1887

Chapter 23 : Genetics of Streptococcus pneumoniae

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetics of Streptococcus pneumoniae, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap23-2.gif

Abstract:

The origins of genetics in can be traced to studies that began in the late 1800s with the isolation of nonencapsulated variants and ultimately led to the discovery of bacterial gene transfer by Griffith in 1928 and the identification of DNA as the genetic material by Avery, MacLeod, and McCarty in 1944. This chapter highlights much of the current information regarding genetics. Both transformation and conjugation have been described in . Transformation serves as the primary, and perhaps sole, means of transferring chromosomal genes. Conjugation occurs with plasmids that are capable of self-transfer or mobilization and with conjugative transposons that are integrated into the chromosome. can serve as both a donor and recipient in the conjugation of plasmid DNA and conjugative transposons. Generalized transduction has not been observed to occur, although a process termed pseudotransduction, which involves properties of both transduction and transformation, has been described for one pneumococcal bacteriophage. Some important similarities between many of the phages have been noted, and the complete nucleotide sequences have been determined for the genomes of phages Cp-1, Dp-1, EJ-1, and MM1. Replicating plasmids can be introduced into by electroporation. Unlike plasmids taken up via the natural transformation pathway, they are subject to restriction by the system, indicating that double-stranded DNA is transformed. The chapter discusses promoter activity of and the generation and analysis of mutants.

Citation: Yother J, Hollingshead S. 2006. Genetics of Streptococcus pneumoniae, p 275-288. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch23

Key Concept Ranking

Gene Expression and Regulation
0.61972743
DNA Synthesis
0.45648003
Two-Component Signal Transduction Systems
0.4172932
0.61972743
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Transformation. The model is based on information discussed in the text. In some cases, the putative regulation of gene expression may be either direct or indirect. Phosphorylation of response regulator molecules by their cognate histidine kinase sensors is indicated by P. Uptake and integration of linear DNA are shown in the lower right portion, with monomer and dimer plasmid uptake shown in the central and left lower portions, respectively. Plasmid uptake will occur by the same mechanism as linear DNA uptake. For monomers, complementary overlapping strands will pair, and DNA synthesis will complete the double-stranded circular molecule. For the dimer, a small fragment of the complementary strand can serve as a primer for DNA synthesis, and circularization can occur as described in the text. Dots on the dimer molecule indicate homologous sites.

Citation: Yother J, Hollingshead S. 2006. Genetics of Streptococcus pneumoniae, p 275-288. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Insertion-duplication mutagenesis and restoration. (A) The effect of using an internal gene fragment to direct insertion of a nonreplicating plasmid into the chromosome. Duplication of the target fragment occurs, and the gene is disrupted by the plasmid insertion, resulting in an insertion-duplication mutation. (B) The target fragment overlaps the ends of two genes. Insertion results in duplication of the target fragment, but both genes are completely reconstructed and the result is an insertion-duplication restoration. Both genes should be functional, unless they form part of an operon, in which case the plasmid insertion would be polar on the downstream gene. The figure shows a selectable erythromycin-resistance gene () and a promoterless chloramphenicol-resistance reporter gene (), as discussed in reference .

