1887

Chapter 11 : The Bacteriophages of Group A Streptococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Bacteriophages of Group A Streptococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap11-2.gif

Abstract:

This chapter focuses on the influence that the bacteriophages of , both lytic and lysogenic or temperate, have on the biology and dissemination of virulence factors of this important gram-positive pathogen. The lytic bacteriophages infect their specific host bacterium, replicate their genome and assemble new virions, and then rupture the host to release the newly formed phages. Lytic phages can play important roles in the shaping of the biology of their GAS hosts, through elimination of the phagesusceptible members of a population consisting of more than one strain, selection for the rare phage-resistant variants in a mostly homogenous population, or by being the vectors of genetic exchange through generalized transduction. Although the role played by lytic streptococcal phages in pathogenesis may be indirect, acting as vehicles of genetic exchange through generalized transduction, lysogeny by GAS bacteriophages can directly enhance the pathogenic potential of the host through toxigenic conversion. The allelic variation is more than would be expected to result from accumulated random mutations between genetically isolated individuals. Because transduction is the only known natural means of genetic exchange, it is likely that this mechanism and its associated bacteriophages play an important role in the genetic shifts seen in GAS. A better understanding of streptococcal transduction may prove key to understanding the flow of genetic information in natural populations of GAS and the horizontal transfer of information from other genera.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11

Key Concept Ranking

Rheumatic Heart Disease
0.4072167
Bacterial Cell Wall
0.40542772
0.4072167
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Bacteriophage attachment sites in the genome. The locations of the genome prophages on the genome are shown as a generalized GAS backbone based upon the M1 genome; prophages that share the same attachment site are boxed together. The rRNA operons are indicated as white blocks; the cluster of virulence genes flanking is hatched. The origin of replication is indicated ().

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

5′-integration of phage SF370.4 interrupts MMR. The potential for gene interruption by 5′-integration is illustrated by comparing the MMR region from strain SF370 (upper) with that from MGAS315 (lower). In strains lacking a prophage at this site, the genes for , , , , and are predicted to be expressed on a polycistronic mRNA (indicated below by a heavy arrow) with the promoter position upstream of (←). The presence of phage SF370.4 separates the and the downstream genes from and the promoter, potentially creating a polar mutation.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Multiple alignment of the genome prophages of (see Table 2 ). The genomes of the major prophages found in the six completed genomes were aligned by dot plot analysis using a window size of 11. The three phages that integrate at and the transposon/phage element MGAS10394.4 were excluded from this analysis.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogram of the identified genome prophages. The phylogenetic tree with split decomposition analysis of the GAS genome phages shows probable groups with related evolutionary histories. Multiple sequence alignment of the prophage genomes was done using CLUSTALX ( ). Phylogenetic analysis was done using the split decomposition method ( ), and the software program SplitsTree ( ) was used to generate the final tree.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The cluster of prophages sharing a conserved region with phage SF370.1. The prophages with a conserved region encompassing the late genes for the phage structural proteins are compared by dot plot analysis. The genome of phage SF370.1 is shown below with the predicted open reading frames of the conserved region shaded in gray. The integrase gene (hatched) and virulence genes (black) are positioned at the flanking ends of the prophage genome; the box below the integrase gene indicates the site of attachment for each phage in the group, and the one below the virulence genes indicates the toxin or virulence genes associated with each prophage.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

The prophages integrated at the histonelike protein gene. The prophages from each of the six genomes that use the histonelike gene as are aligned by dot plot analysis. The prophages are identified by the name of the GAS genome that they occupy.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

The MMR-converting phages. The prophages from SF370, MGAS10394, and Manfredo that integrate into the 5′ end of are compared by dot plot analysis. The open reading frames for the phages are shown flanking the plot: SF370.4 (below), Manfredo (right), and MGAS10394.8 (above) with the lysogeny (gray), replication (black), and probable regulation (white) modules indicated. Although no structure genes are present, all three prophages have identifiable and sites.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

() The late gene regions of the group IV prophages. Some of the identifiable genes are listed below the MGAS8232 phi SpeLM prophage genome; the corresponding color scheme is used to identify related genes in the other prophages. The locations of probable mutations are indicated by the box symbol.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

