1887

Chapter 19 : The Cell Wall of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

The Cell Wall of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap19-2.gif

Abstract:

This chapter focuses on biochemical and genetic aspects of covalently linked components of the pneumococcal cell wall. Historically, studies of the pneumococcal cell wall were motivated by such unique features as the presence of choline in the teichoic acids (TAs), the pleiomorphic changes that accompany removal or alteration of choline residues, and structural changes in peptidoglycan that are associated with penicillin resistance. Most recent contributions to the field include immunofluorescence microscopic localization of cell wall synthetic enzymes at sites of wall synthesis, identification of genetic determinants and enzymes that are involved with the synthesis of muropeptide branches, sortase-dependent attachment of proteins, removal of N-acetyl groups from N-acetyl hexosamine residues in the cell wall glycan chains, and removal of phosphoryl choline residues from TAs. The chapter discusses functional anatomy of the cell wall. A considerable clarification concerning determinants of cell wall structure and its relationship to penicillin resistance was obtained by the recent identification of theoperon, which encodes enzymes involved in the synthesis of branched structured muropeptides in the pneumococcal peptidoglycan. Choline is an essential growth factor for all natural isolates of pneumococci, which have to import this nutrient from the growth medium. In this hypothesis, the nutritional requirement for choline resides in a recognition site of the transferase for phospho-amino-alcohols on TA, which may have been altered in the choline-independent strains.

Citation: Tomasz A, Fischer W. 2006. The Cell Wall of , p 230-240. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch19

Key Concept Ranking

Cell Wall Components
0.51852417
Cell Wall
0.51163477
High-Performance Liquid Chromatography
0.4930253
Cell Wall Proteins
0.4244391
0.51852417
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagrammatic sketch of the cell wall membrane complex of pneumococci. Pneumococcal surface protein (PspA) is shown as an example of a surface protein with a choline-binding signature.

Citation: Tomasz A, Fischer W. 2006. The Cell Wall of , p 230-240. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Role of MurM and MurN in cell wall branching. The substrate of the MurM- and MurN-catalyzed branching reaction is lipid II, which is composed of -acetylated disaccharide units of glucosamine (hexagon with G) and muramic acid (hexagon with M) with the pentapeptide chain attached to the M residues. Lipid II is anchored on the plasma membrane through the carrier lipid bactoprenyl pyrophosphate (the zig-zag line). Attachment of the completed precursor to the preexisting cell wall occurs on the outer surface of the plasma membrane by the activity of transglycosylases and transpeptidases. (Reproduced with permission from reference .)

Citation: Tomasz A, Fischer W. 2006. The Cell Wall of , p 230-240. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3a
FIGURE 3a

HPLC elution profiles (A) and structures (B) of stem peptides of the peptidoglycan from the penicillin-susceptible strain R36A and several penicillin-resistant strains that carry different abnormal alleles. Structures of cell wall stem peptides identified in the pneumococcal peptidoglycan of penicillin-susceptible and -resistant strains of pneumococci. (Reproduced with permission from reference .)

Citation: Tomasz A, Fischer W. 2006. The Cell Wall of , p 230-240. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3b
FIGURE 3b

HPLC elution profiles (A) and structures (B) of stem peptides of the peptidoglycan from the penicillin-susceptible strain R36A and several penicillin-resistant strains that carry different abnormal alleles. Structures of cell wall stem peptides identified in the pneumococcal peptidoglycan of penicillin-susceptible and -resistant strains of pneumococci. (Reproduced with permission from reference .)