Citation: Yother J, Hollingshead S. 2006. Genetics of Streptococcus pneumoniae, p 275-288. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap23
1. Acebo, P.,, C. Nieto,, M. A. Corrales,, M. Espinosa,, and P. Lopez. 2000. Quantitative detection of Streptococcus pneumoniae cells harbouring single or multiple copies of the gene encoding the green fluorescent protein. Microbiology 146: 1267 1273.
2. Akerley, B. J.,, E. J. Rubin,, A. Camilli,, D. J. Lampe,, H. M. Robertson,, and J. J. Mekalanos. 1998. Systematic identification of essential genes by in vitro mariner mutagenesis. Proc. Natl. Acad. Sci. USA 95: 8927 8932.
3. Alloing, G.,, C. Granadel,, D. A. Morrison,, and J. P. Claverys. 1996. Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Mol. Microbiol. 21: 471 478.
4. Alloing, G.,, B. Martin,, C. Granadel,, and J. P. Claverys. 1998. Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29: 75 83.
5. Aras, R. A.,, J. Kang,, A. I. Tschumi,, Y. Harasaki,, and M. J. Blaser. 2003. Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl. Acad. Sci. USA 100: 13579 13584.
6. Avery, O. T.,, C. M. MacLeod,, and M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type III. J. Exp. Med. 79: 137 158.
7. Ayoubi, P.,, A. O. Kilic,, and M. N. Vijayakumar. 1991. Tn 5253, the pneumococcal W (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn 5251 and Tn 5252. J. Bacteriol. 173: 1617 1622.
8. Bartilson, M.,, A. Marra,, J. Christine,, J. S. Asundi,, W. P. Schneider,, and A. E. Hromockyj. 2001. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol. Microbiol. 39: 126 135.
9. Berge, M.,, M. Moscoso,, M. Prudhomme,, B. Martin,, and J. P. Claverys. 2002. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol. Microbiol. 45: 411 421.
10. Bernheimer, H. P. 1979. Lysogenic pneumococci and their bacteriophages. J. Bacteriol. 138: 618 624.
11. Bernheimer, H. P.,, and J. G. Tiraby. 1976. Inhibition of phage infection by pneumococcus capsule. Virology 73: 308 309.
12. Bruckner, R.,, M. Nuhn,, P. Reichmann,, B. Weber,, and R. Hakenbeck. 2004. Mosaic genes and mosaic chromosomes—genomic variation in Streptococcus pneumoniae. Int. J. Med. Microbiol. 294: 157 168.
13. Buu-Hoi, A.,, and T. Horodniceanu. 1980. Conjugative transfer of multiple antibiotic resistance markers in Streptococcus pneumoniae. J. Bacteriol. 143: 313 320.
14. Campbell, E. A.,, S. Y. Choi,, and H. R. Masure. 1998. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol. Microbiol. 27: 929 939.
15. Centre National de la Recherche Scientifique. http://www.is. biotoul.fr/is.html
16. Cerritelli, S.,, S. S. Springhorn,, and S. A. Lacks. 1989. DpnA, a methylase for single-strand DNA in the Dpn II restriction system, and its biological function. Proc. Natl. Acad. Sci. USA 86: 9223 9227.
17. Chastanet, A.,, M. Prudhomme,, J. P. Claverys,, and T. Msadek. 2001. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. J. Bacteriol. 183: 7295 7307.
18. Chen, J. D.,, and D. A. Morrison. 1987. Modulation of competence for genetic transformation in Streptococcus pneumoniae. J. Gen. Microbiol. 133: 1959 1967.
19. Claverys, J. P.,, and S. A. Lacks. 1986. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol. Rev. 50: 133 165.
20. Courvalin, P.,, and C. Carlier. 1986. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205: 291 297.
21. Dagkessamanskaia, A.,, M. Moscoso,, V. Henard,, S. Guiral,, K. Overweg,, M. Reuter,, B. Martin,, J. Wells,, and J. P. Claverys. 2004. Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol. Microbiol. 51: 1071 1086.
22. Del Grosso, M.,, F. Iannelli,, C. Messina,, M. Santagati,, N. Petrosillo,, S. Stefani,, G. Pozzi,, and A. Pantosti. 2002. Macrolide efflux genes mef(A) and mef(E) are carried by different genetic elements in Streptococcus pneumoniae. J. Clin. Microbiol. 40: 774 778.
23. Dillard, J. P.,, M. W. Vandersea,, and J. Yother. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181: 973 983.
24. Dillard, J. P.,, and J. Yother. 1991. Analysis of Streptococcus pneumoniae sequences cloned into Escherichia coli: effect of promoter strength and transcription terminators. J. Bacteriol. 173: 5105 5109.
25. Dillard, J. P.,, and J. Yother. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol. Microbiol. 12: 959 972.
26. Dintilhac, A.,, G. Alloing,, C. Granadel,, and J. P. Claverys. 1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25: 727 739.