%G+C and codon usage of the native gene and “species-optimized” variants. (above) The %G+C plot of the native (upper) is shown compared to the plot of a reverse-translated version (lower) created using a codon table with the most frequently used codons from SF370 (window size = 40). (Next page) A multiple alignment is shown comparing the native with reverse-translated variants created with optimized codon usage from a number of bacterial species: , , , , , and Regions of identity (>25%) are shaded in gray. Reverse translation was done using a program written in PERL with species-specific codon tables.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap11
1. Ackermann, H.-W.,, and M. S. DuBow. 1987. Viruses of Prokaryotes: General Properties of Bacteriophages, vol. 1. CRC Press, Boca Raton, Fla.
2. Aziz, R. K.,, M. J. Pabst,, A. Jeng,, R. Kansal,, D. E. Low,, V. Nizet,, and M. Kotb. 2004. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 51: 123 134.
3. Bandelt, H.,, and A. Dress. 1992. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1: 242 252.
4. Banks, D. J.,, S. B. Beres,, and J. M. Musser. 2002. The fundamental contribution of phages to GAS evolution, genome diversification and strain emergence. Trends Microbiol. 10: 515 521.
5. Banks, D. J.,, B. Lei,, and J. M. Musser. 2003. Prophage induction and expression of prophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315. Infect. Immun. 71: 7079 7086.
6. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, S. B. Beres,, L. E. Philips,, J. M. Voyich,, F. R. DeLeo,, J. M. Martin,, G. A. Somerville,, and J. M. Musser. 2004. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J. Infect. Dis. 190: 727 738.
7. Behnke, D.,, and H. Malke. 1978. Bacteriophage interference in Streptococcus pyogenes. I. Characterization of prophage—host systems interfering with the virulent phage A25. Virology 85: 118 128.
8. Behnke, D.,, and H. Malke. 1978. Bacteriophage interference in Streptococcus pyogenes. II. A25 mutants resistant to prophage-mediated interference. Virology 85: 129 136.
9. Benchetrit, L. C.,, E. D. Gray,, and L. W. Wannamaker. 1977. Hyaluronidase activity of bacteriophages of group A streptococci. Infect. Immun. 15: 527 532.
10. Beres, S. B.,, G. L. Sylva,, K. D. Barbian,, B. Lei,, J. S. Hoff,, N. D. Mammarella,, M. Y. Liu,, J. C. Smoot,, S. F. Porcella,, L. D. Parkins,, D. S. Campbell,, T. M. Smith,, J. K. McCormick,, D. Y. Leung,, P. M. Schlievert,, and J. M. Musser. 2002. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 99: 10078 10083.
11. Bessen, D. E.,, and S. K. Hollingshead. 1994. Allelic polymorphism of emm loci provides evidence for horizontal gene spread in group A streptococci. Proc. Natl. Acad. Sci. USA 91: 3280 3284.
12. Bishai, W. R.,, and J. R. Murphy,. 1988. Bacteriophage gene products that cause human disease, p. 683 724. In R. Calendar (ed.), The Bacteriophages, vol. 2. Plenum Press, New York, N.Y.
13. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N.Y. Acad. Sci. 354: 484 491.
14. Boyce, J. D.,, B. E. Davidson,, and A. J. Hillier. 1995. Identification of prophage genes expressed in lysogens of the Lactococcus lactis bacteriophage BK5-T. Appl. Environ. Microbiol. 61: 4099 4104.
15. Broudy, T. B.,, and V. A. Fischetti. 2003. In vivo lysogenic conversion of Tox(-) Streptococcus pyogenes to Tox(+) with lysogenic streptococci or free phage. Infect. Immun. 71: 3782 3786.
16. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2001. Induction of lysogenic bacteriophage and phage-associated toxin from group a streptococci during coculture with human pharyngeal cells. Infect. Immun. 69: 1440 1443.
