1887

Chapter 20 : Streptococcus pneumoniae Capsular Polysaccharide

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Streptococcus pneumoniae Capsular Polysaccharide, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap20-2.gif

Abstract:

This chapter summarizes the current state of knowledge on the capsular polysaccharide (CPS) of , with particular reference to the genes encoding biosynthesis of this most important of all pneumococcal surface antigens. The functions of many of the individual genes in the loci await confirmation by conventional biochemical and genetic analysis. Nevertheless, access to the enormous body of information now available on sequence databases, combined with knowledge of the chemical structures for many of the CPS repeat units, has enabled accurate predictions of function for a significant proportion of these genes. It has also been possible to predict the mechanisms of CPS biosynthesis in pneumococci by analogy with those operating in gram-negative bacteria. The existence of two distinct mechanisms for CPS biosynthesis in has already been recognized. However, much remains to be learned about the precise molecular events involved in both of these processes, and about how CPS production in pneumococci is regulated. Further biochemical and mutational analyses are also required to elucidate the precise functions of the four genes at the 5' end of the loci, which clearly encode important common steps in polysaccharide biosynthesis in pneumococci, as well as in other gram-positive genera. Given the importance of capsules to the virulence of and several other gram-positive pathogens, such conserved components of the CPS biosynthesis machinery may prove to be useful targets for novel antimicrobial strategies.

Citation: Paton J, Morona J. 2006. Streptococcus pneumoniae Capsular Polysaccharide, p 241-252. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch20

Key Concept Ranking

Pneumococcal Conjugate Vaccine
0.49796334
Reverse Transcriptase PCR
0.44616386
Humoral Immune Response
0.41259578
0.49796334
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Organization of the loci from various serotypes. The organizations are based on published data for types 1 ( ), 2 ( ), 3 ( ), 4, ( ), 5 (GenBank accession no. AY336008), 6B ( ), 8 ( ), 9V ( ), 14 ( ), 15B ( ), 15C ( ), 18C ( ), 19F ( ), 19A ( ), 19B ( ), 19C ( ), 23F ( ), and 33F ( ). Gene and locus designations are as published. Open reading frames (ORFs) within the DNA sequence are indicated by large boxed arrows. Highly conserved ORFs, or those encoding proteins belonging to a particular functional group, are identified as shown in the legend below the figure. Assignment of an ORF to a given function-related group has been based on the published information for each locus, as well as on additional database comparisons for some of the ORFs. The narrow boxed arrows represent cryptic ORFs not required for CPS biosynthesis in the respective serotype.

Citation: Paton J, Morona J. 2006. Streptococcus pneumoniae Capsular Polysaccharide, p 241-252. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of the CPS biological repeat unit structures of serotypes 6A, 6B, 14, 15B, 15C, 19F, 19A, 19B, and 19C. These are based on published chemical repeat unit structures ( ), adjusting for the fact that glucose is the first sugar of the biological repeat unit.

