1887

Chapter 20 : Streptococcus pneumoniae Capsular Polysaccharide

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Streptococcus pneumoniae Capsular Polysaccharide, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap20-2.gif

Abstract:

This chapter summarizes the current state of knowledge on the capsular polysaccharide (CPS) of , with particular reference to the genes encoding biosynthesis of this most important of all pneumococcal surface antigens. The functions of many of the individual genes in the loci await confirmation by conventional biochemical and genetic analysis. Nevertheless, access to the enormous body of information now available on sequence databases, combined with knowledge of the chemical structures for many of the CPS repeat units, has enabled accurate predictions of function for a significant proportion of these genes. It has also been possible to predict the mechanisms of CPS biosynthesis in pneumococci by analogy with those operating in gram-negative bacteria. The existence of two distinct mechanisms for CPS biosynthesis in has already been recognized. However, much remains to be learned about the precise molecular events involved in both of these processes, and about how CPS production in pneumococci is regulated. Further biochemical and mutational analyses are also required to elucidate the precise functions of the four genes at the 5' end of the loci, which clearly encode important common steps in polysaccharide biosynthesis in pneumococci, as well as in other gram-positive genera. Given the importance of capsules to the virulence of and several other gram-positive pathogens, such conserved components of the CPS biosynthesis machinery may prove to be useful targets for novel antimicrobial strategies.

Citation: Paton J, Morona J. 2006. Streptococcus pneumoniae Capsular Polysaccharide, p 241-252. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch20

Key Concept Ranking

Pneumococcal Conjugate Vaccine
0.49796334
Reverse Transcriptase PCR
0.44616386
Humoral Immune Response
0.41259578
0.49796334
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Organization of the loci from various serotypes. The organizations are based on published data for types 1 ( ), 2 ( ), 3 ( ), 4, ( ), 5 (GenBank accession no. AY336008), 6B ( ), 8 ( ), 9V ( ), 14 ( ), 15B ( ), 15C ( ), 18C ( ), 19F ( ), 19A ( ), 19B ( ), 19C ( ), 23F ( ), and 33F ( ). Gene and locus designations are as published. Open reading frames (ORFs) within the DNA sequence are indicated by large boxed arrows. Highly conserved ORFs, or those encoding proteins belonging to a particular functional group, are identified as shown in the legend below the figure. Assignment of an ORF to a given function-related group has been based on the published information for each locus, as well as on additional database comparisons for some of the ORFs. The narrow boxed arrows represent cryptic ORFs not required for CPS biosynthesis in the respective serotype.

Citation: Paton J, Morona J. 2006. Streptococcus pneumoniae Capsular Polysaccharide, p 241-252. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of the CPS biological repeat unit structures of serotypes 6A, 6B, 14, 15B, 15C, 19F, 19A, 19B, and 19C. These are based on published chemical repeat unit structures ( ), adjusting for the fact that glucose is the first sugar of the biological repeat unit.

