, and J. E. Galán. 1998. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc. Natl. Acad. Sci. USA 95: 2574 2579.
52. Hardt, W.-D.,, L. M. Chen,, K. E. Schuebel,, X. R. Bustelo,, and J. E. Galan. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 815 826.
53. Heffernan, E. J.,, J. Harwood,, J. Fierer,, and D. Guiney. 1992. The Salmonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J. Bacteriol. 174: 84 91.
54. Hendrix, R.,, M.C. Smith,, R.N. Burns,, M. E. Ford,, and G. F. Hatfull. 1999. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl.Acad. Sci. USA 96: 2192 2197.
55. Hendrix, R.W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504 508.
56. Hill, C.W.,, J. A. Gray,, and H. Brody. 1989. Use of the isocitrate dehydrogenase structural gene for attachment of e14 in Escherichia coli K-12. J. Bacteriol. 171: 4083 4084.
57. Ho, T.D.,, and J. M. Slauch. 2001. OmpC is the receptor for Gifsy-1 and Gifsy-2 bacteriophages of Salmonella. J. Bacteriol. 183: 1495 1498.
58. Ho, T. D.,, and J. M. Slauch. 2001. Characterization of grvA, an antivirulence gene on the Gifsy-2 phage in Salmonella enterica serovar Typhimurium. J. Bacteriol. 183: 611 620.
59. Ho, T. D.,, N. Figueroa-Bossi,, M. Wang,, S. Uzzau,, L. Bossi,, and J. M. Slauch. 2002. Identification of GtgE, a novel virulence factor encoded on the Gifsy-2 bacteriophage of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 5234 5239.
60. Hochhut, B.,, and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32: 99 110.
61. Hoiseth, S. K.,, and B. A. D. Stocker. 1981. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238 239.
62. Hoyer, L. L.,, A. C. Hamilton,, S. M. Steenbergen,, and E. R. Vimr. 1992. Cloning, sequencing and distribution of the Salmonella typhimurium LT2 sialidase gene, nanH, provides evidence for interspecies gene transfer. Mol. Microbiol. 6: 873 884.
63. Iseki, S.,, and K. Kashiwagi. 1955. Induction of somatic antigen 1 by bacteriophage in Salmonella group B. Proc. Jpn.Acad. 31: 558 564.
64. Jost, B. H.,, J. G. Songer,, and S. J. Billington. 2002. Identification of a second Arcanobacterium pyogenes neuraminidase and involvement of neuraminidase activity in host cell adhesion. Infect. Immun. 70: 1106 1112.
65. Juhala, R. J.,, M. E. Ford,, R. L. Duda,, A. Youlton,, G. F. Hatfull,, and R.W. Hendrix. 2000. Genetic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299: 27 51.
66. Kamp, D.,, R. Kahmann,, D. Zipser,, T.R. Broker,, and L. T. Chow. 1978. Inversion of the G DNA segment of phage Mu controls phage infectivity. Nature 271: 577 580.
67. Karaolis, D. K.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper,, and P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 3134 3139.
68. Kingsley, R. A.,, and A. J. Bäumler. 2000. Host adaptation and the emergence of infectious disease: the Salmonella paradigm. Mol. Microbiol. 36: 1006 1014.
69. Kingsley, R.A.,, and A. J. Bäumler. 2002. Pathogenicity islands and host adaptation of Salmonella serovars. Curr.Top. Microbiol. Immunol. 264: 67 87.
70. Kirby, J. E.,, J. E. Trempy,, and S. Gottesman. 1994. Excision of a P4-like cryptic prophage leads to Alp protease expression in Escherichia coli. J. Bacteriol. 176: 2068 2081.
71. Krishnakumar, R.,, M. Craig,, J. A. Imlay,, and J. M. Slauch. 2004. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J. Bacteriol. 186: 5230 5238.
72. Kushner, S. R.,, H. Nagaishi,, and A. J. Clark. 1974. Isolation of exonuclease VIII: the enzyme associated with sbcA indirect suppressor. Proc. Natl. Acad. Sci. USA 71: 3593 3597.
73. Lamont, I.,, A. M. Brumby,, and J. B. Egan. 1989. UV induction of coliphage 186: prophage induction as an SOS function. Proc. Natl.Acad. Sci. USA 86: 5492 5496.
