1887

Chapter 2 : Surface Proteins on Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Surface Proteins on Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap02-2.gif

Abstract:

In an effort to emphasize the complexity of bacterial surface molecules and their use in the everyday life of the bacterium, this chapter focuses on those surface proteins found on gram-positive bacteria. In general, surface proteins in gram-positive bacteria can be separated into three categories: (i) those that anchor at their C-terminal ends (through an LPXTG motif), (ii) those that bind by way of charge or hydrophobic interactions, and (iii) those that bind via their N-terminal region (lipoproteins). Because extensive cytoplasmic domains are not present within the surface proteins thus far identified in gram-positive bacteria, it is unlikely that the binding of these molecules to specific ligands in the bacterial cell surface induces a cytoplasmic signal to activate a gene product. It is more likely that binding initiates a conformational signal on the bacterial cell surface to perform a specific function. Attempting to sort out when and how the binding proteins function during the infection process will be the challenge for future studies.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2

Key Concept Ranking

Bacterial Cell Wall
0.42863974
Aromatic Amino Acids
0.4138941
0.42863974
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Major surface structures of the cell wall of gram-positive bacteria. Linked to the surface of the peptidoglycan, many gram-positive organisms have polysaccharide structures that in some cases are used for their immunological classification. Surface proteins are linked by three mechanisms. (i) Lipoproteins have a lipid linked through a cysteine at the N terminus. (ii) C-terminal-anchored proteins are attached and stabilized in the peptidoglycan through a C-terminal complex containing an LPXTG motif. (Most surface proteins are anchored in this way.) (iii) Certain surface proteins are attached through hydrophobic and/or charge interactions to the cell surface. (Some proteins are bound ionically to the lipoteichoic acid.) The teichoic acids (TA) are a common feature of the gram-positive cell wall. TA is usually composed of a repeating carbohydrate-phosphate polymer linked through a phosphodiester linkage to the peptidoglycan. Lipoteichoic acid (LTA) is composed of a similar polymer linked to the cytoplasmic membrane through a fatty acid (see chapter 19, this volume).

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Characteristics of the complete M6 protein sequence. Blocks A, B, C, and D designate the location of the sequence repeat blocks. Block C3 is half the size of blocks C1 and C2. Shadowed blocks indicate those in which the sequence diverges from the central consensus sequence. Pro/Gly denotes the proline- and glycine-rich region likely located in the peptidoglycan. Membrane anchor is a 19-hydrophobic-amino-acid region adjacent to a 6-amino-acid charged tail. Pepsin identifies the position of the pepsin-sensitive site after amino acid 228. The C-terminal end is located within the cell wall and membrane.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Complete M6 protein sequence arranged to highlight the seven-residue periodicity found in the helical central rod region. Region assignments are based on sequence and conformational analyses. Arrangement of the sequence is based on the position of amino acids in a seven-residue periodicity designated by letters a through g beginning at residue 12 and continuing through residue 362, with interruptions at residues 109, 131, 156, 181, 206, 231, and 337. Alignment from residue 363 to 416 is used essentially to highlight the regularity of the position of prolines in the sequence. No periodicity is found from residue 417 to the end. Three major regions are indicated (nonhelical, helical, and anchor). The pepsin-sensitive site is between Ala-228 and Lys-229.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Fluorescein-labeled anti-M6 antibody analysis of the appearance of M6 protein on streptococcal cell walls. M6 streptococci were treated with trypsin to remove surface M protein. Cells, reincubated at 37°C, were removed at intervals, fixed, and stained with fluorescein-labeled anti-M6 antibody. (a) After 10 min of incubation the M protein is located within a thin band at the position of the newly forming septum. Magnification, ×5,000. (b) Location of the M protein after 40 min of incubation. Note that no fluorescein label is seen in the position of the old wall. Magnification, ×6,000.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