Citation: Paton J, Morona J. 2006. Streptococcus pneumoniae Capsular Polysaccharide, p 241-252. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap20
1. Abeygunawardana, C.,, T. C. Williams,, J. S. Sumner,, and J. P. Hennessey, Jr. 2000. Development and validation of an NMR-based identity assay for bacterial polysaccharides. Anal. Biochem. 279:226240.
2. Abeyta, M.,, G. G. Hardy,, and J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect. Immun. 71:218225.
3. Arrecubieta, C.,, R. López,, and E. Gárcía. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176:63756383.
4. Arrecubieta, C.,, E. García,, and R. López. 1995. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167:17.
5. Arrecubieta, C.,, R. López,, and E. García. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med. 184:449455.
6. Austrian, R. 1981. Pneumococcus: the first one hundred years. Rev. Infect. Dis. 3:183189.
7. Austrian, R. 1981. Some observations on the pneumococcus and on the current status of pneumococcal disease and its prevention. Rev. Infect. Dis. 3(Suppl.):S1S17.
8. Austrian, R.,, H. P. Bernheimer,, E. E. B. Smith,, and G. T. Mills. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical bases of binary capsulation. J. Exp. Med. 110:585602.
9. Avery, O. T.,, and R. Dubos. 1931. The protective action of a specific enzyme against type III pneumococcus infections in mice. J. Exp. Med. 54:7389.
10. Avery, O. T.,, and M. Heidelberger. 1925. Immunological relationships of cell constituents of pneumococcus. J. Exp. Med. 42:367376.
11. Avery, O. T., and, H. J. Morgan. 1925. Immunological reactions of the isolated carbohydrate and protein of pneumococcus. J. Exp. Med. 42:347353.
12. Avery, O. T.,, C. M. MacLeod,, and M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 79:137158.
13. Barnes, D. M.,, S. Whittier,, P. H. Gilligan,, S. Soares,, A. Tomasz,, and F. W. Henderson. 1995. Transmission of multidrug-resistant serotype 23F Streptococcus pneumoniae in group day care: evidence suggesting capsular transformation of the resistant strain in vivo. J. Infect. Dis. 171:890896.
14. Bender, M. H.,, and J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276:4796647974.
15. Bender, M. H.,, R. T. Cartee,, and J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185:60576066.
16. Bernheimer, H. P.,, I. E. Wermundsen,, and R. Austrian. 1967. Qualitative differences in the behavior of pneumococcal deoxyribonucleic acids transforming to the same capsular type. J. Bacteriol. 93:320333.
17. Beynon, L. M.,, J. C. Richards,, M. B. Perry,, and P. J. Kniskern. 1991. Antigenic and structural relationships within group 19 Streptococcus pneumoniae: chemical characterization of the specific capsular polysaccharides of type 19B and 19C. Can. J. Chem. 70:218232.
18. Cartee, R.T.,, W. T. Forsee,, J. W. Jensen,, and J. Yother. 2001. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli. Assembly of type 3 polysaccharide on a lipid primer. J. Biol. Chem. 276:4883148839.
19. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang,, and M. R. Wessels. 2001. Functional analysis in type Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276:139146.
20. Coffey, T. J.,, C. G. Dowson,, M. Daniels,, J. Zhou,, C. Martin,, B. G. Spratt,, and J. M. Musser. 1991. Horizontal gene transfer of multiple penicillin-binding protein genes and capsular biosynthetic genes in natural populations of Streptococcus pneumoniae. Mol. Microbiol. 5:22552260.
21. Coffey, T. J.,, M. C. Enright,, M. Daniels,, J. K. Morona,, R. Morona,, W. Hryniewicz,, J. C. Paton,, and B. G. Spratt. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol. 27:7383.
22. Coffey, T. J.,, M. C. Enright,, M. Daniels,, P. Wilkinson,, S. Berron,, A. Fenoll,, and B. G. Spratt. 1998. Serotype 19A variants of the Spanish serotype 23F multiresistant clone of Streptococcus pneumoniae. Microb. Drug Resist. 4:5155.
23. Cundell, D. R.,, J. N. Weiser,, J. Shen,, A. Young,, and E. I. Tuomanen. 1995. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect. Immun. 63:757761.
24. DeAngelis, P. L.,, J. Papaconstantinou,, and P. H. Weigel. 1993. Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. J. Biol. Chem. 268:1918119184.
25. Deng, L.,, D. L. Kasper,, T. P. Krick,, and M. R. Wessels. 2000. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275:74977504.
26. Dillard, J. P.,, and J. Yother. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol. Microbiol. 12:959972.
27. Dillard, J. P.,, M. W. Vandersea,, and J. Yother. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181:973983.
28. Dochez, A. R.,, and O. T. Avery. 1917. The elaboration of specific soluble substance by pneumococcus during growth. J. Exp. Med. 26:477493.
29. Douglas, R. M.,, J. C. Paton,, S. J. Duncan,, and D. Hansman. l983. Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. l48:131137.