27. Dopazo, J.,, A. Mendoza,, J. Herrero,, F. Caldara,, Y. Humbert,, L. Friedli,, M. Guerrier,, E. Grand-Schenk,, C. Gandin,, M. de Francesco,, A. Polissi,, G. Buell,, G. Feger,, E. Garcia,, M. Peitsch,, and J. F. Garcia-Bustos. 2001. Annotated draft genomic sequence from a Streptococcus pneumoniae type 19F clinical isolate. Microb. Drug Resist. 7: 99 125.
28. Dubnau, D. 1999. DNA uptake in bacteria. Ann. Rev. Microbiol. 53: 217 244.
29. Engel, H. W.,, N. Soedirman,, J. A. Rost,, W. J. van Leeuwen,, and J. D. van Embden. 1980. Transferability of macrolide, lincomycin, and streptogramin resistances between group A, B, and D streptococci, Streptococcus pneumoniae, and Staphylococcus aureus. J. Bacteriol. 142: 407 413.
30. Fox, M.,, and R. D. Hotchkiss. 1957. Initiation of bacterial transformation. Nature 179: 1322 1325.
31. Garcia, P.,, A. C. Martin,, and R. Lopez. 1997. Bacteriophages of Streptococcus pneumoniae: a molecular approach. Microb. Drug Resist. 3: 165 176.
32. Gasc, A. M.,, N. Sicard,, J. P. Claverys,, and A. M. Sicard. 1980. Lack of SOS repair in Streptococcus pneumoniae. Mutat. Res. 70: 157 165.
33. Giammarinaro, P.,, M. Sicard,, and A. M. Gasc. 1999. Genetic and physiological studies of the CiaH-CiaR two-component signal-transducing system involved in cefotaxime resistance and competence of Streptococcus pneumoniae. Microbiology 145: 1859 1869.
34. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27: 113 159.
35. Grist, R. W.,, and L. O. Butler. 1983. Effect of transforming DNA on growth and frequency of mutation of Streptococcus pneumoniae. J. Bacteriol. 153: 153 162.
36. Guenzi, E.,, A. M. Gasc,, M. A. Sicard,, and R. Hakenbeck. 1994. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol. 12: 505 515.
37. Hall, M.,, and S. Matson. 1999. The Escherichia coli MutL protein physically interacts with MutH and stimulates the MutH-associated endonuclease activity. J. Biol. Chem. 274: 1306 1312.
38. Halpern, D.,, A. Gruss,, J. P. Claverys,, and M. El-Karoui. 2004. rexAB mutants in Streptococcus pneumoniae. Microbiology 150: 2409 2414.
39. Hardy, G. G.,, M. J. Caimano,, and J. Yother. 2000. Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J. Bacteriol. 182: 1854 1863.
40. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69: 2309 2317.
41. Havarstein, L. S.,, P. Gaustad,, I. F. Nes,, and D. A. Morrison. 1996. Identification of the streptococcal competence- pheromone receptor. Mol. Microbiol. 21: 863 869.
42. Hoskins, J.,, W. E. Alborn, Jr.,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff,, S. T. Estrem,, L. Fritz,, D. J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, J. S. Glass,, H. Khoja,, A. R. Kraft,, R. E. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Robertson,, P. Rockey,, P. M. Sun,, M. E. Winkler,, Y. Yang,, M. Young-Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, S. R. Jaskunas,, P. R. Rosteck, Jr.,, P. L. Skatrud,, and J. I. Glass. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183: 5709 5717.
43. Hui, F. M.,, L. Zhou,, and D. A. Morrison. 1995. Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene 153: 25 31.
44. Humbert, O.,, M. Prudhomme,, R. Hakenbeck,, C. G. Dowson,, and J. P. Claverys. 1995. Homologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: saturation of the Hex mismatch repair system. Proc. Natl. Acad. Sci. USA 92: 9052 9056.
45. Iannelli, F.,, B. J. Pearce,, and G. Pozzi. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol. 181: 2652 2654.
46. Institute for Genomic Research. http://www.tigr.org
47. Kadioglu, A.,, J. A. Sharpe,, I. Lazou,, C. Svanborg,, C. Ockleford,, T. J. Mitchell,, and P. W. Andrew. 2001. Use of green fluorescent protein in visualisation of pneumococcal invasion of broncho-epithelial cells in vivo. FEMS Microbiol. Lett. 194: 105 110.
48. Lacks, S.,, and M. Neuberger. 1975. Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 124: 1321 1329.
49. Lacks, S. A.,, S. Ayalew,, A. G. de la Campa,, and B. Greenberg. 2000. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol. Microbiol. 35: 1089 1098.
50. Lacks, S. A.,, and B. Greenberg. 2001. Constitutive competence for genetic transformation in Streptococcus pneumoniae caused by mutation of a transmembrane histidine kinase. Mol. Microbiol. 42: 1035 1045.
51. Lacks, S. A.,, B. M. Mannarelli,, S. S. Springhorn,, and B. Greenberg. 1986. Genetic basis of the complementary DpnI and DpnII restriction systems of S. pneumoniae: an intercellular cassette mechanism. Cell 46: 993 1000.
