1887

Chapter 2 : Surface Proteins on Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Surface Proteins on Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap02-2.gif

Abstract:

In an effort to emphasize the complexity of bacterial surface molecules and their use in the everyday life of the bacterium, this chapter focuses on those surface proteins found on gram-positive bacteria. In general, surface proteins in gram-positive bacteria can be separated into three categories: (i) those that anchor at their C-terminal ends (through an LPXTG motif), (ii) those that bind by way of charge or hydrophobic interactions, and (iii) those that bind via their N-terminal region (lipoproteins). Because extensive cytoplasmic domains are not present within the surface proteins thus far identified in gram-positive bacteria, it is unlikely that the binding of these molecules to specific ligands in the bacterial cell surface induces a cytoplasmic signal to activate a gene product. It is more likely that binding initiates a conformational signal on the bacterial cell surface to perform a specific function. Attempting to sort out when and how the binding proteins function during the infection process will be the challenge for future studies.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2

Key Concept Ranking

Bacterial Cell Wall
0.42863974
Aromatic Amino Acids
0.4138941
0.42863974
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Major surface structures of the cell wall of gram-positive bacteria. Linked to the surface of the peptidoglycan, many gram-positive organisms have polysaccharide structures that in some cases are used for their immunological classification. Surface proteins are linked by three mechanisms. (i) Lipoproteins have a lipid linked through a cysteine at the N terminus. (ii) C-terminal-anchored proteins are attached and stabilized in the peptidoglycan through a C-terminal complex containing an LPXTG motif. (Most surface proteins are anchored in this way.) (iii) Certain surface proteins are attached through hydrophobic and/or charge interactions to the cell surface. (Some proteins are bound ionically to the lipoteichoic acid.) The teichoic acids (TA) are a common feature of the gram-positive cell wall. TA is usually composed of a repeating carbohydrate-phosphate polymer linked through a phosphodiester linkage to the peptidoglycan. Lipoteichoic acid (LTA) is composed of a similar polymer linked to the cytoplasmic membrane through a fatty acid (see chapter 19, this volume).

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Characteristics of the complete M6 protein sequence. Blocks A, B, C, and D designate the location of the sequence repeat blocks. Block C3 is half the size of blocks C1 and C2. Shadowed blocks indicate those in which the sequence diverges from the central consensus sequence. Pro/Gly denotes the proline- and glycine-rich region likely located in the peptidoglycan. Membrane anchor is a 19-hydrophobic-amino-acid region adjacent to a 6-amino-acid charged tail. Pepsin identifies the position of the pepsin-sensitive site after amino acid 228. The C-terminal end is located within the cell wall and membrane.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Complete M6 protein sequence arranged to highlight the seven-residue periodicity found in the helical central rod region. Region assignments are based on sequence and conformational analyses. Arrangement of the sequence is based on the position of amino acids in a seven-residue periodicity designated by letters a through g beginning at residue 12 and continuing through residue 362, with interruptions at residues 109, 131, 156, 181, 206, 231, and 337. Alignment from residue 363 to 416 is used essentially to highlight the regularity of the position of prolines in the sequence. No periodicity is found from residue 417 to the end. Three major regions are indicated (nonhelical, helical, and anchor). The pepsin-sensitive site is between Ala-228 and Lys-229.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Fluorescein-labeled anti-M6 antibody analysis of the appearance of M6 protein on streptococcal cell walls. M6 streptococci were treated with trypsin to remove surface M protein. Cells, reincubated at 37°C, were removed at intervals, fixed, and stained with fluorescein-labeled anti-M6 antibody. (a) After 10 min of incubation the M protein is located within a thin band at the position of the newly forming septum. Magnification, ×5,000. (b) Location of the M protein after 40 min of incubation. Note that no fluorescein label is seen in the position of the old wall. Magnification, ×6,000.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