() Computer-generated model of the C-terminal end of the M protein sequence (residues 371 to 441). A comparable region is found in all C-terminal-anchored surface proteins from gram-positive bacteria (see Table 1 ). The predicted location of this segment of the molecule is shown in the cytoplasm, membrane, and peptidoglycan. The space between the membrane and peptidoglycan (wall region) may be considered the “periplasm” of the gram-positive bacterium. The figure was generated on a Steller computer using the Quanta 2.1A program for energy minimization.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Characteristics of C-terminal-anchored surface proteins. These proteins fall into three basic categories: those with multiple repeats, single repeats, or no repeats. Proteins with a single repeat located close to the cell wall are the most common. Anchor is the region of the molecule located within the cell wall carbohydrate and peptidoglycan.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Conformational characteristics of the surface molecules from gram-positive bacteria. The sequences were analyzed by the Garnier-Robson algorithm supplied with the EuGene protein analysis package. The location within these molecules of regions exhibiting random coil (C), β-turn (T), β-sheet (S), and α-helix (H) are designated. Sequences were derived from the references listed in Table 1 . Shaded areas are those containing a seven-residue periodicity based on the Matcher program. Proteins T6 and wapA exhibit no extended helical regions or seven-residue periodicity.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Appearance of the surface of gram-positive bacteria exhibiting a wide array of protein molecules. Each molecule depicted may have thousands of identical copies densely packed on the surface.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap2
1. Barnett, T. C.,, and J. R. Scott. 2002. Differential recognition of surface proteins in Streptococcus pyogenes by two sortase gene homologs. J. Bacteriol. 184:21812191.
2. Bensing, B. A.,, B. W. Gibson,, and P. M. Sullam. 2004. The Streptococcus gordonii platelet binding protein GspB undergoes glycosylation independently of export. J. Bacteriol. 186:638645.
3. Berge, A.,, and U. Sjobring. 1993. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J. Biol.Chem. 268:2541725424.
4. Berry, A. M.,, R. A. Lock,, S. M. Thomas,, D. P. Rajan,, D. Hansman,, and J. C. Paton. 1994. Cloning and nucleotide sequence of the Streptococcus pneumoniae hyaluronidase gene and purification of the enzyme from recombinant Escherichia coli. Infect. Immun. 62:11011108.
5. Bessen, D. E.,, and V. A. Fischetti. 1992. Nucleotide sequences of two adjacent M and M-like protein genes of group A streptococci: different RNA transcript levels and identification of a unique IgA-binding protein. Infect. Immun. 60:124135.
6. Bierne, H.,, S. K. Mazmanian,, M. Trost,, M. G. Pucciarelli,, G. Liu,, P. Dehoux, the European Listeria Genome Consortium, L. Jansch, F. Garcia-Del Portillo, O. Schneewind, and P. Cossart. 2002. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Molec. Microbiol. 43:869881.
7. Blom, A. M.,, K. Berggard,, J. H. Webb,, G. Lindahl,, B. O. Villoutreix,, and B. Dahlback. 2000. Human C4b-binding protein has overlapping, but not identical, binding sites for C4b and streptococcal M proteins. J. Immunol. 164:53285336.
8. Boden, M. K.,, and J.-I. Flock. 1994. Cloning and characterization of a gene for a 19kDa fibrinogen-binding protein from Staphylococcus aureus. Mol. Microbiol. 12:599606.
9. Burne, R. A.,, and J. E. C. Penders. 1993. Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-beta-D-fructosidase. Infect. Immun. 60:46214632.
10. Camara, M.,, G. J. Boulnois,, P. W. Andrew,, and T. J. Mitchell. 1994. A neuraminidase from Streptococcus pneumonia has the features of a surface protein. Infect. Immun. 62:36883695.
11. Chen, C. C.,, and P. P. Cleary. 1990. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 265:31613167.
