1887

Chapter 26 : Enterococcal Genetics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Enterococcal Genetics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap26-2.gif

Abstract:

The majority of interest in enterococcal genetics has been generated in response to three landmark discoveries: (i) identification of the first conjugative plasmids whose transfer systems are induced by an identifiable signal, (ii) identification of the first "transposons" capable of intercellular (conjugative) transposition, and (iii) the acquisition of vancomycin resistance. Because the most prevalent vancomycin resistance genes are located on plasmids and transposons, most work on enterococcal genetics has focused on mobile genetic elements. Examination of the complete sequence of a vancomycin-resistant clinical isolate of reaffirmed the importance of such elements in the evolution of this species, revealing that over a quarter of the genome consists of mobile and/or exogenously acquired DNA. However, understanding of the basic mechanisms of DNA replication and repair, chromosomal segregation, cell division, and transcription in this genus remains limited. This chapter provides a review of what is known or can be discerned from the genome sequence about these basic genetic mechanisms. Next, it focuses on the known mobile genetic elements, which seem to play such a significant role in the evolution of the enterococci.

Citation: Weaver K. 2006. Enterococcal Genetics, p 312-331. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch26

Key Concept Ranking

Mobile Genetic Elements
0.633507
Gene Expression and Regulation
0.5614184
Two-Component Signal Transduction Systems
0.43281016
0.633507
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

() Organization of the VanA and VanB vancomycin resistance systems. Gene functions are color-coded: green, sensory and regulatory; red, essential resistance genes; blue, auxiliary resistance genes. Detailed functions of each gene are described in the text. Green arrows show the position of the VanR-inducible promoters. The percent identity of the VanB genes to their VanA homologs is given below the individual VanB genes. Homologs have identical names in both systems except for the and ligases.

Citation: Weaver K. 2006. Enterococcal Genetics, p 312-331. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

() Regulatory circuitry of the pheromone response. (A) Events occurring at the cell surface. Important chromosomally encoded determinants are colored yellow, with the exception of the pheromone itself, which is shown as blue circles. Plasmid-encoded determinants are color-coordinated with their genes shown in B. The inhibitor peptide (ip) is shown as red circles and competitively inhibits pheromone binding to TraC. TraB inhibition of pheromone secretion is depicted here as sequestration, but this is only one possible mechanism and has not been proven. (B) Events occurring at the DNA level. Binding of pheromone by TraA links events at the cell surface with events at the DNA level. A conformational change in TraA due to pheromone binding is indicated by the change in shape of the molecule and change in dimerization state, although the precise changes are still unknown. Pheromone-free TraA binds P0 and inhibits transcription. Direction of transcription from P0 and Pa is indicated by the arrows. The antisense RNA, generalized to aR in this figure, stimulates termination at t1, indicated by the green arrow. Positive regulatory elements vary between different pheromone-responsive plasmids, and their mechanisms of inducing downstream transcription of the conjugation structural genes may also vary. For simplicity, the more common gene names and order are used. It should be noted that the gene order of the and genes is reversed in pAD1. The RepA gene is shown to orient the reader relative to Fig. 3 . (C) Events at the RNA level. Relative levels of RNA produced from the P0 and Pa promoters under uninduced (red) and induced (green) conditions are depicted by the size of the arrows.

Citation: Weaver K. 2006. Enterococcal Genetics, p 312-331. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Genetic organization of a general pheromone-responsive plasmid replicon. Gene names are given as pAD1/pCF10. The stippled box within represents the origin of replication () to which the product binds. The lined boxes at each end of the operon represent the likely centromere-like sites to which the products bind and, with the product, direct plasmid partition. The organization of the region is enlarged below the replicon. Arrowheads at each end of the locus marked P represent the promoters for the RNA I and RNA II transcripts. The extent and direction of transcription of the transcripts are shown above and below the genes for RNA II and RNA I, respectively. The gene is designated by the diagonally lined box and the sequence of the peptide is shown at the bottom. DRa and DRb are direct repeats in the DNA sequence that provide complementarity between RNA I and RNA II when transcribed in opposite directions. Overlapping transcription at the bidirectional transcriptional terminator also provides complementarity.

Citation: Weaver K. 2006. Enterococcal Genetics, p 312-331. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

() Model of RNA I-RNA II interaction. RNA I is the larger black structure and RNA II is the smaller blue structure. Stems, loops, and bulges are depicted in their approximate locations and sizes as determined by experimentation. The red stem-loop structure within RNA I sequesters the ribosomebinding site and prevents translation until a complex is formed. The initial interaction occurs at a U-turn motif in the terminator loop of RNA I (A), followed by interaction between the complementary repeats in the 5′ end of each RNA (B and C). Because RNA II-mediated protection from the RNA I-encoded toxin occurs in vivo even when one of the repeats is mutated, the structure shown in panel C is apparently sufficient to revent translation in vivo. Once complex formation is complete (D), the structure is extremely stable in vivo and in vitro, perhaps due to the gap between the interacting repeats.