74. Lemire S.,, N. Figueroa-Bossi,, and L. Bossi. Unpublished data.
75. Lemire S.,, N. Figueroa-Bossi,, and L. Bossi. Genetic interactions between the Gifsy-1 and Gifsy-2 prophages of Salmonella enterica serovar Typhimurium. Submitted for publication.
76. Leong, J. M.,, S. Nunes-Duby,, C. F. Lesser,, P. Youderian,, M. M. Susskind,, and A. Landy. 1985. The phi 80 and P22 attachment sites. Primary structure and interaction with Escherichia coli integration host factor. J. Biol. Chem. 260: 4468 4477.
77. Lilleengen, K. 1948. Typing of Salmonella typhimurium by means of bacteriophage. Acta Pathol. Microbiol. Scand. 77(Suppl.): 2 125.
78. Lin-Chao, S.,, C.-L. Wei,, and Y.-T. Lin. 1999. RNase E is required for the maturation of ssrA RNA and normal ssrA RNA peptide-tagging activity. Proc. Natl.Acad. Sci. USA 96: 12406 12411.
79. Lloyd, R.G.,, and S.D. Barbour. 1974. The genetic location of the sbcA gene of Escherichia coli. Mol. Gen. Genet. 134: 157 171.
80. Low, K. B. 1973. Restoration by the Rac locus of recombinant-forming ability in recB and recC merozygotes of Escherichia coli. Mol. Gen. Genet. 122: 119 130.
81. March, P. E.,, and M. Inouye. 1985. Characterization of the lep operon of Escherichia coli.Identification of the promoter and the gene upstream of the signal peptidase I gene. J.Biol.Chem. 260: 7206 7213.
82. March, P. E.,, and M. Inouye. 1985. GTP-binding membrane protein of Escherichia coli with sequence homology to initiation factor 2 and elongation factors Tu and G. Proc. Natl. Acad. Sci. USA 82: 7500 7504.
83. McClelland, M.,, K. E. Sanderson,, J. Spieth,, S.W. Clifton,, P. Latreille,, L. Courtney,, S. Porwollik,, J. Ali,, M. Dante,, F. Du,, S. Hou,, D. Layman,, S. Leonard,, C. Nguyen,, K. Scott,, A. Holmes,, N. Grewal,, E. Mulvaney,, E. Ryan,, H. Sun,, L. Florea,, W. Miller,, T. Stoneking,, M. Nhan,, R. Waterston,, and R. K. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852 856.
84. Miao, E. A.,, C.A. Scherer,, R.M. Tsolis,, R.A. Kingsley,, L. G. Adams,, A. J. Baumler,, and S. I. Miller. 1999. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34: 850 864.
85. Miao, E. A.,, and S. I. Miller. 2000. A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 97: 7539 7544.
86. Miao, E. A.,, M. Brittnacher,, A. Haraga,, R. L. Jeng,, M. D. Welch,, and S. I. Miller. 2003. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol. Microbiol. 48: 401 415.
87. Miller, V. L.,, and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575 2583.
88. Mirold, S.,, W. Rabsch,, M. Rohde,, S. Stender,, H. Tschäpe,, H. Rüssmann,, E. Igwe,, and W.-D. Hardt. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl.Acad. Sci. USA 96: 9845 9850.
89. Mirold, S.,, W. Rabsch,, H. Tschäpe,, and W.-D. Hardt. 2001. Transfer of the Salmonella type III effector sopE between unrelated phage families. J. Mol. Biol. 312: 7 16.
90. Mirold, S.,, K. Ehrbar,, A. Weissmuller,, R. Prager,, H. Tschäpe,, H. Russmann,, and W.-D. Hardt. 2001. Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella pathogenicity island 1 (SPI1), SPI5, and sopE2. J. Bacteriol. 183: 2348 2358.
91. Mizan, S.,, A. Henk,, A. Stallings,, M. Maier,, and M. D. Lee. 2000. Cloning and characterization of sialidases with 2-6' and 2-3' sialyl lactose specificity from Pasteurella multocida. J. Bacteriol. 182: 6874 6883.
92. Mmolawa, P.T.,, R. Willmore,, C. J. Thomas,, and M. W. Heuzenroeder. 2002. Temperate phages in Salmonella enterica serovar Typhimurium: implications for epidemiology. Int. J. Med. Microbiol. 291: 633 644.
93. Mmolawa, P. T.,, H. Schmieger,, and M.W. Heuzenroeder. 2003. Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar Typhimurium DT 64. J. Bacteriol. 185: 6481 6485.