12. Cheung, A. L.,, and V. A. Fischetti. 1988. Variation in the expression of cell wall proteins of Staphylococcus aureus grown on solid and liquid media. Infect. Immun. 56:10611065.
13. Cheung, A. I.,, S. J. Projan,, R. E. Edelstein,, and V. A. Fischetti. 1995. Cloning, expression, and nucleotide sequence of a Staphylococcus aureus (fbpA) encoding a fibrinogen-binding protein. Infect. Immun. 63:19141920.
14. Cole, R. M.,, and J. J. Hahn. 1962. Cell wall replication in Streptococcus pyogenes. Science 135:722724.
15. Collins, C. M.,, A. Kimura,, and A. L. Bisno. 1992. Group G streptococcal M protein exhibits structural features analogous to those of class I M protein of group A streptococci. Infect. Immun. 60:36893696.
16. Courtney, H. S.,, Y. Li,, J. B. Dale,, and D. L. Hasty. 1994. Cloning, sequencing, and expression of a fibronectin/fibrinogen-binding protein from group A streptococci. Infect. Immun. 62:39373946.
17. de Chateau, M.,, and L. Bjorck. 1994. Protein PAB, a mosaic albumin-binding bacterial protein representing the first contemporary example of module shuffling. J. Biol. Chem. 269:1214712151.
18. Derbise, A.,, Y. P. Song,, S. Parikh,, V. A. Fischetti,, and V. Pancholi. 2004. Role of the C-terminal lysine residues of streptococcal surface enolase in Glu- and Lys-plasminogen-binding activities of group A streptococci. Infect. Immun. 72:94105.
19. Dramsi, S.,, P. Dehoux,, M. Lebrun,, P. L. Goossens,, and P. Cossart. 1998. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65:16151625.
20. Dryla, A.,, D. Gelbmann,, and A. N. E. von Gabain. 2003. Identification of a novel iron-regulated staphylococcal surface protein with haptoglobin-haemoglobin binding activity. Mol. Microbiol. 49:3753.
21. Errington, J.,, L. Appleby,, R. A. Daniel,, H. Goodfellow,, S. R. Partridge,, and M. D. Yudkin. 1992. Structure and function of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for epsilonG activity at an intermediate stage of sporulation. J. Gen. Microbiol. 138: 26092618.
22. Ferretti, J. J.,, R. R. B. Russell,, and M. L. Dao. 1989. Sequence analysis of the wall-associated protein precursor of Streptococcus mutans antigen A. Mol. Microbiol. 3:469478.
23. Fischetti, V. A. 1989. Streptococcal M protein: molecular design and biological behavior. Clin. Microbiol. Rev. 2:285314.
24. Fischetti, V. A.,, M. Jarymowycz,, K. F. Jones,, and J. R. Scott. 1986. Streptococcal M protein size mutants occur at high frequency within a single strain. J. Exp. Med. 164: 971980.
25. Fischetti, V. A.,, D. A. D. Parry,, B. L. Trus,, S. K. Hollingshead,, J. R. Scott,, and B. N. Manjula. 1988. Conformational characteristics of the complete sequence of group A streptococcal M6 protein. Proteins: Struct. Funct. Genet. 3:6069.
26. Fischetti, V. A.,, V. Pancholi,, and O. Schneewind. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins of gram-positive cocci. Mol. Microbiol. 4:16031605.
27. Fischetti, V. A.,, G. M. Landau,, P. H. Sellers,, and J. P. Schmidt. 1993. Identifying periodic occurrences of a template with applications to protein structure. Inform. Process. Lett. 45:1118.
28. Frithz, E.,, L.-O. Heden,, and G. Lindahl. 1989. Extensive sequence homology between IgA receptor and M protein in Streptococcus pyogenes. Mol. Microbiol. 3:11111119.
29. Gaillard, J. L.,, P. Berche,, C. Frehel,, E. Gouin,, and P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by a repeat protein analogous to surface antigens from gram-positive, extracellular pathogens. Cell 65:11271141.
30. Galli, D.,, F. Lottspeich,, and R. Wirth. 1990. Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pAD1. Mol. Microbiol. 4:895904.
31. Garnier, J.,, D. J. Osguthorpe,, and B. Robson. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120:97120.
32. Gomi, H.,, T. Hozumi,, S. Hattori,, C. Tagawa,, F. Kishimoto,, and L. Bjorck. 1990. The gene sequence and some properties of protein H. J. Immunol. 144:40464052.
33. Guss, B.,, M. Uhlen,, B. Nilsson,, M. Lindberg,, J. Sjoquist,, and J. Sjodahl. 1984. Region X, the cell-wall-attachment part of staphylococcal protein A. Eur. J. Biochem. 138: 413420.