() Computer-generated model of the C-terminal end of the M protein sequence (residues 371 to 441). A comparable region is found in all C-terminal-anchored surface proteins from gram-positive bacteria (see Table 1 ). The predicted location of this segment of the molecule is shown in the cytoplasm, membrane, and peptidoglycan. The space between the membrane and peptidoglycan (wall region) may be considered the “periplasm” of the gram-positive bacterium. The figure was generated on a Steller computer using the Quanta 2.1A program for energy minimization.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Characteristics of C-terminal-anchored surface proteins. These proteins fall into three basic categories: those with multiple repeats, single repeats, or no repeats. Proteins with a single repeat located close to the cell wall are the most common. Anchor is the region of the molecule located within the cell wall carbohydrate and peptidoglycan.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Conformational characteristics of the surface molecules from gram-positive bacteria. The sequences were analyzed by the Garnier-Robson algorithm supplied with the EuGene protein analysis package. The location within these molecules of regions exhibiting random coil (C), β-turn (T), β-sheet (S), and α-helix (H) are designated. Sequences were derived from the references listed in Table 1 . Shaded areas are those containing a seven-residue periodicity based on the Matcher program. Proteins T6 and wapA exhibit no extended helical regions or seven-residue periodicity.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Appearance of the surface of gram-positive bacteria exhibiting a wide array of protein molecules. Each molecule depicted may have thousands of identical copies densely packed on the surface.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap2
1. Barnett, T. C.,, and J. R. Scott. 2002. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J. Bacteriol. 184: 2181 2191.
2. Bensing, B. A.,, B. W. Gibson,, and P. M. Sullam. 2004. The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J. Bacteriol. 186: 638 645.
3. Berge, A.,, and U. Sjobring. 1993. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J. Biol.Chem. 268: 25417 25424.
4. Berry, A. M.,, R. A. Lock,, S. M. Thomas,, D. P. Rajan,, D. Hansman,, and J. C. Paton. 1994. Cloning and nucleotide sequence of the Streptococcus pneumoniae hyaluronidase gene and purification of the enzyme from recombinant Escherichia coli. Infect. Immun. 62: 1101 1108.
5. Bessen, D. E.,, and V. A. Fischetti. 1992. Nucleotide sequences of two adjacent M and M-like protein genes of group A streptococci: different RNA transcript levels and identification of a unique IgA-binding protein. Infect. Immun. 60: 124 135.
6. Bierne, H.,, S. K. Mazmanian,, M. Trost,, M. G. Pucciarelli,, G. Liu,, P. Dehoux, the European Listeria Genome Consortium, L. Jansch, F. Garcia-Del Portillo, O. Schneewind, and P. Cossart. 2002. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Molec. Microbiol. 43: 869 881.
7. Blom, A. M.,, K. Berggard,, J. H. Webb,, G. Lindahl,, B. O. Villoutreix,, and B. Dahlback. 2000. Human C4b-binding protein has overlapping, but not identical, binding sites for C4b and streptococcal M proteins. J. Immunol. 164: 5328 5336.
8. Boden, M. K.,, and J.-I. Flock. 1994. Cloning and characterization of a gene for a 19kDa fibrinogen-binding protein from Staphylococcus aureus. Mol. Microbiol. 12: 599 606.
9. Burne, R. A.,, and J. E. C. Penders. 1993. Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-beta-D-fructosidase. Infect. Immun. 60: 4621 4632.
10. Camara, M.,, G. J. Boulnois,, P. W. Andrew,, and T. J. Mitchell. 1994. A neuraminidase from Streptococcus pneumonia has the features of a surface protein. Infect. Immun. 62: 3688 3695.
11. Chen, C. C.,, and P. P. Cleary. 1990. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 265: 3161 3167.