94. Mmolawa, P.T.,, H. Schmieger,, C. P. Tucker,, and M.W. Heuzenroeder. 2003. Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J. Bacteriol. 185: 3473 3475.
95. Nnalue, N. A.,, S. Newton,, and B. A. Stocker. 1990. Lysogenization of Salmonella choleraesuis by phage 14 increases average length of O-antigen chains, serum resistance and intraperitoneal mouse virulence. Microb. Pathog. 8: 393 402.
96. Ochman, H.,, F. C. Soncini,, F. Solomon,, and E. A. Groisman. 1996. Identification of a pathogenicity island required for Salmonella survival in host cells. Proc. Natl.Acad. Sci.USA 93: 7800 7804.
97. Ochman, H.,, J.G. Lawrence,, and E.A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299 304.
98. Parkhill, J.,, G. Dougan,, K. D. James,, N. R. Thomson,, D. Pickard,, J. Wain,, C. Churcher,, K. L. Mungall,, S. D. Bentley,, M.T. Holden,, M. Sebaihia,, S. Baker,, D. Basham,, K. Brooks,, T. Chillingworth,, P. Connerton,, A. Cronin,, P. Davis,, R. M. Davies,, L. Dowd,, N. White,, J. Farrar,, T. Feltwell,, N. Hamlin,, A. Haque,, T. T. Hien,, S. Holroyd,, K. Jagels,, A. Krogh,, T. S. Larsen,, S. Leather,, S. Moule,, P. O’Gaora,, C. Parry,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead,, and B. G. Barrell. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848 852.
99. Pascopella, L.,, B. Raupach,, N. Ghori,, D. Monack,, S. Falkow,, and P. L. Small. 1995. Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect.Immun. 63: 4329 4335.
100. Pedulla, M. L.,, M. E. Ford,, T. Karthikeyan,, J. M. Houtz,, R.W. Hendrix,, G. F. Hatfull,, A. R. Poteete,, E. B. Gilcrease,, D. A. Winn-Stapley,, and S. R. Casjens. 2003. Corrected sequence of the bacteriophage P22 genome. J. Bacteriol. 185: 1475 1477.
101. Pelludat, C.,, S. Mirold,, and W.-D. Hardt. 2003. The SopEϕ phage integrates into the ssrA gene of Salmonella enterica serovar Typhimurium A36 and is closely related to the Fels-2 prophage. J. Bacteriol. 185: 5182 5191.
102. Plasterk, R. H.,, A. Brinkman,, and P. van de Putte. 1983. DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc. Natl.Acad. Sci.USA 80: 5355 5358.
103. Plasterk, R. H.,, and P. van de Putte. 1985. The invertible P-DNA segment in the chromosome of Escherichia coli. EMBO J. 4: 237 242.
104. Popoff, M.Y.,, and L. Le Minor. 1997. Antigenic Formulas of the Salmonella Serovars, 7th revision. WHO Collaborating Centre for Reference and Research on Salmonella. Institut Pasteur, Paris, France.
105. Ptashne, M. 1992. A Genetic Switch, 2nd ed. Blackwell Scientific Publications, Cambridge, Mass.
106. Rabsch, W.,, H. L. Andrews,, R. A. Kingsley,, R. Prager,, H. Tschäpe,, L. G. Adams,, and A. J. Bäumler. 2002. Salmonella enterica serotype Typhimurium and its host-adapted variants. Infect. Immun. 70: 2249 2255.
107. Reed, M. R.,, K. E. Shearwin,, and J. B. Egan. 1997. The dual role of the Cro-like Apl protein in prophage induction of coliphage 186. Mol. Microbiol. 23: 669 681.
108. Sansone, A.,, P. R. Watson,, T. S. Wallis,, P. R. Langford,, and J. S. Kroll. 2002. The role of two periplasmic copper- and zinc-cofactored superoxide dismutases in the virulence of Salmonella choleraesuis. Microbiology 148: 719 726.
109. Sauer, R. T.,, M. J. Ross,, and M. Ptashne. 1982. Cleavage of the lambda and P22 repressors by RecA protein. J. Biol. Chem. 257: 4458 4462.
110. Schicklmaier, P.,, and H. Schmieger. 1994. Frequency of generalized transducing phages in natural isolates of the Salmonella typhimurium complex. Appl. Environ. Microbiol. 61: 1637 1640.