17. Broudy, T. B.,, V. Pancholi,, and V. A. Fischetti. 2002. The in vitro interaction of Streptococcus pyogenes with human pharyngeal cells induces a phage-encoded extracellular DNase. Infect. Immun. 70: 2805 2811.
18. Brussow, H.,, C. Canchaya,, and W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560 602.
19. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174: 7495 7499.
20. Campbell, A.,, S. J. Schneider,, and B. Song. 1992. Lambdoid phages as elements of bacterial genomes. Genetica 86: 259 267.
21. Canchaya, C.,, F. Desiere,, W. McShan,, J. Ferretti,, J. Parkhill,, and H. Brussow. 2002. Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology 302: 245- 258.
22. Cantacuzene, J.,, and O. Boncieu. 1926. Modifications subies pare des streptococques d’origine non-scarlatineuse que contact des produits scarlatineux filtres. C. R. Acad. Sci. 182: 1185.
23. Chatellier, S.,, N. Ihendyane,, R. G. Kansal,, F. Khambaty,, H. Basma,, A. Norrby-Teglund,, D. E. Low,, A. McGeer,, and M. Kotb. 2000. Genetic relatedness and superantigen expression in group A streptococcus serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect. Immun. 68: 3523 3534.
24. Chaussee, M. S.,, J. Liu,, D. L. Stevens,, and J. J. Ferretti. 1996. Genetic and phenotypic diversity among isolates of Streptococcus pyogenes from invasive infections. J. Infect. Dis. 173: 901 908.
25. Cleary, P. P.,, Z. Johnson,, and L. Wannamaker. 1975. Genetic instability of M protein and serum opacity factor of group A streptococci: evidence suggesting extrachromosomal control. Infect. Immun. 12: 109 118.
26. Cleary, P. P.,, L. W. Wannamaker,, M. Fisher,, and N. Laible. 1977. Studies of the receptor for phage A25 in group A streptococci: the role of peptidoglycan in reversible adsorption. J. Exp. Med. 145: 578 593.
27. Cleary, P. P.,, E. L. Kaplan,, J. P. Handley,, A. Wlazlo,, M. H. Kim,, A. R. Hauser,, and P. M. Schlievert. 1992. Clonal basis for resurgence of serious Streptococcus pyogenes disease in the 1980s. Lancet 339: 518 521.
28. Cleary, P. P.,, L. McLandsborough,, L. Ikeda,, D. Cue,, J. Krawczak,, and H. Lam. 1998. High-frequency intracellular infection and erythrogenic toxin A expression undergo phase variation in M1 group A streptococci. Mol. Microbiol. 28: 157 167.
29. Colon, A. E.,, R. M. Cole,, and C. G. Leonard. 1970. Transduction in group A streptococci by ultraviolet-irradiated bacteriophages. Can. J. Microbiol. 16: 201 202.
30. Colon, A. E.,, R. M. Cole,, and C. G. Leonard. 1971. Lysis and lysogenization of groups A, C, and G streptococci by a transducing bacteriophage induced from a group G Streptococcus. J. Virol. 8: 103 110.
31. Colon, A. E.,, R. M. Cole,, and C. G. Leonard. 1972. Intergroup lysis and transduction by streptococcal bacteriophages. J. Virol. 9: 551 553.
32. Colon-Whitt, A.,, R. S. Whitt,, and R. M. Cole,. 1979. Production of an erythrogenic toxin (streptococcal pyrogenic exotoxin) by a non-lysogenised group-A streptococcus, p. 64 65. In M. T. Parker (ed.), Pathogenic Streptococci. Reedbooks Ltd., Chertsey, England.
33. Crater, D. L.,, and I. van de Rijn. 1995. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J. Biol. Chem. 270: 18452 18458.
34. Desiere, F.,, S. Lucchini,, and H. Brussow. 1999. Comparative sequence analysis of the DNA packaging, head, and tail morphogenesis modules in the temperate cos-site Streptococcus thermophilus bacteriophage Sfi21. Virology 260: 244 253.
35. Desiere, F.,, R. D. Pridmore,, and H. Brussow. 2000. Comparative genomics of the late gene cluster from Lactobacillus phages. Virol. 275: 294 305.