12. Cheung, A. L.,, and V. A. Fischetti. 1988. Variation in the expression of cell wall proteins of Staphylococcus aureus grown on solid and liquid media. Infect. Immun. 56: 1061 1065.
13. Cheung, A. I.,, S. J. Projan,, R. E. Edelstein,, and V. A. Fischetti. 1995. Cloning, expression, and nucleotide sequence of a Staphylococcus aureus (fbpA) encoding a fibrinogen-binding protein. Infect. Immun. 63: 1914 1920.
14. Cole, R. M.,, and J. J. Hahn. 1962. Cell wall replication in Streptococcus pyogenes. Science 135: 722 724.
15. Collins, C. M.,, A. Kimura,, and A. L. Bisno. 1992. Group G streptococcal M protein exhibits structural features analogous to those of class I M protein of group A streptococci. Infect. Immun. 60: 3689 3696.
16. Courtney, H. S.,, Y. Li,, J. B. Dale,, and D. L. Hasty. 1994. Cloning, sequencing, and expression of a fibronectin/fibrinogen-binding protein from group A streptococci. Infect. Immun. 62: 3937 3946.
17. de Chateau, M.,, and L. Bjorck. 1994. Protein PAB, a mosaic albumin-binding bacterial protein representing the first contemporary example of module shuffling. J. Biol. Chem. 269: 12147 12151.
18. Derbise, A.,, Y. P. Song,, S. Parikh,, V. A. Fischetti,, and V. Pancholi. 2004. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect. Immun. 72: 94 105.
19. Dramsi, S.,, P. Dehoux,, M. Lebrun,, P. L. Goossens,, and P. Cossart. 1998. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65: 1615 1625.
20. Dryla, A.,, D. Gelbmann,, and A. N. E. von Gabain. 2003. Identification of a novel iron-regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol. Microbiol. 49: 37 53.
21. Errington, J.,, L. Appleby,, R. A. Daniel,, H. Goodfellow,, S. R. Partridge,, and M. D. Yudkin. 1992. Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for epsilon G activity at an intermediate stage of sporulation. J. Gen. Microbiol. 138: 2609 2618.
22. Ferretti, J. J.,, R. R. B. Russell,, and M. L. Dao. 1989. Sequence analysis of the wall-associated protein precursor of Streptococcus mutans antigen A. Mol. Microbiol. 3: 469 478.
23. Fischetti, V. A. 1989. Streptococcal M protein: molecular design and biological behavior. Clin. Microbiol. Rev. 2: 285 314.
24. Fischetti, V. A.,, M. Jarymowycz,, K. F. Jones,, and J. R. Scott. 1986. Streptococcal M protein size mutants occur at high frequency within a single strain. J. Exp. Med. 164: 971 980.
25. Fischetti, V. A.,, D. A. D. Parry,, B. L. Trus,, S. K. Hollingshead,, J. R. Scott,, and B. N. Manjula. 1988. Conformational characteristics of the complete sequence of group A streptococcal M6 protein. Proteins: Struct. Funct. Genet. 3: 60 69.
26. Fischetti, V. A.,, V. Pancholi,, and O. Schneewind. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins of gram-positive cocci. Mol. Microbiol. 4: 1603 1605.
27. Fischetti, V. A.,, G. M. Landau,, P. H. Sellers,, and J. P. Schmidt. 1993. Identifying periodic occurrences of a template with applications to protein structure. Inform. Process. Lett. 45: 11 18.
28. Frithz, E.,, L.-O. Heden,, and G. Lindahl. 1989. Extensive sequence homology between IgA receptor and M protein in Streptococcus pyogenes. Mol. Microbiol. 3: 1111 1119.
29. Gaillard, J. L.,, P. Berche,, C. Frehel,, E. Gouin,, and P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by a repeat protein analogous to surface antigens from gram-positive, extracellular pathogens. Cell 65: 1127 1141.
30. Galli, D.,, F. Lottspeich,, and R. Wirth. 1990. Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol. Microbiol. 4: 895 904.
31. Garnier, J.,, D. J. Osguthorpe,, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120: 97 120.
32. Gomi, H.,, T. Hozumi,, S. Hattori,, C. Tagawa,, F. Kishimoto,, and L. Bjorck. 1990. The gene sequence and some properties of protein H. J. Immunol. 144: 4046 4052.
33. Guss, B.,, M. Uhlen,, B. Nilsson,, M. Lindberg,, J. Sjoquist,, and J. Sjodahl. 1984. Region X, the cell-wall-attachment part of staphylococcal protein A. Eur. J. Biochem. 138: 413 420.