30. Eskola, J.,, T. Kilpi,, A. Palmu,, J. Jokinen,, J. Haapakoski,, E. Herva,, A. Takala,, H. Kayhty,, P. Karma,, R. Kohberger,, G. Siber,, P. H. Makela, and the Finnish Otitis Media Study Group. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344:403409.
31. García, E.,, P. García,, and R. López. 1993. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol. Gen. Genet. 239:188195.
32. Giammarinaro, P.,, and J. C. Paton. 2002. Role of RegM, a homologue of the catabolite repressor protein CcpA, in the virulence of Streptococcus pneumoniae. Infect. Immun. 70:54545461.
33. Glucksmann, M. A.,, T. L. Reuber,, and G. C. Walker. 1993. Genes needed for the modification, polymerisation, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J. Bacteriol. 175:70457055.
34. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27:113159.
35. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Nucleotide sequence of an operon essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62:53845396.
36. Gunn, J. S.,, E. L. Hohmann,, and S. I. Miller. 1996. Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J. Bacteriol. 178:63696373.
37. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69:23092317.
38. Henrichsen, J. 1995. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33:27592762.
39. Iannelli, F.,, B. J. Pearce,, and G. Pozzi. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol. 181:26522654.
40.Institute for Genomic Research. http://www.tigr.org/pub/ data/s[ru5,.4]pneumoniae/
41. Jansson, P. E.,, B. Lindberg,, U. Lindquist,, and J. Ljungberg. 1987. Structural studies of the capsular polysaccharide from Streptococcus pneumoniae types 15B and 15C. Carbohydr. Res. 162:111116.
42. Jiang, S. M.,, L. Wang,, and P. R. Reeves. 2001. Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect. Immun. 69:12441255.
43. Keenleyside, W. J.,, and C. Whitfield. 1996. A novel pathway for O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J. Biol. Chem. 271:2858128592.
44. Kelly, T.,, J. P. Dillard,, and J. Yother. 1994. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect. Immun. 62:18131819.
45. Kim, J. O.,, and J. N. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177:368377.
46. Klein, D. L., 2000. Pneumococcal disease and the role of conjugate vaccines, p. 467477. In A. Tomasz (ed.), Streptococcus pneumoniae: Molecular Biology and Mechanisms of Disease. Mary Ann Liebert Inc., Larchmont, N.Y.
47. Kolkman, M. A. B.,, D. A. Morrison,, B. A. M. van der Zeijst,, and P. J. M. Nuijten. 1996. The capsule polysaccharide synthesis locus of Streptococcus pneumoniae serotype 14: identification of the glycosyltransferase gene cps14E. J. Bacteriol. 178:37363741.
48. Kolkman, M. A. B.,, B. A. M. van der Zeijst,, and P. J. M. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272:1950219508.
49. Kolkman, M. A. B.,, W. Wakarchuk,, P. J. M. Nuijten,, and B. A. M. van der Zeijst. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26:197208.
50. Kolkman, M. A. B.,, B. A. M. van der Zeijst,, and P. J. M. Nuijten. 1998. Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. J. Biochem. 123:937945.
51. Kroll, J. S.,, B. M. Loynds,, and E. R. Moxon. 1991. The Haemophilus influenzae capsulation gene cluster: a compound transposon. Mol. Microbiol. 5:15491560.
52. Lawrence, E. R.,, D. B. Griffiths,, S. A. Martin,, R. C. George,, and L. M. Hall. 2003. Evaluation of semi-automated multiplex PCR assay for determination of Streptococcus pneumoniae serotypes and serogroups. J. Clin. Microbiol. 41:601607.
53. Lee, C.-J.,, S. D. Banks,, and J. P. Li. 1991. Virulence, immunity and vaccine related to Streptococcus pneumoniae. Crit. Rev. Microbiol. 18:89114.
54. Llull, D.,, R. López,, E. García,, and R. Muñoz. 1998. Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim. Biophys. Acta 1449: 217224.
55. Llull, D.,, R. Muñoz,, R. López,, and E. García. 1999. A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J. Exp. Med. 190:241251.
56. Llull, D.,, E. García,, and R. López. 2001. Tts, a processive beta-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in Pneumococcus and other gram-positive species. J. Biol. Chem. 276:2105321061.
57. MacLeod, C. M.,, and M. R. Krauss. 1950. Relation of virulence of pneumococcal strains for mice to the quantity of capsular polysaccharide formed in vitro. J. Exp. Med. 92:19.
58. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69:37553761.
59. Mbelle, N.,, R. E. Huebner,, A. D. Wasas,, A. Kimura,, I. Chang,, and K. P. Klugman. 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180: 11711176.
60. Mollerach, M.,, R. López,, and E. García. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188:20472056.
61. Morona, J. K.,, R. Morona,, and J. C. Paton. Unpublished observations.
62. Morona, R.,, L. Van Den Bosch,, and C. Daniels. 2000. Evaluation of Wzz/MPA1/MPA2 proteins based on the presence of coiled-coil regions. Microbiology 146:14.