Citation: Tomasz A, Fischer W. 2006. The Cell Wall of , p 230-240. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap19
1. Behr, T.,, W. Fischer,, J. Peter Katalinic,, and H. Egge. 1992. The structure of pneumococcal lipoteichoic acid. Improved preparation, chemical and mass spectrometric studies. Eur. J. Biochem. 207:10631075.
2. Briles, E. B.,, and A. Tomasz. 1970. Radioautographic evidence for equatorial wall growth in a gram positive bacterium: segregation of choline 3H-labeled teichoic acid. J. Cell Biol. 47:786790.
3. Briles, E. B.,, and A. Tomasz. 1975. Membrane lipoteichoic acid is not a precursor to wall teichoic acid in pneumococci. J. Bacteriol. 122:335337.
4. Brundish, D. E.,, and J. Baddiley. 1968. Pneumococcal C-substance, a ribitol teichoic acid containing choline phosphate. Biochem. J. 110:573582.
5. Cossart, P.,, and R. Jonquieres. 2000. Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc. Natl. Acad. Sci. USA 97:50135015.
6. del as Rivas, B.,, J. L. Garcia,, R. Lopez and,, P. Garcia. 2001. Molecular characterization of the pneumococcal teichoic acid phosphorylcholine esterase. Microb. Drug Resist. 7:213222.
7. Fernandez-Tornero, C.,, E. Garcia,, R. Lopez,, G. Gimenez-Gallego,, and A. Romero. 2002. Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: insights into the dynamics of the active homodimer. J. Mol. Biol. 321:163173.
8. Filipe, S. R.,, and A. Tomasz. 2000. Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc. Natl. Acad. Sci. USA 97:48914896.
9. Filipe, S. R.,, M. G. Pinho,, and A. Tomasz. 2000. Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. J. Biol. Chem. 275:2776827774.
10. Filipe, S. R.,, E. Severina,, and A. Tomasz. 2000. Distribution of the mosaic structured murM genes among natural populations of Streptococcus pneumoniae. J. Bacteriol. 182: 67986805.
11. Filipe, S. R.,, E. Severina,, and A. Tomasz. 2001. Functional analysis of Streptococcus pneumoniae MurM reveals the region responsible for its specificity in the synthesis of peptidoglycan branched peptides. J. Biol. Chem. 276: 3961839628.
12. Filipe, S. R.,, E. Severina,, and A. Tomasz. 2002. The murMN operon: a functional link between antibiotic resistance and antibiotic tolerance in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 99:15501555.
13.. Fischer, W., 1990. Bacterial phosphoglycolipids and lipoteichoic acids, p. 123234. In M. Kates (ed.), Handbook of Lipid Research, Vol. 6, Glycolipids, Phosphoglycolipids, and Sulfoglycolipids. Plenum Press, New York, N.Y.
14. Fischer, H.,, and A. Tomasz. 1985. Peptidoglycan cross-linking and teichoic acid attachment in Streptococcus pneumoniae. J. Bacteriol. 163:4654.
15. Fischer, W.,, T. Behr,, R. Hartmann,, J. P. Katalinic,, and H. Egge. 1993. Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoic acid (C polysaccharide). Eur. J. Biochem. 215:851857.
16. Fiser, A.,, S. R. Filipe,, and A. Tomasz. 2003. Cell wall branches, penicillin resistance and the secrets of the MurM protein. Trends Microbiol. 11:547553.
17. Garcia, P.,, J. L. Garcia,, E. Garcia,, and R. Lopez. 1989. Purification and characterization of the autolysin glycosidase of Streptococcus pneumoniae. Biochem. Biophys. Res. Commun. 158:251256.
18. Garcia, P.,, M. P. Gonzalez,, E. Garcia,, R. Lopez,, and J. L. Garcia. 1999. LytB, a novel pneumococcal murein hydrolase essential for cell separation. Mol. Microbiol. 31: 12751277.
19. Garcia, J. L.,, A. R. Sanchez-Beato,, F. J. Medrano,, and R. Lopez,. 2000. Versatility of choline-binding domain, p. 231245. In A. Tomasz (ed.), Streptococcus pneumoniae, Molecular Biology and Mechanisms of Disease. Mary Ann Liebert Inc., Larchmont, N.Y.
20. Garcia-Bustos, J.,, and A. Tomasz. 1990. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc. Natl. Acad. Sci. USA 87:54145419.