111. Schicklmaier, P.,, E. Moser,, T. Wieland,, W. Rabsch,, and H. Schmieger. 1998. A comparative study on the frequency of prophages among natural isolates of Salmonella and Escherichia coli with emphasis on generalized transducers. Antonie Leeuwenhoek 73: 49 54.
112. Schmidt, H.,, and M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17: 14 56.
113. Schmieger, H. 1972. Phage P22-mutants with increased or decreased transduction abilities. Mol. Gen. Genet. 119: 75 88.
114. Schmieger, H.,, and P. Schicklmaier. 1999. Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol. Lett. 170: 251 256.
115. Shea, J. E.,, M. Hensel,, C. Gleeson,, and D.W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93: 2593 2597.
116. Shearwin, K. E.,, A. M. Brumby,, and J. B. Egan. 1998. The Tum protein of coliphage 186 is an antirepressor. J. Biol. Chem. 273: 5708 5715.
117. Stanley, T. L.,, C. D. Ellermeier,, and J. M. Slauch. 2000. Tissue-specific gene expression identifies a gene in the lysogenic phage Gifsy-1 that affects Salmonella enterica serovarTyphimurium survival in Peyer’s patches. J. Bacteriol. 182: 4406 4413.
118. Stender, S.,, A. Friebel,, S. Linder,, M. Rohde,, S. Mirold,, and W.-D. Hardt. 2000. Identification of SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol. Microbiol. 36: 1206 1221.
119. Susskind, M. M.,, and D. Botstein. 1978. Molecular genetics of bacteriophage P22. Microbiol. Rev. 42: 385 413.
120. Szybalski, W.,, K. Bøvre,, M. Fiandt,, S. Hayes,, Z. Hradecna,, S. Kumar,, H. A. Lozeron,, H. J. J. Nijkamp,, and W. F. Stevens. 1970. Transcriptional units and their controls in Escherichia coli phage λ: operons and scriptons. Cold Spring Harbor Symp. Quant. Biol. 35: 341 353.
121. Tanaka, K.,, K. Nishimori,, S. Makino,, T. Nishimori,, T. Kanno,, R. Ishihara,, T. Sameshima,, M. Akiba,, M. Nakazawa,, Y. Yokomizo,, and I. Uchida. 2004. Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 42: 1807 1812.
122. Threlfall, E. J.,, L. R. Ward,, J. A. Frost,, and G. A. Willshaw. 2000. Spread of resistance from food animals to man—the UK experience. Acta Vet. Scand. 93(Suppl.): 63 68.
123. Tsolis, R. M.,, S. M. Townsend,, E. A. Miao,, S. I. Miller,, T. A. Ficht,, L. G. Adams,, and A. J. Bäumler. 1999. Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67: 6385 6393.
124. Uzzau, S.,, D. J. Brown,, T. Wallis,, S. Rubino,, G. Leori,, S. Bernard,, J. Casadesús,, D. J. Platt,, and J. E. Olsen. 2000. Host adapted serotypes of Salmonella enterica. Epidemiol. Infect. 125: 229 255.
125. Uzzau, S.,, N. Figueroa-Bossi,, S. Rubino,, and L. Bossi. 2001. Epitope tagging of chromosomal genes in Salmonella. Proc. Natl.Acad. Sci. USA 98: 15264 15269.
126. Uzzau, S.,, L. Bossi,, and N. Figueroa-Bossi. 2002. Differential accumulation of Salmonella [Cu, Zn] superoxide dismutases SodCI and SodCII in intracellular bacteria: correlation with their relative contribution to pathogenicity. Mol. Microbiol. 46: 147 156.
127. Uzzau, S.,, N. Figueroa-Bossi,, and L. Bossi. Unpublished data.
128. van de Putte, P.,, S. Cramer,, and M. Giphart-Gassler. 1980. Invertible DNA determines host specificity of bacteriophage Mu. Nature 286: 218 222.
129. Vander Byl, C.,, and A. M. Kropinski. 2000. Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182: 6472 6481.
130. van Dijl, J. M.,, R. van den Bergh,, T. Reversma,, H. Smith,, S. Bron,, and G. Venema. 1990. Molecular cloning of the Salmonella typhimurium lep gene in Escherichia coli. Mol. Gen. Genet. 223: 233 240.
131. Vimr, E. R.,, K. A. Kalivoda,, E. L. Deszo,, and S. M. Steenbergen. 2004. Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68: 132 153.