34. Haanes, E. J.,, and P. P. Cleary. 1989. Identification of a divergent M protein gene and an M protein related gene family in serotype 49 Streptococcus pyogenes. J. Bacteriol. 171:63976408.
35. Heath, D. G.,, and P. P. Cleary. 1989. Fc-receptor and M protein genes of group A streptococci are products of gene duplication. Proc. Natl. Acad. Sci. USA 86:47414745.
36. Heden, L.-O.,, E. Frithz,, and G. Lindahl. 1991. Molecular characterization of an IgA receptor from Group B streptococci: sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur. J. Immunol. 21:14811490.
37. Hell, W.,, H.-G. W. Meyer,, and S. G. Gatermann. 1998. Cloning of aas, a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol. Microbiol. 29:871881.
38. Holck, A.,, and H. Naes. 1992. Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Lactobacillus paracasei subsp. paracasei NCDO 151. J. Gen. Microbiol. 138:13531364.
39. Hollingshead, S. K.,, V. A. Fischetti,, and J. R. Scott. 1986. Complete nucleotide sequence of type 6 M protein of the group A streptococcus: repetitive structure and membrane anchor. J. Biol. Chem. 261:16771686.
40. Horstmann, R. D.,, H. J. Sievertsen,, J. Knobloch,, and V. A. Fischetti. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein Factor H. Proc. Natl. Acad. Sci. USA 85:16571661.
41. Horstmann, R. D.,, H. J. Sievertsen,, M. Leippe,, and V. A. Fischetti. 1992. Role of fibrinogen in complement inhibition by streptococcal M protein. Infect. Immun. 60:50365041.
42. Iannelli, F.,, M. Oggioni,, and G. Pozzi. 2002. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284:6371.
43. Inoue, S.,, M. Sugai,, Y. Murooka,, S.-Y. Paik,, Y.-M. Hong,, H. Ohgai,, and H. Suginaka. 1991. Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from Staphylococcus aureus. Biochem. Biophys. Res. Commun. 174:459464.
44. Jaffe, J.,, S. Natanson-Yaron,, M. G. Caparon,, and E. Hanski. 1996. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21:373384.
45. Johnsson, E.,, A. Thern,, B. Dahlback,, L.-O. Heden,, M. Wikstrom,, and G. Lindahl. 1996. A highly variable region in members of the streptococcal M protein family binds the human complement regulator C4BP. J. Immunol. 157:30213029.
46. Johnsson, H.,, H. Lindmark,, and B. Guss. 1995. A protein G-related cell surface protein in Streptococcus zooepidemicus. Infect. Immun. 63:29682975.
47. Jonsson, K.,, C. Signas,, H.-P. Muller,, and M. Lindberg. 1991. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. Eur. J. Biochem. 202:10411048.
48. Kao, S.-M.,, S. B. Olmsted,, A. S. Viksnins,, J. C. Gallo,, and G. M. Dunny. 1991. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J. Bacteriol. 173:76507664.
49. Kastern, W.,, U. Sjobring,, and L. Bjorck. 1992. Structure of peptostreptococcal protein L and identification of a repeated immunoglobulin light chain-binding domain. J. Biol. Chem. 267:1282012825.
50. Katsukawa, C. 1994. Cloning and nucleotide sequence of type 3 M protein gene (emm3) consisting of an N-terminal variable portion and C-terminal conserved C repeat regions: relation to other genes of Streptococcus pyogenes. J. Jpn. Assoc. Infect. Dis. 68:698705.
51. Kelly, C.,, P. Evans,, L. Bergmeier,, S. F. Lee,, F. A. Progulske,, A. C. Harris,, A. Aitken,, A. S. Bleiweis,, and T. Lerner. 1990. Sequence analysis of a cloned streptococcal surface antigen I/II. FEBS Lett. 258:127132.
52. Kharat, A. S., and A. Tomasz. 2003. Inactivation of the srtA gene affects localization of surface proteins and decreases adhesion of Streptococcus pneumoniae to human pharyngeal cells in vitro. Infect. Immun. 71:27582765.
53. Kline, J. B.,, S. Xu,, A. L. Bisno,, and C. M. Collins. 1996. Identification of a fibronectin-binding protein (GfbA) in pathogenic group G streptococci. Infect. Immun. 64:21222129.
54. Kok, J.,, K. J. Leenhouts,, A. J. Haandrikman,, A. M. Ledeboer,, and G. Venema. 1988. Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54:231238.
55. Kozarov, E.,, J. Whitlock,, H. Dong,, E. Carrasco,, and A. Progulske-Fox. 1998. The number of direct repeats in hagA is variable among Porphyromonas gingivalis strains. Infect. Immun. 66:47214725.