21. Garcia-Bustos, J. F.,, B. T. Chait,, and A. Tomasz. 1987. Structure of the peptide network of pneumococcal peptidoglycan. J. Biol. Chem. 262:1540015405.
22. Giudicelli, S.,, and A. Tomasz. 1984. Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J. Bacteriol. 158:11881190.
23. Goebel, W. F.,, T. Shedlovsky,, G. I. Lavin,, and M. H. Adams. 1943. The heterophil antigen of Pneumococcus. J. Biol. Chem. 148:115.
24. Gosink, K. K.,, E. R. Mann,, C. Guglielmo,, E. I. Tuomanen,, and H. R. Masure. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun. 68:56905695.
25. Hakenbeck, R.,, A. Konig,, I. Kern,, M. vanderLinden,, W. Keck,, D. Billot-Klein,, R. Legrand,, B. Schoot,, and L. Gutmann. 1998. Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J. Bacteriol. 180:18311840.
26. Hoeltje, J.-V.,, and A. Tomasz. 1974. Teichoic acid phosphorylcholine esterase. A novel enzyme activity in pneumococcus. J. Biol. Chem. 249:70327034.
27. Holtje, J.-V.,, and A. Tomasz. 1975. Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl- L-alanine amidase of pneumococcus. J. Biol. Chem. 250:60726076.
28. Hoskins, J.,, W. E. Alborn, Jr.,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff,, S. T. Estrem,, L. Fritz,, D. J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, J. S. Glass,, H. Khoja,, A. R. Kraft,, R. E. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Roberson,, P. Rockey,, P. M. Sun,, M. E. Winkler,, Y. Yang,, M. Young- Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, S. R. Jaskunas,, P. R. Rosteck, Jr.,, P. L. Skatrud,, and J. I. Glass. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183:57095717.
29. Jennings, H. J.,, Young. 1980. Structure of the complex polysaccharide C-substance from Streptococcus pneumoniae type 1. Biochemistry 19:47124719.
30. Kamerling, J. P., 2000. Pneumococcal polysaccharides: a chemical view, p. 81115. In A. Tomasz (ed.), Streptococcus pneumoniae, Molecular Biology and Mechanisms of Disease. Mary Ann Liebert Inc., Larchmont, N.Y.
31. Kharat, A. S.,, and A. Tomasz. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun. 71:27582765.
32. Klein, R. A.,, R. Hartmann,, H. Egge,, T. Behr,, and W. Fischer. 1996. The aqueous solution structure of a lipoteichoic acid from Streptococcus pneumoniae strain R6 containing 2,4-diamino-2,4,6-trideoxy-galactose: evidence for conformational mobility of the galactopyranose ring. Carbohyd. Res. 281:7998.
33. Laitinen, H.,, and A. Tomasz. 1990. Changes in composition of peptidoglycan during maturation of the cell wall in pneumococci. J. Bacteriol. 172:59615967.
34. Liu, T.-Y.,, and E. C. Gotschlich. 1967. Muramic acid phosphate as a component of the muropeptide of Gram-positive bacteria. J. Biol. Chem. 242:471476.
35. Lopez, R.,, E. Garcia,, P. Garcia,, and J. L. Garcia,. 2000. The pneumococcal cell wall degrading enzymes: a modular design to creat new lysins?, p. 197211. In A. Tomasz (ed.), Streptococcus pneumoniae, Molecular Biology and Mechanisms of Disease. Mary Ann Liebert Inc., Larchmont, N.Y.
36. Morlot, C.,, A. Zapun,, O. Dideberg,, and T. Vernet. 2003. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol. Microbiol. 50:845855.
37. Morlot, C.,, M. Noirclerc-Savoye,, A. Zapun,, O. Dideberg,, and T. Vernet. 2004. The D, D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol. Microbiol. 51:16411648.
38. Mosser, J. L.,, and A. Tomasz. 1970. Choline-containing teichoic acid as a structural component of pneumococcal cell wall and its role in sensitivity to lysis by an autolytic enzyme. J. Biol. Chem. 245:287298.
39. Rane, L.,, and Y. Subbarow. 1940. Nutritional requirements of the pneumococcus. 1. Growth factors for types I, II, V, VII, VIII. J. Bacteriol. 40:695704.
40. Rohrer, S.,, and B. Berger-Bachi. 2003. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob. Agents Chemother. 47:837846.