Citation: Paton J, Morona J. 2006. Streptococcus pneumoniae Capsular Polysaccharide, p 241-252. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap20
1. Abeygunawardana, C.,, T. C. Williams,, J. S. Sumner,, and J. P. Hennessey, Jr. 2000. Development and validation of an NMR-based identity assay for bacterial polysaccharides. Anal. Biochem. 279: 226 240.
2. Abeyta, M.,, G. G. Hardy,, and J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71: 218 225.
3. Arrecubieta, C.,, R. López,, and E. Gárcía. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176: 6375 6383.
4. Arrecubieta, C.,, E. García,, and R. López. 1995. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167: 1 7.
5. Arrecubieta, C.,, R. López,, and E. García. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med. 184: 449 455.
6. Austrian, R. 1981. Pneumococcus: the first one hundred years. Rev. Infect. Dis. 3: 183 189.
7. Austrian, R. 1981. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev. Infect. Dis. 3(Suppl.): S1 S17.
8. Austrian, R.,, H. P. Bernheimer,, E. E. B. Smith,, and G. T. Mills. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. J. Exp. Med. 110: 585 602.
9. Avery, O. T.,, and R. Dubos. 1931. The protective action of a specific enzyme against type III pneumococcus infections in mice. J. Exp. Med. 54: 73 89.
10. Avery, O. T.,, and M. Heidelberger. 1925. Immunological relationships of cell constituents of pneumococcus. J. Exp. Med. 42: 367 376.
11. Avery, O. T., and, H. J. Morgan. 1925. Immunological reactions of the isolated carbohydrate and protein of pneumococcus. J. Exp. Med. 42: 347 353.
12. Avery, O. T.,, C. M. MacLeod,, and M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79: 137 158.
13. Barnes, D. M.,, S. Whittier,, P. H. Gilligan,, S. Soares,, A. Tomasz,, and F. W. Henderson. 1995. Transmission of multidrug-resistant serotype 23F Streptococcus pneumoniae in group day care: evidence suggesting capsular transformation of the resistant strain in vivo. J. Infect. Dis. 171: 890 896.
14. Bender, M. H.,, and J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276: 47966 47974.
15. Bender, M. H.,, R. T. Cartee,, and J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185: 6057 6066.
16. Bernheimer, H. P.,, I. E. Wermundsen,, and R. Austrian. 1967. Qualitative differences in the behavior of pneumococcal deoxyribonucleic acids transforming to the same capsular type. J. Bacteriol. 93: 320 333.
17. Beynon, L. M.,, J. C. Richards,, M. B. Perry,, and P. J. Kniskern. 1991. Antigenic and structural relationships within group 19 Streptococcus pneumoniae: chemical characterization of the specific capsular polysaccharides of type 19B and 19C. Can. J. Chem. 70: 218 232.
18. Cartee, R.T.,, W. T. Forsee,, J. W. Jensen,, and J. Yother. 2001. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer. J. Biol. Chem. 276: 48831 48839.
19. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang,, and M. R. Wessels. 2001. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276: 139 146.
20. Coffey, T. J.,, C. G. Dowson,, M. Daniels,, J. Zhou,, C. Martin,, B. G. Spratt,, and J. M. Musser. 1991. Horizontal gene transfer of multiple penicillin-binding protein genes and capsular biosynthetic genes in natural populations of Streptococcus pneumoniae. Mol. Microbiol. 5: 2255 2260.
21. Coffey, T. J.,, M. C. Enright,, M. Daniels,, J. K. Morona,, R. Morona,, W. Hryniewicz,, J. C. Paton,, and B. G. Spratt. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol. 27: 73 83.
22. Coffey, T. J.,, M. C. Enright,, M. Daniels,, P. Wilkinson,, S. Berron,, A. Fenoll,, and B. G. Spratt. 1998. Serotype 19A variants of the Spanish serotype 23F multiresistant clone of Streptococcus pneumoniae. Microb. Drug Resist. 4: 51 55.
23. Cundell, D. R.,, J. N. Weiser,, J. Shen,, A. Young,, and E. I. Tuomanen. 1995. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect. Immun. 63: 757 761.
24. DeAngelis, P. L.,, J. Papaconstantinou,, and P. H. Weigel. 1993. Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. J. Biol. Chem. 268: 19181 19184.
25. Deng, L.,, D. L. Kasper,, T. P. Krick,, and M. R. Wessels. 2000. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275: 7497 7504.
26. Dillard, J. P.,, and J. Yother. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol. Microbiol. 12: 959 972.
27. Dillard, J. P.,, M. W. Vandersea,, and J. Yother. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181: 973 983.
28. Dochez, A. R.,, and O. T. Avery. 1917. The elaboration of specific soluble substance by pneumococcus during growth. J. Exp. Med. 26: 477 493.
29. Douglas, R. M.,, J. C. Paton,, S. J. Duncan,, and D. Hansman. l983. Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. l48: 131 137.