132. Voloshin, O. N.,, B. E. Ramirez,, A. Bax,, and R. D. Camerini-Otero. 2001. A model for the abrogation of the SOS response by an SOS protein: a negatively charged helix in DinI mimics DNA in its interaction with RecA. Genes Dev. 15: 415 427.
133. Walker, G., 1996. The SOS response of Escherichia coli, p. 1400 1416. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E.C.C. Lin,, K.B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington,D.C.
134. Wang, H.,, C.-H. Yang,, G. Lee,, F. Chang,, H. Wilson,, A. del Campillo-Campbell,, and A. Campbell. 1997. Integration specificities of two lambdoid phages (21 and e14) that insert at the same attB site. J. Bacteriol. 179: 5705 5711.
135. Williams, K. P. 2003. Traffic at the tmRNA gene. J. Bacteriol. 185: 1059 1070.
136. Withey, J. H.,, and D. I. Friedman. 2003. A salvage pathway for protein structures: tmRNA and trans-translation. Annu. Rev. Microbiol. 57: 101 123.
137. Wong, K. K.,, M. McClelland,, L. C. Stillwell,, E. C. Sisk,, S. J. Thurston,, and J. D. Saffer. 1998. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar Typhimurium LT2. Infect. Immun. 66: 3365 3371.
138. Wood, M. W.,, R. Rosqvist,, P. B. Mullan,, M. H. Edwards,, and E. E. Galyov. 1996. SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sipdependent mechanism and promotes bacterial entry. Mol. Microbiol. 22: 327 338.
139. Wood, M.W.,, M. A. Jones,, P. R. Watson,, S. Hedges,, T. S. Wallis,, and E. E. Galyov. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol. Microbiol. 29: 883 891.
140. Worley, M. J.,, K. H. Ching,, and F. Heffron. 2000. Salmonella SsrB activates a global regulon of horizontally acquired genes. Mol. Microbiol. 36: 749 761.
141. Worley, M. J.,, and F. Heffron. Salmonella invades its host by manipulating the motility of infected cells. EMBO J., in press.
142. Wright, A. 1971. Mechanism of conversion of the Salmonella O antigen by bacteriophage epsilon 34. J. Bacteriol. 105: 927 936.
143. Yamamoto, N.,, and T. F. Anderson. 1961. Genomic masking and recombination between serologically unrelated phages P22 and P221. Virology 14: 430 439.
144. Yamamoto, N. 1964. Bacteriophage: an unusual hybrid of serologically unrelated phages P22 and P221. Science 143: 144 145.
145. Yamamoto, N. 1967. The origin of bacteriophage P221. Virology 33: 545 547.
146. Yamamoto, N. 1969. Genetic evolution of bacteriophage. I. Hybrids between unrelated bacteriophages P22 and Fels 2. Proc. Natl. Acad. Sci. USA 62: 63 69.
147. Yasuda, T.,, K. Morimatsu,, T. Horii,, T. Nagata,, and H. Ohmori. 1998. Inhibition of Escherichia coli RecA coprotease activites by DinI. EMBO J. 17: 3207 3216.
148. Young, B.G.,, Y. Fukazawa,, and P. Hartman. 1964. A P22 bacteriophage mutant defective in antigen conversion. Virology 23: 279 283.
149. Zhang, S.,, R. L. Santos,, R. M. Tsolis,, S. Stender,, W.-D. Hardt,, A. J. Bäumler,, and L. G. Adams. 2002. SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves infected with Salmonella enterica serotype Typhimurium. Infect. Immun. 70: 3843 3855.
150. Zhang, S.,, R. L. Santos,, R. M. Tsolis,, S. Mirold,, W.-D. Hardt,, L. G. Adams,, and A. J. Bäumler. 2002. Phage mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol. Lett. 217: 243 247.
151. Zinder, N.D.,, and J. Lederberg. 1952. Genetic exchange in Salmonella. J. Bacteriol. 64: 679 699.

Tables

Generic image for table
TABLE 1

prophage genes that can be linked to pathogenicity

Citation: Bossi L, Figueroa-Bossi N. 2005. Prophage Arsenal of Serovar Typhimurium, p 165-186. In Waldor M, Friedman D, Adhya S (ed), Phages. ASM Press, Washington, DC. doi: 10.1128/9781555816506.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error