36. Desiere, F.,, W. M. McShan,, D. van Sinderen,, J. J. Ferretti,, and H. Brussow. 2001. Comparative genomics reveals close genetic relationships between phages from dairy bacteria and pathogenic streptococci: evolutionary implications for prophage-host interactions. Virology 288: 325 341.
37. Evans, A. C. 1933. Inactivation of antistreptococcus bacteriophage by animal fluids. Public Health Rep. 48: 411 426.
38. Evans, A. C. 1934. The prevalence of streptococcus bacteriophage. Science 80: 40 41.
39. Evans, A. C. 1934. Streptococcus bacteriophage: a study of four serological types. Public Health Rep. 49: 1386 1401.
40. Evans, A. C. 1940. The potency of nascent streptococcus bacteriophage B. J. Bacteriol. 39: 597 604.
41. Evans, A. C.,, and E. M. Stockrider. 1942. Another serologic type of streptococcic bacteriophage. J. Bacteriol. 42: 211 214.
42. Ferretti, J. J.,, W. M. McShan,, D. Ajdic,, D. J. Savic,, G. Savic,, K. Lyon,, C. Primeaux,, S. Sezate,, A. N. Suvorov,, S. Kenton,, H. Lai,, S. Lin,, Y. Qian,, H. G. Jia,, F. Z. Najar,, Q. Ren,, H. Zhu,, L. Song,, J. White,, X. Yuan,, S. W. Clifton,, B. A. Roe,, and R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658 4663.
43. Fischetti, V. A.,, and J. B. Zabriskie. 1968. Studies on streptococcal bacteriophages. II. Adsorption studies on group A and group C streptococcal bacteriophages. J. Exp. Med. 127: 489 505.
44. Ford, M. E.,, G. J. Sarkis,, A. E. Belanger,, R. W. Hendrix,, and G. F. Hatfull. 1998. Genome structure of mycobacteriophage D29: implications for phage evolution. J. Mol. Biol. 279: 143 164.
45. Frobisher, M.,, and J. H. Brown. 1927. Transmissible toxicogenicity of streptococci. Bull. Johns Hopkins Hosp. 41: 167 173.
46. Goshorn, S. C.,, and P. M. Schlievert. 1989. Bacteriophage association of streptococcal pyrogenic exotoxin type C. J. Bacteriol. 171: 3068 3073.
47. Graham, M. R.,, L. M. Smoot,, C. A. Migliaccio,, K. Virtaneva,, D. E. Sturdevant,, S. F. Porcella,, M. J. Federle,, G. J. Adams,, J. R. Scott,, and J. M. Musser. 2002. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 99: 13855 13860.
48. Groth, A. C.,, and M. P. Calos. 2004. Phage integrases: biology and applications. J. Mol. Biol. 335: 667 678.
49. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504 508.
50. Hill, J. E.,, and L. W. Wannamaker. 1981. Identification of a lysin associated with a bacteriophage (A25) virulent for group A streptococci. J. Bacteriol. 145: 696 703.
51. Huson, D. H. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68 73.
52. Hyder, S. L.,, and M. M. Streitfeld. 1978. Transfer of erythromycin resistance from clinically isolated lysogenic strains of Streptococcus pyogenes via their endogenous phage. J. Infect. Dis. 138: 281 286.
53. Hynes, W. L.,, and J. J. Ferretti. 1989. Sequence analysis and expression in Escherichia coli of the hyaluronidase gene of Streptococcus pyogenes bacteriophage H4489A. Infect. Immun. 57: 533 539.
54. Hynes, W. L.,, L. Hancock,, and J. J. Ferretti. 1995. Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect. Immun. 63: 3015 3020.
55. Johnson, L. P.,, and P. M. Schlievert. 1983. A physical map of the group A streptococcal pyrogenic exotoxin bacteriophage T12 genome. Mol. Gen. Genet. 189: 251 255.
56. Johnson, L. P.,, and P. M. Schlievert. 1984. Group A streptococcal phage T12 carries the structural gene for pyrogenic exotoxin type A. Mol. Gen. Genet. 194: 52 56.
57. Johnson, L. P.,, P. M. Schlievert,, and D. W. Watson. 1980. Transfer of group A streptococcal pyrogenic exotoxin production to nontoxigenic strains of lysogenic conversion. Infect. Immun. 28: 254 257.