52. Lee, M. S.,, B. A. Dougherty,, A. C. Madeo,, and D. A. Morrison. 1999. Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl. Environ. Microbiol. 65: 1883 1890.
53. Lee, M. S.,, and D. A. Morrison. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 181: 5004 5016.
54. LeFrancois, J.,, A. M. Gasc,, and M. Sicard. 1997. Electrotransformation of Streptococcus pneumoniae: evidence for restriction of the DNA on entry. Microb. Drug Resist. 3: 101 104.
55. Lefrancois, J.,, M. M. Samrakandi,, and A. M. Sicard. 1998. Electrotransformation and natural transformation of Streptococcus pneumoniae: requirement of DNA processing for recombination. Microbiology 144: 3061 3068.
56. Lefrancois, J.,, and A. M. Sicard. 1997. Electrotransformation of Streptococcus pneumoniae: evidence for restriction of DNA on entry. Microbiology 143: 523 526.
57. Lopez, R.,, and E. Garcia. 2004. Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol. Rev. 28: 553 580.
58. Luo, P.,, H. Li,, and D. A. Morrison. 2003. ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol. Microbiol. 50: 623 633.
59. Luo, P.,, H. Li,, and D. A. Morrison. 2004. Identification of ComW as a new component in the regulation of genetic transformation in Streptococcus pneumoniae. Mol. Microbiol. 54: 172 183.
60. Luo, P.,, and D. A. Morrison. 2003. Transient association of an alternative sigma factor, ComX, with RNA polymerase during the period of competence for genetic transformation in Streptococcus pneumoniae. J. Bacteriol. 185: 349 358.
61. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69: 3755 3761.
62. Martin, B.,, P. Garcia,, M.-P. Castanié,, and J.-P. Claverys. 1995. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol. Microbiol. 15: 367 379.
63. Martin, B.,, O. Humbert,, M. Camara,, E. Guenzi,, J. Walker,, T. Mitchell,, P. Andrew,, M. Prudhomme,, G. Alloing,, R. Hakenbeck,, D. A. Morrison,, G. J. Boulnois,, and J.-P. Claverys. 1992. A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res. 20: 3479 3483.
64. Martin, B.,, M. Prudhomme,, G. Alloing,, C. Granadel,, and J. P. Claverys. 2000. Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol. Microbiol. 38: 867 78.
65. Martin, B.,, G. J. Sharples,, O. Humbert,, R. G. Lloyd,, and J. P. Claverys. 1996. The mmsA locus of Streptococcus pneumoniae encodes a RecG-like protein involved in DNA repair and in three-strand recombination. Mol. Microbiol. 19: 1035 1045.
66. Mascher, T.,, D. Zahner,, M. Merai,, N. Balmelle,, A. B. de Saizieu,, and R. Hakenbeck. 2003. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J. Bacteriol. 185: 60 70.
67. Masure, H.,, B. Pearce,, H. Shio,, and B. Spellerberg. 1998. Membrane targeting of RecA during genetic transformation. Mol. Microbiol. 27: 845 852.
68. McDonnell, M.,, C. Ronda-Lain,, and A. Tomasz. 1975. “Diplophage”: a bacteriophage of Diplococcus pneumoniae. Virology 63: 577 582.
69. Mejean, V.,, and J. P. Claverys. 1993. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem. 268: 5594 5599.
70. Morona, J. K.,, A. Guidolin,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Isolation, characterization, and nucleotide sequence of IS 1202, an insertion sequence of Streptococcus pneumoniae. J. Bacteriol. 176: 4437 4443.
71. Morrison, D. A.,, and M. F. Baker. 1979. Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins. Nature 282: 215 217.
72. Morrison, D. A.,, S. A. Lacks,, W. R. Guild,, and J. M. Hageman. 1983. Isolation and characterization of three new classes of transformation-deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J. Bacteriol. 156: 281 290.
73. Mortier-Barriere, I.,, A. de Saizieu,, J. P. Claverys,, and B. Martin. 1998. Competence-specific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol. Microbiol. 27: 159 170.
74. Moscoso, M.,, and J. P. Claverys. 2004. Release of DNA into the medium by competent Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA. Mol. Microbiol. 54: 783 794.
75. Muckerman, C. C.,, S. S. Springhorn,, B. Greenberg,, and S. A. Lacks. 1982. Transformation of restriction endonuclease phenotype in Streptococcus pneumoniae. J. Bacteriol. 152: 183 190.
76. Muñoz, R.,, R. Lopez,, and E. Garcia. 1998. Characterization of IS 1515, a functional insertion sequence in Streptococcus pneumoniae. J. Bacteriol. 180: 1381 1388.