56. Kreikemeyer, B.,, S. R. Talay,, and G. S. Chhatwal. 1995. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol. Microbiol. 17:137145.
57. Lansing, M.,, S. Lellig,, A. Mausolf,, I. Martini,, F. Crescenzi,, M. O’Regan,, and P. Prehm. 1993. Hyaluronate synthases: cloning and sequencing of the gene from Streptococcus sp. Biochem. J. 289:179184.
58. Lee, S. G.,, and V. A. Fischetti. 2003. Presence of Dalanine in an endopeptidase from Streptococcus pyogenes. J. Biol. Chem. 278:4664946653.
59. Lee, S. G.,, V. Pancholi,, and V. A. Fischetti. 2002. Characterization of a unique glycosylated anchor endopeptidase that cleaves the LPXTG sequence motif of cell surface proteins of gram-positive bacteria. J. Biol. Chem. 277:4691246922.
60. Levesque, C.,, C. Vadeboncoeur,, and M. Frenette. 2004. The csp operon of Streptococcus salivarius encodes two predicted cell-surface proteins, one of which, CspB, is associated with the fimbriae. Microbiology 150:189198.
61. Lindgren, P.-E.,, M. J. McGavin,, C. Signas,, B. Guss,, S. Gurusiddappa,, M. Hook,, and M. Lindberg. 1993. Two different genes coding for fibronectin-binding proteins from Streptococcus dysgalactiae. The complete nucleotide sequences and characterization of the binding domain. Eur. J. Biochem. 214:819827.
62. Manjula, B. N.,, K. M. Khandke,, T. Fairwell,, W. A. Relf,, and K. S. Sripakash. 1991. Heptad motifs within the distal subdomain of the coiled-coil rod region of M protein from rheumatic fever and nephritis associated serotypes of group A streptococci are distinct from each other: nucleotide sequence of the M57 gene and relation of the deduced amino acid sequence of other M proteins. J. Protein Chem. 10:369383.
63. Mazmanian, S. K.,, G. Liu,, H. Ton-That,, and O. Schneewind. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760763.
64. Mazmanian, S. K.,, G. Liu,, E. R. Jensen,, E. Lenoy,, and O. Schneewind. 2000. Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97:55105515.
65. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11:237248.
66. Michel, J. L.,, L. C. Madoff,, K. Olson,, D. E. Kling,, D. L. Kasper,, and F. M. Ausubel. 1992. Large, identical, tandem repeating units in the C protein alpha antigen gene, bca, of group B streptococci. Proc. Natl. Acad. Sci. USA 89:1006010064.
67. Miller, L.,, L. Gray,, E. H. Beachey,, and M. A. Kehoe. 1988. Antigenic variation among group A streptococcal M proteins: nucleotide sequence of the serotype 5 M protein gene and its relationship with genes encoding types 6 and 24 M proteins. J. Biol. Chem. 263:56685673.
68. Mouw, A. R.,, E. H. Beachey,, and V. Burdett. 1988. Molecular evolution of streptococcal M protein: cloning and nucleotide sequence of type 24 M protein gene and relation to other genes of Streptococcus pyogenes. J. Bacteriol. 170:676684.
69. Navarre, W. W.,, and O. Schneewind. 1994. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 14:115121.
70. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174229.
71. Nilsson, A.,, L. Frykberg,, J.-I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen-binding protein of Staphylococcus epidermis. Infect. Immun. 66:26662673.
72. Okada, N.,, M. K. Liszewski,, J. P. Atkinson,, and M. Caparon. 1995. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of group A streptococcus. Proc. Natl. Acad. Sci. USA 92:24892493.
73. Okahashi, N.,, C. Sasakawa,, S. Yoshikawa,, S. Hamada,, and T. Koga. 1989. Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans implicated in dental caries. Mol. Microbiol. 3:673678.
74. Olsson, A.,, M. Eliasson,, B. Guss,, B. Nilsson,, U. Hellman,, M. Lindberg,, and M. Uhlen. 1987. Structure and evolution of the repetitive gene encoding streptococcal protein G. Eur. J. Biochem. 168:319324.
75. Osaki, M.,, D. Takamatsu,, Y. Shimoji,, and T. Sekizaki. 2002. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J. Bacteriol. 184:971982.
76. O’Toole, P.,, L. Stenberg,, M. Rissler,, and G. Lindahl. 1992. Two major classes in the M protein family in group A streptococci. Proc. Natl. Acad. Sci. USA 89:86618665.