41. Severin, A.,, and A. Tomasz. 1996. Naturally occurring peptidoglycan variants of Streptococcus pneumoniae. J. Bacteriol. 178:168174.
42. Severin, A.,, C. Schuster,, R. Hakenbeck,, and A. Tomasz. 1992. Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae. J. Bacteriol. 174: 51525155.
43. Severin, A.,, M. V. Vaz Pato,, A. M. Sa Figueiredo,, and A. Tomasz. 1995. Drastic changes in the peptidoglycan composition of penicillin resistant laboratory mutants of Streptococcus pneumoniae. FEMS Microbiol. Lett. 130:3135.
44. Severin, A.,, A. M. S. Figueiredo,, and A. Tomasz. 1996. Separation of abnormal cell wall composition from penicillin resistance through genetic transformation of Streptococcus pneumoniae. J. Bacteriol. 178:17881792.
45. Severin, A.,, D. Horne,, and A. Tomasz. 1997. Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae. Microb. Drug Resist. 3:391400.
46. Severin, A.,, E. Severina,, and A. Tomasz. 1997. Abnormal physiological properties and altered cell wall composition in Streptococcus pneumoniae grown in the presence of clavulanic acid. Antimicrob. Agents Chemother. 41:504510.
47. Smith, A. M.,, and K. P. Klugman. 2000. Non-penicillin-binding protein mediated high-level penicillin and cephalosporin resistance in a Hungarian clone of Streptococcus pneumoniae. Microb. Drug Resist. 6:105110.
48. Sørensen, U. B. S.,, and J. Henrichsen. 1987. Cross reaction between pneumococci and other streptococci due to C polysaccharide and F antigen. J. Clin. Microbiol. 25: 18541859.
49. Sørensen, U. B. S.,, J. Blom,, A. Birch-Andersen,, and J. Henrichsen. 1988. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infect. Immun. 56:18901896.
50. Tillet, W. S.,, W. F. Goebel,, and O. T. Avery. 1930. Chemical and immunological properties of a species-specific carbohydrate of pneumococci. J. Exp. Med. 52:895900.
51. Tomasz, A. 1967. Choline in the cell wall of a bacterium: novel type of polymer-linked choline in pneumococcus. Science 157:694697.
52. Tomasz, A. 1968. Biological consequences of the replacement of choline by ethanolamine in the cell wall of pneumococcus: chain formation, loss of transformability, and loss of autolysis. Proc. Natl. Acad. Sci. USA 59:8693.
53. Tomasz, A., 2000. Streptococcus pneumoniae: functional anatomy, p. 923. In A. Tomasz (ed.), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert, Inc., New York, N.Y.
54. Vollmer, W.,, and A. Tomasz. 2000. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J. Biol. Chem. 275:2049620501.
55. Vollmer, W.,, and A. Tomasz. 2001. Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol. Microbiol. 39:16101622.
56. Vollmer, W.,, and A. Tomasz. 2002. Peptidoglycan N-acetylglucosamine deacetylase (PgdA)—a putative virulence factor in Streptocococcus pneumoniae. Infect. Immun. 70:71767178.
57. Wagner, M. 1964. Studies with fluorescent antibodies of growing bacteria. I. Regeneration of the cell wall in Diplococcus pneumoniae. Zentbl. Bakteriol. Parasitenkd. 195:8793.
58. Weber, B.,, K. Ehlert,, A. Diehl,, P. Reichmann,, H. Labischinski,, and R. Hakenbeck. 2000. The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated beta-lactam resistance. FEMS Microbiol. Lett. 188:8185.
59. Yother, J.,, K. Leopold,, J. White,, and W. Fischer. 1998. Generation and properties of a Streptococcus pneumoniae mutant which does not require choline or analogs for growth. J. Bacteriol. 180:20932101.
60. Zighelboim, S.,, and A. Tomasz. 1980. Penicillin-binding proteins of the multiply antibiotic-resistant South African strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 17:434442.

Tables

Generic image for table
TABLE 1

Cell wall peptide composition of several strains of

Reproduced from reference with permission.

Citation: Tomasz A, Fischer W. 2006. The Cell Wall of , p 230-240. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error