58. Juhala, R. J.,, M. E. Ford,, R. L. Duda,, A. Youlton,, G. F. Hatfull,, and R. W. Hendrix. 2000. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299: 27 51.
59. Kazmi, S. U.,, R. Kansal,, R. K. Aziz,, M. Hooshdaran,, A. Norrby-Teglund,, D. E. Low,, A. B. Halim,, and M. Kotb. 2001. Reciprocal, temporal expression of SpeA and SpeB by invasive M1T1 group a streptococcal isolates in vivo. Infect. Immun. 69: 4988 4995.
60. Kehoe, M. A.,, V. Kapur,, A. M. Whatmore,, and J. M. Musser. 1996. Horizontal gene transfer among group A streptococci: implications for pathogenesis and epidemiology. Trends Microbiol. 4: 436 443.
61. Kjems, E. 1958. Studies on streptococcal bacteriophages. 2. Adsorption, lysogenization, and one-step growth experiments. Acta Pathol. Microbiol. Scand. 42: 56 66.
62. Kjems, E. 1958. Studies on streptococcal bacteriophages. 3. Hyaluronidase produced by the streptococcal phage-host cell system. Acta Pathol. Microbiol. Scand. 44: 429 439.
63. Kjems, E. 1960. Studies on streptococcal bacteriophages. 5. Serological investigation of phages isolated from 91 strains of group A haemolytic streptococci. Acta Pathol. Microbiol. Scand. 49: 205 212.
64. Krause, R. M. 1957. Studies on bacteriophages of hemolytic streptococci. I. Factors influencing the interaction of phage and susceptible host cell. J. Exp. Med. 106: 365 383.
65. LeClerc, J. E.,, and T. A. Cebula. 2000. Pseudomonas survival strategies in cystic fibrosis. Science 289: 391 392.
66. LeClerc, J. E.,, B. Li,, W. L. Payne,, and T. A. Cebula. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208 1211.
67. Leonard, C. G.,, A. E. Colón,, and R. M. Cole. 1968. Transduction in group A streptococcus. Biochem. Biophys. Res. Commun. 30: 130 135.
68. Levin, J.,, and M. Wessels. 1998. Identification of csrR/csrS, a genetic locus that regulates hyaluronic acid capsule synthesis in group A Streptococcus. Mol. Microbiol. 30: 209 219.
69. Lucchini, S.,, F. Desiere,, and H. Brussow. 1999. Similarly organized lysogeny modules in temperate Siphoviridae from low GC content gram-positive bacteria. Virology 263: 427 435.
70. Malke, H. 1969. Transduction of Streptococcus pyogenes K 56. Microbiol. Genet. Bull. 31: 23.
71. Malke, H. 1969. Transduction of Streptococcus pyogenes K 56 by temperature-sensitive mutants of the transducing phage A25. Z. Naturforsch. Teil B 24: 1556 1561.
72. Malke, H. 1970. Characteristics of transducing group A streptococcal bacteriophages A 5 and A 25. Arch. Gesamte Virusforsch. 29: 44 49.
73. Malke, H., 1972. Transduction in group A streptococci. In L. W. Wannamaker, and J. M. Matsen (ed.), Streptococci and Streptococcal Diseases: Recognition, Understanding, and Management. Academic Press, New York, N.Y.
74. Malke, H. 1973. Phage A25-mediated transfer induction of a prophage in Streptococcus pyogenes. Mol. Gen. Genet. 125: 251 264.
75. Marciel, A. M.,, V. Kapur,, and J. M. Musser. 1997. Molecular population genetic analysis of a Streptococcus pyogenes bacteriophage-encoded hyaluronidase gene: recombination contributes to allelic variation. Microb. Pathog. (England) 22: 209 217.
76. Matic, I.,, C. Rayssiguier,, and M. Radman. 1995. Interspecies gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species. Cell 80: 507 515.
77. Matic, I.,, F. Taddei,, and M. Radman. 2000. No genetic barriers between Salmonella enterica serovar typhimurium and Escherichia coli in SOS-induced mismatch repair-deficient cells. J. Bacteriol. 182: 5922 5924.
78. Maxted, W. R. 1952. Enhancement of streptococcal bacteriophage lysis by hyaluronidase. Nature (London) 170: 1020 1021.
79. Maxted, W. R. 1955. The influence of bacteriophage on Streptococcus pyogenes. J. Gen. Microbiol. 12: 484 495.