77. Pallen, M. J.,, A. C. Lam,, M. Antonio,, and K. Dunbar. 2001. An embarrassment of sortases—a richness of substrates? Trends Microbiol. 9:97102.
78. Pancholi, V.,, and V. A. Fischetti. 1988. Isolation and characterization of the cell-associated region of group A streptococcal M6 protein. J. Bacteriol. 170:26182624.
79. Pancholi, V.,, and V. A. Fischetti. 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med. 176:415426.
80. Pancholi, V.,, and V. A. Fischetti. 1993. Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Acad. Sci. USA 90:81548158.
81. Pancholi, V.,, and V. A. Fischetti. 1998. α-enolase, a novel strong plasmin(ogen) binding protein of the surface of pathogenic streptococci. J. Biol. Chem. 273:1450314515.
82. Patti, J. M.,, H. Jonsson,, B. Guss,, L. M. Switalski,, K. Wiberg,, M. Lindberg,, and M. Hook. 1992. Molecular characterizations and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J. Biol. Chem. 267:47664772.
83. Phillips, G. N.,, P. F. Flicker,, C. Cohen,, B. N. Manjula,, and V. A. Fischetti. 1981. StreptococcalMprotein: alpha-helical coiled-coil structure and arrangement on the cell surface. Proc. Natl. Acad. Sci. USA 78:46894693.
84. Rakonjac, J. V.,, J. C. Robbins,, and V. A. Fischetti. 1995. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect. Immun. 63:622631.
85. Rathsam, C.,, P. M. Giffard,, and N. A. Jacques. 1993. The cell-bound fructosyltransferase of Streptococcus salivarius: the carboxyl terminus specifies attachment in a Streptococcus gordonii model system. J. Bacteriol. 175:45204527.
86. Robbins, J. C.,, J. G. Spanier,, S. J. Jones,, W. J. Simpson,, and P. P. Cleary. 1987. Streptococcus pyogenes type 12 M protein regulation by upstream sequences. J. Bacteriol. 169:56335640.
87. Rocha, C. L.,, and V. A. Fischetti. 1999. Identification and characterization of a novel fibronectin-binding protein on the surface of group A streptococci. Infect. Immun. 67:27202728.
88. Roche, F. M.,, R. Massey,, S. J. Peacock,, N. P. J. Day,, L. Visai,, P. Speziale,, A. Lam,, M. Pallen,, and T. J. Foster. 2003. Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149:643654.
89. Rothe, B.,, P. Roggentin,, R. Frank,, H. Blocker,, and R. Schauer. 1989. Cloning, sequencing and expression of sialidase gene from Clostridium sordellii. J. Gen. Microbiol. 135: 30873096.
90. Ryan, P. A.,, V. Pancholi,, and V. A. Fischetti. 2001. Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors. Infect. Immun. 69:74027412.
91. Ryc, M.,, E. H. Beachy,, and E. Whitnack. 1989. Ultra-structural localization of the fibrinogen-binding domain of streptococcal M protein. Infect. Immun. 57:23972404.
92. Schneewind, O.,, K. F. Jones,, and V. A. Fischetti. 1990. Sequence and structural characterization of the trypsin-resistant T6 surface protein of group A streptococci. J. Bacteriol. 172:33103317.
93. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103106.
94. Schneewind, O.,, P. Model,, and V. A. Fischetti. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267281.
95. Sela, S.,, A. Aviv,, A. Tovi,, I. Burstein,, M. G. Caparon,, and E. Hanski. 1993. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol. Microbiol. 10:10491055.
96. Shimoji, Y.,, Y. Ogawa,, M. Osaki,, H. Kabeya,, S. Maruyama,, T. Mikami,, and T. Sekizaki. 2003. Adhesive surface proteins of Erysipelothrix rhusiopathiae bind to polystyrene, fibronectin, and type I and IV collagens. J. Bacteriol. 185: 27392748.
97. Signas, C.,, G. Raucci,, K. Jonsson,, P. Lindgren,, G. M. Anantharamaiah,, M. Hook,, and M. Lindberg. 1989. Nucleotide sequence of the gene for fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc. Natl. Acad. Sci. USA 86:699703.
98. Sjobring, U. 1992. Isolation and molecular characterization of a novel albumin-binding protein from group G streptococci. Infect. Immun. 60:36013608.
99. Smith, H. E.,, U. Vecht,, A. L. J. Gielkens,, and M. A. Smits. 1992. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (muramidase-released protein) of Streptococcus suis type 2. Infect. Immun. 60:23612367.
100. Sutcliffe, I. C.,, and D. J. Harrington. 2002. Pattern searches for the identification of putative lipoprotein genes in gram-positive bacterial genomes. Microbiology 148:20652077.