77. Munoz-Najar, U.,, and M. N. Vijayakumar. 1999. An operon that confers UV resistance by evoking the SOS mutagenic response in streptococcal conjugative transposon Tn 5252. J. Bacteriol. 181: 2782 2788.
78. Oggioni, M. R.,, and J. P. Claverys. 1999. Repeated extragenic sequences in prokaryotic genomes: a proposal for the origin and dynamics of the RUP element in Streptococcus pneumoniae. Microbiology 145: 2647 2653.
79. Ottolenghi, E.,, and R. Hotchkiss. 1960. Appearance of genetic transforming activity in pneumococcal cultures. Science 132: 1257 1258.
80. Pearce, B.,, A. Naughton,, E. Campbell,, and H. Masure. 1995. The rec locus, a competence-induced operon in Streptococcus pneumoniae. J. Bacteriol. 177: 86 93.
81. Pearce, B. J.,, A. M. Naughton,, and H. R. Masure. 1994. Peptide permeases modulate transformation in Streptococcus pneumoniae. Mol. Microbiol. 12: 881 892.
82. Pestova, E. V.,, L. S. Havarstein,, and D. A. Morrison. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol. Microbiol. 21: 853 862.
83. Pestova, E. V.,, and D. A. Morrison. 1998. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J. Bacteriol. 180: 2701 2710.
84. Peterson, S.,, R. T. Cline,, H. Tettelin,, V. Sharov,, and D. A. Morrison. 2000. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 182: 6192 6202.
85. Peterson, S. N.,, C. K. Sung,, R. Cline,, B. V. Desai,, E. C. Snesrud,, P. Luo,, J. Walling,, H. Li,, M. Mintz,, G. Tsegaye,, P. C. Burr,, Y. Do,, S. Ahn,, J. Gilbert,, R. D. Fleischmann,, and D. A. Morrison. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51: 1051 1070.
86. Porter, R. D.,, and W. R. Guild. 1976. Characterization of some pneumococcal bacteriophages. J. Virol. 19: 659 667.
87. Porter, R. D.,, and W. R. Guild. 1969. Number of transformable units per cell in Diplococcus pneumoniae. J. Bacteriol. 97: 1033 1035.
88. Porter, R. D.,, N. B. Shoemaker,, G. Rampe,, and W. R. Guild. 1979. Bacteriophage-associated gene transfer in pneumococcus: transduction or pseudo-transduction? J. Bacteriol. 137: 556 567.
89. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1990. The integration-excision system of the conjugative transposon Tn 1545 is structurally and functionally related to those of lambdoid phages. Mol. Microbiol. 4: 1513 1521.
90. Pozzi, G.,, L. Masala,, F. Iannelli,, R. Manganelli,, L. S. Havarstein,, L. Piccoli,, D. Simon,, and D. A. Morrison. 1996. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178: 6087 6090.
91. Prudhomme, M.,, V. Libante,, and J. P. Claverys. 2002. Homologous recombination at the border: insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 99: 2100 2105.
92. Prudhomme, M.,, B. Martin,, V. Mejean,, and J. P. Claverys. 1989. Nucleotide sequence of the Streptococcus pneumoniae hexB mismatch repair gene: homology of HexB to MutL of Salmonella typhimurium and to PMS1 of Saccharomyces cerevisiae. J. Bacteriol. 171: 5332 5338.
93. Puyet, A.,, B. Greenberg,, and S. A. Lacks. 1990. Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol. 213: 727 738.
94. Ramirez, M.,, E. Severina,, and A. Tomasz. 1999. A high incidence of prophage carriage among natural isolates of Streptococcus pneumoniae. J. Bacteriol. 181: 3618 3625.
95. Reizer, J.,, A. Reizer,, A. Bairoch,, and M. H. Saier, Jr. 1993. A diverse transketolase family that includes the RecP protein of Streptococcus pneumoniae, a protein implicated in genetic recombination. Res. Microbiol. 144: 341 347.
96. Rimini, R.,, B. Jansson,, G. Feger,, T. C. Roberts,, M. de Francesco,, A. Gozzi,, F. Faggioni,, E. Domenici,, D. M. Wallace,, N. Frandsen,, and A. Polissi. 2000. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol. Microbiol. 36: 1279 1292.
97. Robertson, G. T.,, W. L. Ng,, J. Foley,, R. Gilmour,, and M. E. Winkler. 2002. Global transcriptional analysis of clpP mutations of type 2 Streptococcus pneumoniae and their effects on physiology and virulence. J. Bacteriol. 184: 3508 3520.
98. Sabelnikov, A. G.,, B. Greenberg,, and S. A. Lacks. 1995. An extended -10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J. Mol. Biol. 250: 144 155.
99. Samrakandi, M. M.,, and F. Pasta. 2000. Hyper-recombination in Streptococcus pneumoniae depends on an atypical mutY homologue. J. Bacteriol. 182: 3353 3360.
100. Sanchez-Beato, A. R.,, E. Garcia,, R. Lopez,, and J. L. Garcia. 1997. Identification and characterization of IS 1381, a new insertion sequence in Streptococcus pneumoniae. J. Bacteriol. 179: 2459 2463.
101. Sanger Center. http://www.sanger.ac.uk