30. Eskola, J.,, T. Kilpi,, A. Palmu,, J. Jokinen,, J. Haapakoski,, E. Herva,, A. Takala,, H. Kayhty,, P. Karma,, R. Kohberger,, G. Siber,, P. H. Makela, and the Finnish Otitis Media Study Group. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344: 403 409.
31. García, E.,, P. García,, and R. López. 1993. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol. Gen. Genet. 239: 188 195.
32. Giammarinaro, P.,, and J. C. Paton. 2002. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70: 5454 5461.
33. Glucksmann, M. A.,, T. L. Reuber,, and G. C. Walker. 1993. Genes needed for the modification, polymerisation, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J. Bacteriol. 175: 7045 7055.
34. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27: 113 159.
35. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Nucleotide sequence of an operon essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62: 5384 5396.
36. Gunn, J. S.,, E. L. Hohmann,, and S. I. Miller. 1996. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J. Bacteriol. 178: 6369 6373.
37. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69: 2309 2317.
38. Henrichsen, J. 1995. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33: 2759 2762.
39. Iannelli, F.,, B. J. Pearce,, and G. Pozzi. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol. 181: 2652 2654.
40. Institute for Genomic Research. http://www.tigr.org/pub/ data/s[ru5,.4]pneumoniae/
41. Jansson, P. E.,, B. Lindberg,, U. Lindquist,, and J. Ljungberg. 1987. Structural studies of the capsular polysaccharide from Streptococcus pneumoniae types 15B and 15C. Carbohydr. Res. 162: 111 116.
42. Jiang, S. M.,, L. Wang,, and P. R. Reeves. 2001. Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect. Immun. 69: 1244 1255.
43. Keenleyside, W. J.,, and C. Whitfield. 1996. A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J. Biol. Chem. 271: 28581 28592.
44. Kelly, T.,, J. P. Dillard,, and J. Yother. 1994. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect. Immun. 62: 1813 1819.
45. Kim, J. O.,, and J. N. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177: 368 377.
46. Klein, D. L., 2000. Pneumococcal disease and the role of conjugate vaccines, p. 467 477. In A. Tomasz (ed.), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert Inc., Larchmont, N.Y.
47. Kolkman, M. A. B.,, D. A. Morrison,, B. A. M. van der Zeijst,, and P. J. M. Nuijten. 1996. The capsule polysaccharide synthesis locus of Streptococcus pneumoniae serotype 14: identification of the glycosyltransferase gene cps14E. J. Bacteriol. 178: 3736 3741.
48. Kolkman, M. A. B.,, B. A. M. van der Zeijst,, and P. J. M. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272: 19502 19508.
49. Kolkman, M. A. B.,, W. Wakarchuk,, P. J. M. Nuijten,, and B. A. M. van der Zeijst. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26: 197 208.
50. Kolkman, M. A. B.,, B. A. M. van der Zeijst,, and P. J. M. Nuijten. 1998. Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. J. Biochem. 123: 937 945.
51. Kroll, J. S.,, B. M. Loynds,, and E. R. Moxon. 1991. The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol. Microbiol. 5: 1549 1560.
52. Lawrence, E. R.,, D. B. Griffiths,, S. A. Martin,, R. C. George,, and L. M. Hall. 2003. Evaluation of semi-automated multiplex PCR assay for determination of Streptococcus pneumoniae serotypes and serogroups. J. Clin. Microbiol. 41: 601 607.
53. Lee, C.-J.,, S. D. Banks,, and J. P. Li. 1991. Virulence, immunity and vaccine related to Streptococcus pneumoniae. Crit. Rev. Microbiol. 18: 89 114.
54. Llull, D.,, R. López,, E. García,, and R. Muñoz. 1998. Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim. Biophys. Acta 1449: 217 224.
55. Llull, D.,, R. Muñoz,, R. López,, and E. García. 1999. A single gene ( tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J. Exp. Med. 190: 241 251.
56. Llull, D.,, E. García,, and R. López. 2001. Tts, a processive beta-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in Pneumococcus and other gram-positive species. J. Biol. Chem. 276: 21053 21061.
57. MacLeod, C. M.,, and M. R. Krauss. 1950. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J. Exp. Med. 92: 1 9.
58. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69: 3755 3761.
59. Mbelle, N.,, R. E. Huebner,, A. D. Wasas,, A. Kimura,, I. Chang,, and K. P. Klugman. 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180: 1171 1176.
60. Mollerach, M.,, R. López,, and E. García. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188: 2047 2056.
61. Morona, J. K.,, R. Morona,, and J. C. Paton. Unpublished observations.
62. Morona, R.,, L. Van Den Bosch,, and C. Daniels. 2000. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146: 1 4.