34. Haanes, E. J.,, and P. P. Cleary. 1989. Identification of a divergent M protein gene and an M protein related gene family in serotype 49 Streptococcus pyogenes. J. Bacteriol. 171: 6397 6408.
35. Heath, D. G.,, and P. P. Cleary. 1989. Fc-receptor and M protein genes of group A streptococci are products of gene duplication. Proc. Natl. Acad. Sci. USA 86: 4741 4745.
36. Heden, L.-O.,, E. Frithz,, and G. Lindahl. 1991. Molecular characterization of an IgA receptor from Group B streptococci: sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur. J. Immunol. 21: 1481 1490.
37. Hell, W.,, H.-G. W. Meyer,, and S. G. Gatermann. 1998. Cloning of aas, a gene encoding a S taphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29: 871 881.
38. Holck, A.,, and H. Naes. 1992. Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO 151. J. Gen. Microbiol. 138: 1353 1364.
39. Hollingshead, S. K.,, V. A. Fischetti,, and J. R. Scott. 1986. Complete nucleotide sequence of type 6 M protein of the group A streptococcus: repetitive structure and membrane anchor. J. Biol. Chem. 261: 1677 1686.
40. Horstmann, R. D.,, H. J. Sievertsen,, J. Knobloch,, and V. A. Fischetti. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein Factor H. Proc. Natl. Acad. Sci. USA 85: 1657 1661.
41. Horstmann, R. D.,, H. J. Sievertsen,, M. Leippe,, and V. A. Fischetti. 1992. Role of fibrinogen in complement inhibition by streptococcal M protein. Infect. Immun. 60: 5036 5041.
42. Iannelli, F.,, M. Oggioni,, and G. Pozzi. 2002. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284: 63 71.
43. Inoue, S.,, M. Sugai,, Y. Murooka,, S.-Y. Paik,, Y.-M. Hong,, H. Ohgai,, and H. Suginaka. 1991. Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus. Biochem. Biophys. Res. Commun. 174: 459 464.
44. Jaffe, J.,, S. Natanson-Yaron,, M. G. Caparon,, and E. Hanski. 1996. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21: 373 384.
45. Johnsson, E.,, A. Thern,, B. Dahlback,, L.-O. Heden,, M. Wikstrom,, and G. Lindahl. 1996. A highly variable region in members of the streptococcal M protein family binds the human complement regulator C4BP. J. Immunol. 157: 3021 3029.
46. Johnsson, H.,, H. Lindmark,, and B. Guss. 1995. A protein G-related cell surface protein in Streptococcus zooepidemicus. Infect. Immun. 63: 2968 2975.
47. Jonsson, K.,, C. Signas,, H.-P. Muller,, and M. Lindberg. 1991. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. Eur. J. Biochem. 202: 1041 1048.
48. Kao, S.-M.,, S. B. Olmsted,, A. S. Viksnins,, J. C. Gallo,, and G. M. Dunny. 1991. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J. Bacteriol. 173: 7650 7664.
49. Kastern, W.,, U. Sjobring,, and L. Bjorck. 1992. Structure of peptostreptococcal protein L and identification of a repeated immunoglobulin light chain-binding domain. J. Biol. Chem. 267: 12820 12825.
50. Katsukawa, C. 1994. Cloning and nucleotide sequence of type 3 M protein gene (emm3) consisting of an N-terminal variable portion and C-terminal conserved C repeat regions: relation to other genes of Streptococcus pyogenes. J. Jpn. Assoc. Infect. Dis. 68: 698 705.
51. Kelly, C.,, P. Evans,, L. Bergmeier,, S. F. Lee,, F. A. Progulske,, A. C. Harris,, A. Aitken,, A. S. Bleiweis,, and T. Lerner. 1990. Sequence analysis of a cloned streptococcal surface antigen I/II. FEBS Lett. 258: 127 132.
52. Kharat, A. S., and A. Tomasz. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun. 71: 2758 2765.
53. Kline, J. B.,, S. Xu,, A. L. Bisno,, and C. M. Collins. 1996. Identification of a fibronectin-binding protein (GfbA) in pathogenic group G streptococci. Infect. Immun. 64: 2122 2129.
54. Kok, J.,, K. J. Leenhouts,, A. J. Haandrikman,, A. M. Ledeboer,, and G. Venema. 1988. Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 231 238.
55. Kozarov, E.,, J. Whitlock,, H. Dong,, E. Carrasco,, and A. Progulske-Fox. 1998. The number of direct repeats in hagA is variable among Porphyromonas gingivalis strains. Infect. Immun. 66: 4721 4725.