102. Santagati, M.,, F. Iannelli,, C. Cascone,, F. Campanile,, M. R. Oggioni,, S. Stefani,, and G. Pozzi. 2003. The novel conjugative transposon Tn 1207.3 carries the macrolide efflux gene mef(A) in Streptococcus pyogenes. Microb. Drug Resist. 9: 243 247.
103. Santagati, M.,, F. Iannelli,, M. R. Oggioni,, S. Stefani,, and G. Pozzi. 2000. Characterization of a genetic element carrying the macrolide efflux gene mef(A) in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44: 2585 2587.
104. Saunders, C. W.,, and W. R. Guild. 1981. Monomer plasmid DNA transforms Streptococcus pneumoniae. Mol. Gen. Genet. 181: 57 62.
105. Schuster, C.,, M. van der Linden,, and R. Hakenbeck. 1998. Small cryptic plasmids of Streptococcus pneumoniae belong to the pC194/pUB110 family of rolling circle plasmids. FEMS Microbiol. Lett. 164: 427 431.
106. Scott, J.,, and G. Churchward. 1995. Conjugative transposition. Ann. Rev. Microbiol. 49: 367 397.
107. Shoemaker, N. B.,, M. D. Smith,, and W. R. Guild. 1979. Organization and transfer of heterologous chloramphenicol and tetracycline resistance genes in pneumococcus. J. Bacteriol. 139: 432 441.
108. Sibold, C.,, Z. Markiewicz,, C. Latorre,, and R. Hakenbeck. 1991. Novel plasmids in clinical strains of Streptococcus pneumoniae. FEMS Microbiol. Lett. 61: 91 95.
109. Smith, M. D.,, and W. R. Guild. 1979. A plasmid in Streptococcus pneumoniae. J. Bacteriol. 137: 735 739.
110. Smith, M. D.,, N. B. Shoemaker,, V. Burdett,, and W. R. Guild. 1980. Transfer of plasmids by conjugation in Streptococcus pneumoniae. Plasmid 3: 70 79.
111. Stassi, D. L.,, P. Lopez,, M. Espinosa,, and S. A. Lacks. 1981. Cloning of chromosomal genes in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 78: 7028 7032.
112. Steffen, S. E.,, and F. R. Bryant. 2000. Purification and characterization of the RecA protein from Streptococcus pneumoniae. Arch. Biochem. Biophys. 382: 303 309.
113. Steinmoen, H.,, E. Knutsen,, and L. S. Havarstein. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl. Acad. Sci. USA 99: 7681 7686.
114. Steinmoen, H.,, A. Teigen,, and L. S. Havarstein. 2003. Competence-induced cells of Streptococcus pneumoniae lyse competence-deficient cells of the same strain during cocultivation. J. Bacteriol. 185: 7176 7183.
115. Sung, C. K.,, H. Li,, J. P. Claverys,, and D. A. Morrison. 2001. An rpsL cassette, Janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl. Environ. Microbiol. 67: 5190 5196.
116. Tao, L.,, D. J. LeBlanc,, and J. J. Ferretti. 1992. Novel streptococcal-integration vectors for gene cloning and inactivation. Gene 120: 105 110.
117. Tettelin, H.,, and S. K. Hollingshead,. 2004. Comparative genomics of S. pneumoniae, p. 15 30. In E. I. Tuomanen,, T. J. Mitchell,, D. A. Morrison,, and B. G. Spratt (ed.), The Pneumococcus. ASM Press, Washington, D.C.
118. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
119. Tiraby, G.,, M. S. Fox,, and H. Bernheimer. 1975. Marker discrimination in deoxyribonucleic acid-mediated transformation of various Pneumococcus strains. J. Bacteriol. 121: 608 618.
120. Tiraby, J. G.,, E. Tiraby,, and M. S. Fox. 1975. Pneumococcal bacteriophages. Virology 68: 566 569.
121. Tomasz, A.,, and R. D. Hotchkiss. 1964. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 51: 480 487.
122. Vijayakumar, M. N.,, and S. Ayalew. 1993. Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn 5252. J. Bacteriol. 175: 2713 2719.
123. Vijayakumar, M. N.,, and D. A. Morrison. 1983. Fate of DNA in eclipse complex during genetic transformation in Streptococcus pneumoniae. J. Bacteriol. 156: 644 648.
124. Ween, O.,, P. Gaustad,, and L. S. Havarstein. 1999. Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol. Microbiol. 33: 817 827.
125. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
126. Yother, J., 1999. Common themes in the genetics of streptococcal capsular polysaccharides, p. 161 184. In J. B. Goldberg (ed.), Genetics of Bacterial Polysaccharides. CRC Press, Boca Raton, Fla.
127. Yother, J.,, L. S. McDaniel,, and D. E. Briles. 1986. Transformation of encapsulated Streptococcus pneumoniae. J. Bacteriol. 168: 1463 1465.
128. Zahner, D.,, and R. Hakenbeck. 2000. The Streptococcus pneumoniae beta-galactosidase is a surface protein. J. Bacteriol. 182: 5919 5921.
129. Zhou, L.,, F. M. Hui,, and D. A. Morrison. 1995. Characterization of IS 1167, a new insertion sequence in Streptococcus pneumoniae. Plasmid 33: 127 138.