80. McShan, W. M.,, and J. J. Ferretti. 1997. Genetic diversity in temperate bacteriophages of Streptococcus pyogenes: identification of a second attachment site for phages carrying the erythrogenic toxin A gene. J. Bacteriol. 179: 6509 6511.
81. McShan, W. M.,, and J. J. Ferretti,. 1997. Genetic studies of erythrogenic toxin carrying temperate bacteriophages of Streptococcus pyogenes, p. 971 973. In T. Horaud,, A. Bouvet,, R. Leclercq,, H. D. Montclos,, and M. Sicard (ed.), Streptococci and the Host. Plenum Publishing, New York, N.Y.
82. McShan, W. M.,, Y.-F. Tang,, and J. J. Ferretti. 1997. Bacteriophage T12 of Streptococcus pyogenes integrates into the gene for a serine tRNA. Mol. Microbiol. 23: 719 728.
83. Monod, C.,, F. Repoila,, M. Kutateladze,, F. Tetart,, and H. M. Krisch. 1997. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J. Mol. Biol. 267: 237 249.
84. Musser, J. M.,, V. Kapur,, J. Szeto,, X. Pan,, D. S. Swanson,, and D. R. Martin. 1995. Genetic diversity and relationships among serotype M1 strains of Streptococcus pyogenes. Dev. Biol. Stand. 85: 209 213.
85. Nakagawa, I.,, K. Kurokawa,, A. Yamashita,, M. Nakata,, Y. Tomiyasu,, N. Okahashi,, S. Kawabata,, K. Yamazaki,, T. Shiba,, T. Yasunaga,, H. Hayashi,, M. Hattori,, and S. Hamada. 2003. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13: 1042 1055.
86. Niemann, H.,, A. Birch-Andersen,, E. Kjems,, B. Mansa,, and S. Stirm. 1976. Streptococcal bacteriophage 12/12-borne hyaluronidase and its characterization as a lyase (EC 4.2.99.1) by means of streptococcal hyaluronic acid and purified bacteriophage suspensions. Acta Pathol. Microbiol. Scand. Sect. B 84: 145 153.
87. Pomrenke, M. E.,, and J. J. Ferretti. 1989. Pysical maps of the streptococcal bacteriophage A25 and C1 genomes. J. Basic Microbiol. 29: 395 398.
88. Quinn, R. W. 1989. Comprehensive review of morbidity and mortality trends for rheumatic fever, streptococcal disease, and scarlet fever: the decline of rheumatic fever. Rev. Infect. Dis. 11: 928 953.
89. Read, S. E.,, and R. W. Reed. 1972. Electron microscopy of the replicative events of A25 bacteriophages in group A streptococci. Can. J. Microbiol. 18: 93 96.
90. Richardson, A. R.,, and I. Stojiljkovic. 2001. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol. Microbiol. 40: 645 655.
91. Smoot, J. C.,, K. D. Barbian,, J. J. Van Gompel,, L. M. Smoot,, M. S. Chaussee,, G. L. Sylva,, D. E. Sturdevant,, S. M. Ricklefs,, S. F. Porcella,, L. D. Parkins,, S. B. Beres,, D. S. Campbell,, T. M. Smith,, Q. Zhang,, V. Kapur,, J. A. Daly,, L. G. Veasy,, and J. M. Musser. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99: 4668 4673.
92. Sniegowski, P. 1998. Mismatch repair: origin of species? Curr. Biol. 8: R59 R61.
93. Spanier, J. G.,, and P. P. Cleary. 1980. Bacteriophage control of antiphagocytic determinants in group A streptococci. J. Exp. Med. 152: 1393 1406.
94. Spanier, J. G.,, and P. P. Cleary. 1983. A restriction map and analysis of the terminal reduncacy in the Group A streptococcal bacteriophage SP 24. Virology. 130: 502 513.
95. Stevens, D. L.,, M. H. Tanner,, J. Winship,, R. Swarts,, K. M. Ries,, P. M. Schlievert,, and E. Kaplan. 1989. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N. Engl. J. Med. 321: 1 7.
96. Thompson, P.,, and W. M. McShan. 2003. Bacteriophage regulation of mismatch repair in Streptococcus pyogenes SF370. Abstr. 103rd Annu. Meet. Am. Soc. Microbiol. 2003. American Society for Microbiology, Washington, D.C.
97. Thompson, J. D.,, D. G. Higgins,, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673 4680.