56. Kreikemeyer, B.,, S. R. Talay,, and G. S. Chhatwal. 1995. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol. Microbiol. 17: 137 145.
57. Lansing, M.,, S. Lellig,, A. Mausolf,, I. Martini,, F. Crescenzi,, M. O’Regan,, and P. Prehm. 1993. Hyaluronate synthases: cloning and sequencing of the gene from Streptococcus sp. Biochem. J. 289: 179 184.
58. Lee, S. G.,, and V. A. Fischetti. 2003. Presence of Dalanine in an endopeptidase from Streptococcus pyogenes. J. Biol. Chem. 278: 46649 46653.
59. Lee, S. G.,, V. Pancholi,, and V. A. Fischetti. 2002. Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of gram-positive bacteria. J. Biol. Chem. 277: 46912 46922.
60. Levesque, C.,, C. Vadeboncoeur,, and M. Frenette. 2004. The csp operon of Streptococcus salivarius encodes two predicted cell-surface proteins, one of which, CspB, is associated with the fimbriae. Microbiology 150: 189 198.
61. Lindgren, P.-E.,, M. J. McGavin,, C. Signas,, B. Guss,, S. Gurusiddappa,, M. Hook,, and M. Lindberg. 1993. Two different genes coding for fibronectin-binding proteins from Streptococcus dysgalactiae. The complete nucleotide sequences and characterization of the binding domain. Eur. J. Biochem. 214: 819 827.
62. Manjula, B. N.,, K. M. Khandke,, T. Fairwell,, W. A. Relf,, and K. S. Sripakash. 1991. Heptad motifs within the distal subdomain of the coiled-coil rod region of M protein from rheumatic fever and nephritis associated serotypes of group A streptococci are distinct from each other: nucleotide sequence of the M57 gene and relation of the deduced amino acid sequence of other M proteins. J. Protein Chem. 10: 369 383.
63. Mazmanian, S. K.,, G. Liu,, H. Ton-That,, and O. Schneewind. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285: 760 763.
64. Mazmanian, S. K.,, G. Liu,, E. R. Jensen,, E. Lenoy,, and O. Schneewind. 2000. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97: 5510 5515.
65. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11: 237 248.
66. Michel, J. L.,, L. C. Madoff,, K. Olson,, D. E. Kling,, D. L. Kasper,, and F. M. Ausubel. 1992. Large, identical, tandem repeating units in the C protein alpha antigen gene, bca, of group B streptococci. Proc. Natl. Acad. Sci. USA 89: 10060 10064.
67. Miller, L.,, L. Gray,, E. H. Beachey,, and M. A. Kehoe. 1988. Antigenic variation among group A streptococcal M proteins: nucleotide sequence of the serotype 5 M protein gene and its relationship with genes encoding types 6 and 24 M proteins. J. Biol. Chem. 263: 5668 5673.
68. Mouw, A. R.,, E. H. Beachey,, and V. Burdett. 1988. Molecular evolution of streptococcal M protein: cloning and nucleotide sequence of type 24 M protein gene and relation to other genes of Streptococcus pyogenes. J. Bacteriol. 170: 676 684.
69. Navarre, W. W.,, and O. Schneewind. 1994. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 14: 115 121.
70. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63: 174 229.
71. Nilsson, A.,, L. Frykberg,, J.-I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermis. Infect. Immun. 66: 2666 2673.
72. Okada, N.,, M. K. Liszewski,, J. P. Atkinson,, and M. Caparon. 1995. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of group A streptococcus. Proc. Natl. Acad. Sci. USA 92: 2489 2493.
73. Okahashi, N.,, C. Sasakawa,, S. Yoshikawa,, S. Hamada,, and T. Koga. 1989. Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans implicated in dental caries. Mol. Microbiol. 3: 673 678.
74. Olsson, A.,, M. Eliasson,, B. Guss,, B. Nilsson,, U. Hellman,, M. Lindberg,, and M. Uhlen. 1987. Structure and evolution of the repetitive gene encoding streptococcal protein G. Eur. J. Biochem. 168: 319 324.
75. Osaki, M.,, D. Takamatsu,, Y. Shimoji,, and T. Sekizaki. 2002. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J. Bacteriol. 184: 971 982.
76. O’Toole, P.,, L. Stenberg,, M. Rissler,, and G. Lindahl. 1992. Two major classes in the M protein family in group A streptococci. Proc. Natl. Acad. Sci. USA 89: 8661 8665.