Citation: Weaver K. 2006. Enterococcal Genetics, p 312-331. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

() Genetic organization of Tn and the relative positions of Int and Xis binding sites. (A) Functions of Tn genes are color-coded: blue, recombination; green and red, positive and negative regulation, respectively; yellow, tetracycline resistance; magenta, conjugation. Gene names and open reading frame numbers are shown above the individual genes. The origin of transfer is designated by the line between s and labeled . Promoters and the direction of transcription are designated by labeled arrows below the gene line. (B) Binding sites for the Int-C and Int-N DNA-binding domains and Xis are designated by marked circles and triangles. Int and Xis binding sites are color-coordinated with the genes shown in panel A.

Citation: Weaver K. 2006. Enterococcal Genetics, p 312-331. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap26
1. An, F. Y.,, and D. B. Clewell. 1994. Characterization of the determinant (traB) encoding sex pheromone shutdown by the hemolysin/bacteriocin plasmid pAD1 in Enterococcus faecalis. Plasmid 31: 215 221.
2. An, F. Y.,, and D. B. Clewell. 2002. Identification of the cAD1 sex pheromone precursor in Enterococcus faecalis. J. Bacteriol. 184: 1880 1887.
3. An, F. Y.,, and D. B. Clewell. 1997. The origin of transfer (oriT) of the enterococcal, pheromone-responding, cytolysin plasmid pAD1 is located within the repA determinant. Plasmid 37: 87 94.
4. An, F. Y.,, M. C. Sulavik,, and D. B. Clewell. 1999. Identification and characterization of a determinant ( eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cAD1. J. Bacteriol. 181: 5915 5921.
5. Antiporta, M. H.,, and G. M. Dunny. 2002. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF. J. Bacteriol. 184: 1155 1162.
6. Arias, C. A.,, P. Courvalin,, and P. E. Reynolds. 2000. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 44: 1660 1666.
7. Arthur, M.,, F. Depardieu,, and P. Courvalin. 1999. Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 145: 1849 1858.
8. Arthur, M.,, F. Depardieu,, G. Gerbaud,, M. Galimand,, R. Leclercq,, and P. Courvalin. 1997. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn 1546 and related elements in the absence of induction. J. Bacteriol. 179: 97 106.
9. Arthur, M.,, C. Molinas,, F. Depardieu,, and P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175: 117 127.
10. Arthur, M.,, and R. Quintiliani, Jr. 2001. Regulation of VanA- and VanB-type glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 45: 375 381.
11. Bae, T.,, and G. M. Dunny. 2001. Dominant-negative mutants of prgX: evidence for a role for PrgX dimerization in negative regulation of pheromone-inducible conjugation. Mol. Microbiol. 39: 1307 1320.
12. Bae, T.,, B. Kozlowicz,, and G. M. Dunny. 2002. Two targets in pCF10 DNA for PrgX binding: their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation. J. Mol. Biol. 315: 995 1007.
13. Bae, T.,, B. K. Kozlowicz,, and G. M. Dunny. 2004. Characterization of cis-acting prgQ mutants: evidence for two distinct repression mechanisms by Qa RNA and PrgX protein in pheromone-inducible enterococcal plasmid pCF10. Mol. Microbiol. 51: 271 281.
14. Baptista, M.,, F. Depardieu,, P. Reynolds,, P. Courvalin,, and M. Arthur. 1997. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol. Microbiol. 25: 93 105.
15. Barcelona-Andres, B.,, A. Marina,, and V. Rubio. 2002. Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis. J. Bacteriol. 184: 6289 6300.
16. Bastos, M. C., de Freire,, K. Tanimoto,, and D. B. Clewell. 1997. Regulation of transfer of the Enterococcus facealis pheromone-responding plasmid pAD1: temperature-sensitive transfer mutants and identification of a new regulatory determinant, traD. J. Bacteriol. 179: 3250 3259.
17. Bastos, M. C., de Freire,, H. Tomita,, K. Tanimoto,, and D. B. Clewell. 1998. Regulation of the Enterococcus faecalis pAD1-related sex pheromone response: analyses of traD expression and its role in controlling conjugation functions. Mol. Microbiol. 30: 381 392.
18. Bensing, B. A.,, D. A. Manias,, and G. M. Dunny. 1997. Pheromone cCF10 and plasmid pCF10-encoded regulatory molecules act post-transcriptionally to activate expression of downstream conjugation functions. Mol. Microbiol. 24: 285 294.