98. Ubukata, K.,, M. Konno,, and R. Fujii. 1975. Transduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenes. J. Antibiot. 28: 681 688.
99. Ventura, M.,, S. Foley,, A. Bruttin,, S. C. Chennoufi,, C. Canchaya,, and H. Brussow. 2002. Transcription mapping as a tool in phage genomics: the case of the temperate Streptococcus thermophilus phage Sfi21. Virology 296: 62 76.
100. Ventura, M.,, C. Canchaya,, M. Kleerebezem,, W. M. de Vos,, R. J. Siezen,, and H. Brussow. 2003. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology 316: 245 255.
101. Wagner, P. L.,, and M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70: 3985 3993.
102. Wannamaker, L. W.,, S. Skjold,, and W. R. Maxted. 1970. Characterization of bacteriophages from nephritogenic group A streptococci. J. Infect. Dis. 121: 407 418.
103. Wannamaker, L. W.,, S. Almquist,, and S. Skjold. 1973. Intergroup phage reactions and transduction between group C and group A streptococci. J. Exp. Med. 137: 1338 1353.
104. Weeks, C. R.,, and J. J. Ferretti. 1984. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect. Immun. 46: 531 536.
105. Weeks, C. R.,, and J. J. Ferretti. 1986. Nucleotide sequence of the type A streptococcal exotoxin gene (erythrogenic toxin) from Streptococcus pyogenes bacteriophage T12. Infect. Immun. 52: 144 150.
106. Williams, K. P. 2002. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res. 30: 866 875.
107. Yu, C.-E. 1990. Molecular characterization of new speA gene-containing bacteriophages and epidemiologic analysis of erythrogenic toxin genes among clinical group A streptococcal strains. Ph.D. dissertation. University of Oklahoma, Oklahoma City, Okla.
108. Yu, C.-E.,, and J. J. Ferretti. 1989. Molecular epidemiologic analysis of the type A streptococcal exotoxin (erythrogenic toxin) gene ( speA) in clinical Streptococcus pyogenes strains. Infect. Immun. 57: 3715 3719.
109. Yu, C. E.,, and J. J. Ferretti. 1991. Frequency of the erythrogenic toxin B and C genes (speB and speC) among clinical isolates of group A streptococci. Infect. Immun. 59: 211 215.
110. Yu, C.-E.,, and J. J. Ferretti. 1991. Molecular characterization of new group A streptococcal bacteriophages containing the gene for streptococcal erythrogenic toxin A ( speA). Mol. Gen. Genet. 231: 161 168.
111. Zabriskie, J. B. 1964. The role of temperate bacteriophage in the production of erythrogenic toxin by group A streptococci. J. Exp. Med. 119: 761 779.
112. Zabriskie, J. B.,, S. E. Read,, and V. A. Fischetti,. 1972. Lysogeny in streptococci, p. 99 118. In L. W. Wannamaker, and J. M. Matsen (ed.), Streptococci and Streptococcal Diseases: Recognition, Understanding, and Management. Academic Press, New York, N.Y.

Tables

Generic image for table
TABLE 1

Prophages and major prophage remnants identified in the sequenced genomes

The complete prophage and major prophage remnants from each of the six completed GAS genomes were analyzed for the site of attachment, duplication sequence, and identifiable toxin genes or other virulence genes. In general, nomenclature used in the annotation of a genome was adopted. Since an annotation for the M6 Manfredo strain has not been yet released, a descriptive nomenclature was adopted based upon the virulence gene associated with the phage or, when lacking such a gene, the site of phage attachment.

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Generic image for table
TABLE 2

Key to Fig. 3

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11
Generic image for table
TABLE 3

Key to Fig. 4

Citation: McShan W. 2006. The Bacteriophages of Group A Streptococci, p 123-142. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error