77. Pallen, M. J.,, A. C. Lam,, M. Antonio,, and K. Dunbar. 2001. An embarrassment of sortases—a richness of substrates? Trends Microbiol. 9: 97 102.
78. Pancholi, V.,, and V. A. Fischetti. 1988. Isolation and characterization of the cell-associated region of group A streptococcal M6 protein. J. Bacteriol. 170: 2618 2624.
79. Pancholi, V.,, and V. A. Fischetti. 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med. 176: 415 426.
80. Pancholi, V.,, and V. A. Fischetti. 1993. Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Acad. Sci. USA 90: 8154 8158.
81. Pancholi, V.,, and V. A. Fischetti. 1998. α-enolase, a novel strong plasmin(ogen) binding protein of the surface of pathogenic streptococci. J. Biol. Chem. 273: 14503 14515.
82. Patti, J. M.,, H. Jonsson,, B. Guss,, L. M. Switalski,, K. Wiberg,, M. Lindberg,, and M. Hook. 1992. Molecular characterizations and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J. Biol. Chem. 267: 4766 4772.
83. Phillips, G. N.,, P. F. Flicker,, C. Cohen,, B. N. Manjula,, and V. A. Fischetti. 1981. StreptococcalMprotein: alpha-helical coiled-coil structure and arrangement on the cell surface. Proc. Natl. Acad. Sci. USA 78: 4689 4693.
84. Rakonjac, J. V.,, J. C. Robbins,, and V. A. Fischetti. 1995. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect. Immun. 63: 622 631.
85. Rathsam, C.,, P. M. Giffard,, and N. A. Jacques. 1993. The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system. J. Bacteriol. 175: 4520 4527.
86. Robbins, J. C.,, J. G. Spanier,, S. J. Jones,, W. J. Simpson,, and P. P. Cleary. 1987. Streptococcus pyogenes type 12 M protein regulation by upstream sequences. J. Bacteriol. 169: 5633 5640.
87. Rocha, C. L.,, and V. A. Fischetti. 1999. Identification and characterization of a novel fibronectin-binding protein on the surface of group A streptococci. Infect. Immun. 67: 2720 2728.
88. Roche, F. M.,, R. Massey,, S. J. Peacock,, N. P. J. Day,, L. Visai,, P. Speziale,, A. Lam,, M. Pallen,, and T. J. Foster. 2003. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149: 643 654.
89. Rothe, B.,, P. Roggentin,, R. Frank,, H. Blocker,, and R. Schauer. 1989. Cloning, sequencing and expression of sialidase gene from Clostridium sordellii. J. Gen. Microbiol. 135: 3087 3096.
90. Ryan, P. A.,, V. Pancholi,, and V. A. Fischetti. 2001. Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors. Infect. Immun. 69: 7402 7412.
91. Ryc, M.,, E. H. Beachy,, and E. Whitnack. 1989. Ultra-structural localization of the fibrinogen-binding domain of streptococcal M protein. Infect. Immun. 57: 2397 2404.
92. Schneewind, O.,, K. F. Jones,, and V. A. Fischetti. 1990. Sequence and structural characterization of the trypsin-resistant T6 surface protein of group A streptococci. J. Bacteriol. 172: 3310 3317.
93. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268: 103 106.
94. Schneewind, O.,, P. Model,, and V. A. Fischetti. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70: 267 281.
95. Sela, S.,, A. Aviv,, A. Tovi,, I. Burstein,, M. G. Caparon,, and E. Hanski. 1993. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol. Microbiol. 10: 1049 1055.
96. Shimoji, Y.,, Y. Ogawa,, M. Osaki,, H. Kabeya,, S. Maruyama,, T. Mikami,, and T. Sekizaki. 2003. Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. J. Bacteriol. 185: 2739 2748.
97. Signas, C.,, G. Raucci,, K. Jonsson,, P. Lindgren,, G. M. Anantharamaiah,, M. Hook,, and M. Lindberg. 1989. Nucleotide sequence of the gene for fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc. Natl. Acad. Sci. USA 86: 699 703.
98. Sjobring, U. 1992. Isolation and molecular characterization of a novel albumin-binding protein from group G streptococci. Infect. Immun. 60: 3601 3608.
99. Smith, H. E.,, U. Vecht,, A. L. J. Gielkens,, and M. A. Smits. 1992. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect. Immun. 60: 2361 2367.