63. Morona, J. K.,, R. Morona,, and J. C. Paton. 1997. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol. Microbiol. 23: 751 763.
64. Morona, J. K.,, R. Morona,, and J. C. Paton. 1997. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 19B. J. Bacteriol. 179: 4953 4958.
65. Morona, J. K.,, D. C. Miller,, T. J. Coffey,, C. J. Vindurampulle,, B. G. Spratt,, R. Morona,, and J. C. Paton. 1999. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 23F. Microbiology 145: 781 789.
66. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Analysis of the 5' portion of the type 19A capsule locus identifies two classes of cpsC, cpsD, and cpsE genes in Streptococcus pneumoniae. J. Bacteriol. 181: 3599 3605.
67. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Comparative genetics of capsular polysaccharide biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J. Bacteriol. 181: 5355 5364.
68. Morona, J. K.,, J. C. Paton,, D. C. Miller,, and R. Morona. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35: 1431 1442.
69. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2002. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J. Bacteriol. 184: 577 583.
70. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185: 3009 3019.
71. Morona, J. K.,, D. C. Miller,, R. Morona,, and J. C. Paton. 2004. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB and cpsD have on virulence of Streptococcus pneumoniae. J. Infect. Dis. 189: 1905 1913.
72. Muñoz, R.,, M. Mollerach,, R. López,, and E. García. 1997. Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol. 25: 79 92.
73. Muñoz, R.,, M. Mollerach,, R. López,, and E. García. 1999. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J. Bacteriol. 181: 6214 6219.
74. Musher, D. M. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin. Infect. Dis. 14: 801 807.
75. Nesin, M.,, M. Ramirez,, and A. Tomasz. 1998. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J. Infect. Dis. 177: 707 713.
76. Obaro, S. K.,, R. A. Adegbola,, W. A. Banya,, and B. M. Greenwood. 1996. Carriage of pneumococci after pneumococcal vaccination. Lancet 348: 271 272.
77. Ogunniyi, A. D.,, P. Giammarinaro,, and J. C. Paton. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148: 2045 2053.
78. Paton, J. C., 2004. New pneumococcal vaccines: basic science developments, p. 382 402. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, D.C.
79. Ramirez, M.,, and A. Tomasz. 1998. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J. Bacteriol. 180: 5273 5278.
80. Sanger Institute. http://www.sanger.ac.uk/Projects/S_pneumoniae/CPS/
81. Sorensen, U. B. S.,, J. Blom,, A. Birch-Andersen,, and J. Henrichsen. 1988. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infect. Immun. 56: 1890 1896.
82. Sorensen, U. B. S.,, J. Henrichsen,, H.-C. Chen,, and S. C. Szu. 1990. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb. Pathog. 8: 325 334.
83. Stingele, F.,, and B. Mollet. 1996. Disruption of the gene encoding penicillin-binding protein 2b ( pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6. Mol. Microbiol. 22: 357 366.
84. Talbot, U.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64: 3772 3777.
85. Tuomanen, E. I.,, and H. R. Masure. 1997. Molecular and cellular biology of pneumococcal infection. Microb. Drug Resist. 3: 297 308.
86. van Dam, J. E. G.,, A. Fleer,, and H. Snippe. 1990. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Leeuwenhoek 58: 1 47.
87. van Selm, S.,, M. A. Kolkman,, B. A. van der Zeijst,, K. A. Zwaagstra,, W. Gaastra,, and J. P. van Putten. 2002. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148: 1747 1755.
88. van Selm, S.,, L. M. van Cann,, M. A. Kolkman,, B. A. van der Zeijst,, and J. P. van Putten. 2003. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect. Immun. 71: 6192 6198.
89. Venkateswaren, P. S.,, N. Stanton,, and R. Austrian. 1983. Type variation of strains of Streptococcus pneumoniae in capsular serogroup 15. J. Infect. Dis. 147: 1041 1054.
90. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42: 1223 1232.
91. Waite, R. D.,, D. W. Penfold,, J. K. Struthers,, and C. G. Dowson. 2003. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149: 497 504.
92. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
93. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz and,, M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69: 5430 5439.
94. Whitfield, C.,, and A. Paiment. 2003. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338: 2491 2502.
95. Winkelstein, J. A. 1981. The role of complement in the host’s defense against Streptococcus pneumoniae. Rev. Infect. Dis. 3: 289 298.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error