19. Berg, T.,, N. Firth,, S. Apisiridej,, A. Hettiaratchi,, A. Leelaporn,, and R. A. Skurray. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180: 4350 4359.
20. Boyd, D. A.,, J. Conly,, H. Dedier,, G. Peters,, L. Robertson,, E. Slater,, and M. R. Mulvey. 2000. Molecular characterization of the vanD gene cluster and a novel insertion element in a vancomycin-resistant enterococcus isolated in Canada. J. Clin. Microbiol. 38: 2392 2394.
21. Bozdogan, B.,, R. Leclercq,, A. Lozniewski,, and M. Weber. 1999. Plasmid-mediated coresistance to streptogramins and vancomycin in Enterococcus faecium HM1032. Antimicrob. Agents Chemother. 43: 2097 2098.
22. Bringel, F.,, G. Van Alstine,, and J. Scott. 1992. Conjugative transposition of Tn916: the transposon int gene is required only in the donor. J. Bacteriol. 174: 4036 4041.
23. Brown, M. S.,, J. Ye,, R. B. Rawson,, and J. L. Goldstein. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391 398.
24. Bruand, C.,, E. Le Chatelier,, S. Ehrlich,, and L. Janniere. 1993. A fourth class of theta-replicating plasmids: the pAM beta 1 family from gram-positive bacteria. Proc. Natl. Acad. Sci. USA 90: 11668 11672.
25. Bruck, I.,, M. F. Goodman,, and M. O’Donnell. 2003. The essential C family DnaE polymerase is error-prone and efficient at lesion bypass. J. Biol. Chem. 278: 44361 44368.
26. Buck, M.,, M.-T. Gallegos,, D. J. Studholme,, Y. Guo,, and J. D. Gralla. 2000. The bacterial enhancer-dependent sigma 54 (sigma N) transcription factor. J. Bacteriol. 182: 4129 4136.
27. Burrus, V.,, G. Pavlovic,, B. Decaris,, and G. Guedon. 2002. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46: 601 610.
28. Burrus, V.,, G. Pavlovic,, B. Decaris,, and G. Guedon. 2002. The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48: 77 97.
29. Buttaro, B. A.,, M. H. Antiporta,, and G. M. Dunny. 2000. Cell-associated pheromone peptide (cCF10) production and pheromone inhibition in Enterococcus faecalis. J. Bacteriol. 182: 4926 4933.
30. Caparon, M.,, and J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59: 1027 1034.
31. Carias, L. L.,, S. D. Rudin,, C. J. Donskey,, and L. B. Rice. 1998. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillinbinding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180: 4426 4434.
32. Casadewall, B.,, P. E. Reynolds,, and P. Courvalin. 2001. Regulation of expression of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol. 183: 3436 3446.
33. Celli, J.,, and P. Trieu-Cuot. 1998. Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracyclineinducible transcripts reading through the attachment site. Mol. Microbiol. 28: 103 117.
34. Chow, J. W.,, V. Kak,, I. You,, S. J. Kao,, J. Petrin,, D. B. Clewell,, S. A. Lerner,, G. H. Miller,, and K. J. Shaw. 2001. Aminoglycoside resistance genes aph(2")-Ib and aac(6')-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob. Agents Chemother. 45: 2691 2694.
35. Chung, J.,, B. Bensing,, and G. Dunny. 1995. Genetic analysis of a region of the Enterococcus faecalis plasmid pCF10 involved in positive regulation of conjugative transfer functions. J. Bacteriol. 177: 2107 2117.
36. Clark, N. C.,, O. Olsvik,, J. M. Swenson,, C. A. Spiegel,, and F. C. Tenover. 1999. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob. Agents Chemother. 43: 157 160.
37. Clewell, D. B.,, F. Y. An,, S. E. Flannagan,, M. Antiporta,, and G. M. Dunny. 2000. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 35: 246 247.
38. Clewell, D. B.,, and G. Dunny,. 2002. Conjugation and genetic exchange in enterococci, p. 265 300. In M. S. Gilmore,, D. B. Clewell,, P. Courvalin,, G. Dunny,, B. E. Murray,, and L. B. Rice (ed.), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, D.C.
39. Clewell, D. B.,, S. E. Flannagan,, D. D. Jaworski,, and D. B. Clewell. 1995. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3: 229 236.
40. Clewell, D. B.,, S. E. Flannagan,, L. A. Zitzow,, Y. A. Su,, P. He,, E. Senghas,, and K. E. Weaver,. 1991. Properties of conjugative transposon Tn 916, p. 39 44. In G. M. Dunny,, P. Cleary,, and L. McKay (ed.), Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci. American Society for Microbiology, Washington, D.C.