100. Sutcliffe, I. C.,, and D. J. Harrington. 2002. Pattern searches for the identification of putative lipoprotein genes in gram-positive bacterial genomes. Microbiology 148: 2065 2077.
101. Sutcliffe, I. C.,, and R. R. B. Russell. 1995. Lipoproteins of gram-positive bacteria. J. Bacteriol. 177: 1123 1128.
102. Suvorov, A. N.,, A. E. Flores,, and P. Ferrieri. 1997. Cloning of the glutamine synthetase gene from group B streptococci. Infect. Immun. 65: 191 196.
103. Swanson, J.,, K. C. Hsu,, and E. C. Gotschlich. 1969. Electron microscopic studies on streptococci. I. M antigen. J. Exp. Med. 130: 1063 1091.
104. Talay, S. R.,, M. P. Grammel,, and G. S. Chhatwal. 1996. Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules. Biochem. J. 315: 577 582.
105. Talay, S. R.,, P. Valentin-Weigand,, P. G. Jerlstrom,, K. N. Timmis,, and G. S. Chhatwal. 1992. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect. Immun. 60: 3837 3844.
106. Tanimoto, K.,, F. Y. An,, and D. B. Clewell. 1993. Characterization of the traC determinant of the Enterococcus faecalis hemolysin-bacteriocin plasmid pAD1: binding of sex pheromone. J. Bacteriol. 175: 5260 5264.
107. Thanassi, D. G.,, E. T. Saulino,, M. J. Lombardo,, R. Roth,, J. Heuser,, and S. J. Hultgren. 1998. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc. Natl. Acad. Sci. USA 95: 3146 3151.
108. Timoney, J. F.,, S. C. Artiushin,, and J. S. Boschwitz. 1997. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe. Infect. Immun. 65: 3600 3605.
109. Tokuda, M.,, N. Okahashi,, I. Takahashi,, M. Nakai,, S. Nagaoka,, M. Kawagoe,, and T. Koga. 1991. Complete nucleotide sequence of the gene for a surface protein antigen of Streptococcus sobrinus. Infect. Immun. 59: 3309 3312.
110. Ton-That, H.,, G. Liu,, S. K. Mazmanian,, K. F. Faull,, and O. Schneewind. 1999. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96: 12424 12429.
111. Uhlen, M.,, B. Guss,, B. Nilsson,, S. Gatenbeck,, L. Philipson,, and M. Lindberg. 1984. Complete sequence of the staphylococcal gene encoding protein A. J. Biol. Chem. 259: 1695 1702 & 13628.
112. Waltman, W. D.,, L. S. McDaniel,, B. M. Gray,, and D. E. Briles. 1990. Variation in the molecular weight of PspA (pneumococcal surface protein A) among Streptococcus pneumoniae. Microb. Pathog. 8: 61 69.
113. Wanda, S.-Y.,, and R. Curtiss III. 1994. Purification and characterization of Streptococcus sobrinus dextranase produced in recombinant Escherichia coli and sequence analysis of the dextranase gene. J. Bacteriol. 176: 3839 3850.
114. Weidlich, G.,, R. Wirth,, and D. Galli. 1992. Sex pheromone plasmid pADI-encoded surface exclusion protein of Enterococcus faecalis. Mol. Gen. Genet. 233: 161 168.
115. Wu, H. Y.,, M. H. Nahm,, Y. Guo,, M. W. Russel,, and D. E. Briles. 1997. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. J. Infect. Dis. 175: 839 846.
116. Yeung, M. K.,, and J. O. Cisar. 1988. Cloning and nucleotide sequence of a gene for Actinomyces naeslundii 45 type 2 fimbriae. J. Bacteriol. 170: 3803 3809.
117. Yeung, M. K.,, and J. O. Cisar. 1990. Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J. Bacteriol. 172: 2462 2468.
118. Yeung, M. K.,, J. A. Donkersloot,, J. O. Cisar,, and P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect. Immun. 66: 1482 1491.
119. Yother, J.,, and D. E. Briles. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174: 601 609.

Tables

Generic image for table
TABLE 1

C-terminal-linked sequenced surface proteins from gram-positive bacteria

Surface proteins: proteins that have been identified to have a C-terminal anchor motif, but the function is unknown.

L,72/72; P, 72/72; (X); T, 59/72; G, 61/72.

NA, not available.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Generic image for table
TABLE 2

Glycolytic enzymes found on the surface of microorganisms

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; TPI, triosphosphate isomerase; PGM, phosphoglycerate mutase.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error