Tables

Generic image for table
TABLE 1

Derivation and properties of commonly used strains

The genotype is given, and the symbols indicate whether the strain is encapsulated (+), nonencapsulated (−), or intermediate (*). Of the type 3* strains, only Rx1 has been experimentally demonstrated to produce capsular polysaccharide ( ).

Properties are listed for strains in which they have been demonstrated, and may be the same for progenitors. Lineages and original references are described for most D39 derivatives in references and . Numbers in parentheses indicate date of original description. Except as noted, all strains are avirulent. phenotypes are from reference and the genome sequences. The 0 phenotype in Rx1 is apparently due to a mutation in the I-encoding locus. Hex phenotypes are from references and and the genome sequences. alleles are from reference or the genome sequences. All D39 derivatives are expected to carry the C1 allele.

Citation: Yother J, Hollingshead S. 2006. Genetics of Streptococcus pneumoniae, p 275-288. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch23
Generic image for table
TABLE 2

Insertion sequences found in

Each element contains an open reading frame or frames with homology to transposase sequences.

Numbers in parentheses represent the number of copies in TIGR4 and the number of truncated or frameshifted copies (t).

The capsular serotypes of strains in which the element occurs; numbers indicate the fraction of tested strains containing the element.

Except as noted, information is from references and .

Alternative number of base pairs, depending on the copy.

Citation: Yother J, Hollingshead S. 2006. Genetics of Streptococcus pneumoniae, p 275-288. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch23
Generic image for table
TABLE 3

Properties of some bacteriophage

Information is from citations in the text and references therein.

Activity of the N-terminal domain of the lytic enzyme.

Substrate bound by the C-terminal domain of the lytic enzyme.

The roles of the terminal proteins in these phage have not been determined.

Citation: Yother J, Hollingshead S. 2006. Genetics of Streptococcus pneumoniae, p 275-288. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error