63. Morona, J. K.,, R. Morona,, and J. C. Paton. 1997. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol. Microbiol. 23:751763.
64. Morona, J. K.,, R. Morona,, and J. C. Paton. 1997. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 19B. J. Bacteriol. 179:49534958.
65. Morona, J. K.,, D. C. Miller,, T. J. Coffey,, C. J. Vindurampulle,, B. G. Spratt,, R. Morona,, and J. C. Paton. 1999. Molecular and genetic characterization of the capsule biosynthesis locus of Streptococcus pneumoniae type 23F. Microbiology 145:781789.
66. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Analysis of the 5' portion of the type 19A capsule locus identifies two classes of cpsC, cpsD, and cpsE genes in Streptococcus pneumoniae. J. Bacteriol. 181:35993605.
67. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Comparative genetics of capsular polysaccharide biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J. Bacteriol. 181:53555364.
68. Morona, J. K.,, J. C. Paton,, D. C. Miller,, and R. Morona. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35:14311442.
69. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2002. Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J. Bacteriol. 184:577583.
70. Morona, J. K.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185:30093019.
71. Morona, J. K.,, D. C. Miller,, R. Morona,, and J. C. Paton. 2004. The effect that mutations in the conserved capsular polysaccharide biosynthesis genes cpsA, cpsB and cpsD have on virulence of Streptococcus pneumoniae. J. Infect. Dis. 189:19051913.
72. Muñoz, R.,, M. Mollerach,, R. López,, and E. García. 1997. Molecular organization of the genes required for the synthesis of type 1 capsular polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol. 25:7992.
73. Muñoz, R.,, M. Mollerach,, R. López,, and E. García. 1999. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J. Bacteriol. 181:62146219.
74. Musher, D. M. 1992. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin. Infect. Dis. 14:801807.
75. Nesin, M.,, M. Ramirez,, and A. Tomasz. 1998. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J. Infect. Dis. 177:707713.
76. Obaro, S. K.,, R. A. Adegbola,, W. A. Banya,, and B. M. Greenwood. 1996. Carriage of pneumococci after pneumococcal vaccination. Lancet 348:271272.
77. Ogunniyi, A. D.,, P. Giammarinaro,, and J. C. Paton. 2002. The genes encoding virulence-associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148:20452053.
78. Paton, J. C., 2004. New pneumococcal vaccines: basic science developments, p. 382402. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, D.C.
79. Ramirez, M.,, and A. Tomasz. 1998. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J. Bacteriol. 180:52735278.
80.Sanger Institute. http://www.sanger.ac.uk/Projects/S_pneumoniae/CPS/
81. Sorensen, U. B. S.,, J. Blom,, A. Birch-Andersen,, and J. Henrichsen. 1988. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci. Infect. Immun. 56:18901896.
82. Sorensen, U. B. S.,, J. Henrichsen,, H.-C. Chen,, and S. C. Szu. 1990. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb. Pathog. 8:325334.
83. Stingele, F.,, and B. Mollet. 1996. Disruption of the gene encoding penicillin-binding protein 2b (pbp2b) causes altered cell morphology and cease in exopolysaccharide production in Streptococcus thermophilus Sfi6. Mol. Microbiol. 22:357366.
84. Talbot, U.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64:37723777.
85. Tuomanen, E. I.,, and H. R. Masure. 1997. Molecular and cellular biology of pneumococcal infection. Microb. Drug Resist. 3:297308.
86. van Dam, J. E. G.,, A. Fleer,, and H. Snippe. 1990. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Leeuwenhoek 58:147.
87. van Selm, S.,, M. A. Kolkman,, B. A. van der Zeijst,, K. A. Zwaagstra,, W. Gaastra,, and J. P. van Putten. 2002. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148:17471755.
88. van Selm, S.,, L. M. van Cann,, M. A. Kolkman,, B. A. van der Zeijst,, and J. P. van Putten. 2003. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect. Immun. 71:61926198.
89. Venkateswaren, P. S.,, N. Stanton,, and R. Austrian. 1983. Type variation of strains of Streptococcus pneumoniae in capsular serogroup 15. J. Infect. Dis. 147:10411054.
90. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42:12231232.
91. Waite, R. D.,, D. W. Penfold,, J. K. Struthers,, and C. G. Dowson. 2003. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149:497504.
92. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62:25822589.
93. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz and,, M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69:54305439.
94. Whitfield, C.,, and A. Paiment. 2003. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338:24912502.
95. Winkelstein, J. A. 1981. The role of complement in the host’s defense against Streptococcus pneumoniae. Rev. Infect. Dis. 3:289298.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error