101. Sutcliffe, I. C.,, and R. R. B. Russell. 1995. Lipoproteins of gram-positive bacteria. J. Bacteriol. 177:11231128.
102. Suvorov, A. N.,, A. E. Flores,, and P. Ferrieri. 1997. Cloning of the glutamine synthetase gene from group B streptococci. Infect. Immun. 65:191196.
103. Swanson, J.,, K. C. Hsu,, and E. C. Gotschlich. 1969. Electron microscopic studies on streptococci. I. M antigen. J. Exp. Med. 130:10631091.
104. Talay, S. R.,, M. P. Grammel,, and G. S. Chhatwal. 1996. Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules. Biochem. J. 315:577582.
105. Talay, S. R.,, P. Valentin-Weigand,, P. G. Jerlstrom,, K. N. Timmis,, and G. S. Chhatwal. 1992. Fibronectin-binding protein of Streptococcus pyogenes: sequence of the binding domain involved in adherence of streptococci to epithelial cells. Infect. Immun. 60:38373844.
106. Tanimoto, K.,, F. Y. An,, and D. B. Clewell. 1993. Characterization of the traC determinant of the Enterococcus faecalis hemolysin-bacteriocin plasmid pAD1: binding of sex pheromone. J. Bacteriol. 175:52605264.
107. Thanassi, D. G.,, E. T. Saulino,, M. J. Lombardo,, R. Roth,, J. Heuser,, and S. J. Hultgren. 1998. The PapC usher forms an oligomeric channel: implications for pilus biogenesis across the outer membrane. Proc. Natl. Acad. Sci. USA 95:31463151.
108. Timoney, J. F.,, S. C. Artiushin,, and J. S. Boschwitz. 1997. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe. Infect. Immun. 65:36003605.
109. Tokuda, M.,, N. Okahashi,, I. Takahashi,, M. Nakai,, S. Nagaoka,, M. Kawagoe,, and T. Koga. 1991. Complete nucleotide sequence of the gene for a surface protein antigen of Streptococcus sobrinus. Infect. Immun. 59:33093312.
110. Ton-That, H.,, G. Liu,, S. K. Mazmanian,, K. F. Faull,, and O. Schneewind. 1999. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96:1242412429.
111. Uhlen, M.,, B. Guss,, B. Nilsson,, S. Gatenbeck,, L. Philipson,, and M. Lindberg. 1984. Complete sequence of the staphylococcal gene encoding protein A. J. Biol. Chem. 259:16951702 & 13628.
112. Waltman, W. D.,, L. S. McDaniel,, B. M. Gray,, and D. E. Briles. 1990. Variation in the molecular weight of PspA (pneumococcal surface protein A) among Streptococcus pneumoniae. Microb. Pathog. 8:6169.
113. Wanda, S.-Y.,, and R. Curtiss III. 1994. Purification and characterization of Streptococcus sobrinus dextranase produced in recombinant Escherichia coli and sequence analysis of the dextranase gene. J. Bacteriol. 176:38393850.
114. Weidlich, G.,, R. Wirth,, and D. Galli. 1992. Sex pheromone plasmid pADI-encoded surface exclusion protein of Enterococcus faecalis. Mol. Gen. Genet. 233:161168.
115. Wu, H. Y.,, M. H. Nahm,, Y. Guo,, M. W. Russel,, and D. E. Briles. 1997. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. J. Infect. Dis. 175:839846.
116. Yeung, M. K.,, and J. O. Cisar. 1988. Cloning and nucleotide sequence of a gene for Actinomyces naeslundii 45 type 2 fimbriae. J. Bacteriol. 170:38033809.
117. Yeung, M. K.,, and J. O. Cisar. 1990. Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J. Bacteriol. 172:24622468.
118. Yeung, M. K.,, J. A. Donkersloot,, J. O. Cisar,, and P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect. Immun. 66:14821491.
119. Yother, J.,, and D. E. Briles. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174:601609.

Tables

Generic image for table
TABLE 1

C-terminal-linked sequenced surface proteins from gram-positive bacteria

Surface proteins: proteins that have been identified to have a C-terminal anchor motif, but the function is unknown.

L,72/72; P, 72/72; (X); T, 59/72; G, 61/72.

NA, not available.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2
Generic image for table
TABLE 2

Glycolytic enzymes found on the surface of microorganisms

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; TPI, triosphosphate isomerase; PGM, phosphoglycerate mutase.

Citation: Fischetti V. 2006. Surface Proteins on Gram-Positive Bacteria, p 12-26. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error