41. Clewell, D. B.,, L. T. Pontius,, F. Y. An,, Y. Ike,, A. Suzuki,, and J. Nakayama. 1990. Nucleotide sequence of the sex pheromone inhibitor (iAD1) determinant of Enterococcus faecalis conjugative plasmid pAD1. Plasmid 24: 156 161.
42. Clewell, D. B.,, M. Victoria Francia,, S. E. Flannagan,, and F. Y. An. 2002. Enterococcal plasmid transfer: sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue. Plasmid 48: 193 201.
43. Clewell, D. B.,, and K. E. Weaver. 1989. Sex pheromones and plasmid transfer in Enterococcus faecalis. Plasmid 21: 175 184.
44. Clewell, D. B.,, Y. Yagi,, G. M. Dunny,, and S. K. Schultz. 1974. Characterization of three plasmid deoxyribonucleic acid molecules in a strain of Streptococcus faecalis: identification of a plasmid determining erythromycin resistance. J. Bacteriol. 117: 283 289.
45. Comenge, Y.,, R. Quintiliani, Jr.,, L. Li,, L. Dubost,, J.-P. Brouard,, J.-E. Hugonnet,, and M. Arthur. 2003. The CroRS two-component regulatory system is required for intrinsic β-lactam resistance in Enterococcus faecalis. J. Bacteriol. 185: 7184 7192.
46. Connolly, K. M.,, U. Ilangovan,, J. M. Wojciak,, M. Iwahara,, and R. T. Clubb. 2000. Major groove recognition by three-stranded [beta]-sheets: affinity determinants and conserved structural features. J. Mol. Biol. 300: 841 856.
47. Connolly, K. M.,, M. Iwahara,, and R. T. Clubb. 2002. Xis protein binding to the left arm stimulates excision of conjugative transposon Tn916. J. Bacteriol. 184: 2088 2099.
48. Courvalin, P.,, and C. Carlier. 1986. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205: 291 297.
49. Dalet, K.,, C. Briand,, Y. Cenatiempo,, and Y. Hechard. 2001. The rpoN gene of Enterococcus faecalis directs sensitivity to subclass IIa bacteriocins. Cur. Microbiol. 41: 441 443.
50. Day, A. M.,, J. H. Cove,, and M. K. Phillips-Jones. 2003. Cytolysin gene expression in Enterococcus faecalis is regulated in response to aerobiosis conditions. Mol. Genet. Genomics 269: 31 39.
51. DeBoever, E. H.,, and D. B. Clewell. 2001. The Enterococcus faecalis pheromone-responsive plasmid pAM373 does not encode an entry exclusion function. Plasmid 45: 57 60.
52. DeBoever, E. H.,, D. B. Clewell,, and C. M. Frasier. 2000. Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analyses of sex pheromone response. Mol. Microbiol. 37: 1327 1341.
53. Del Grosso, M.,, A. Scotto d’Abusco,, F. Iannelli,, G. Pozzi,, and A. Pantosti. 2004. Tn2009, a Tn916-like element containing mef(E) in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 48: 2037 2042.
54. del Solar, G.,, and M. Espinosa. 2000. Plasmid copy number control: an ever-growing story. Mol. Microbiol. 37: 492 500.
55. Depardieu, F.,, M. G. Bonora,, P. E. Reynolds,, and P. Courvalin. 2003. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol. 50: 931 948.
56. Depardieu, F.,, P. E. Reynolds,, and P. Courvalin. 2003. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob. Agents Chemother. 47: 7 18.
57. Dunny, G. M.,, B. L. Brown,, and D. B. Clewell. 1978. Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone. Proc. Natl. Acad. Sci. USA 75: 3479 3483.
58. Dunny, G. M.,, and B. A. B. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51: 527 564.
59. Dunny, G. M.,, D. L. Zimmerman,, and M. L. Tortorello. 1985. Induction of surface exclusion (entry exclusion) by Streptococcus faecalis sex pheromones: use of monoclonal antibodies to identify an inducible surface antigen involved in the exclusion process. Proc. Natl. Acad. Sci. USA 82: 8582 8586.
60. Dutta, I.,, and P. E. Reynolds. 2002. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob. Agents Chemother. 46: 3125 3132.
61. Edwards, D. H.,, and J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905 915.
62. Ehrenfeld, E. E.,, R. E. Kessler,, and D. B. Clewell. 1986. Identification of pheromone-induced surface proteins in Streptococcus faecalis and evidence of a role for lipoteichoic acid in formation of mating aggregates. J. Bacteriol. 168: 6 12.
63. Engelbert, M.,, E. Mylonakis,, F. M. Ausubel,, S. B. Calderwood,, and M. S. Gilmore. 2004. Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect. Immun. 72: 3628 3633.
64. Espeli, O.,, C. Lee,, and K. J. Marians. 2003. A physical and functional interaction between Escherichia coli FtsK and topoisomerase IV. J. Biol. Chem. 278: 44639 44644.
65. Evers, S.,, J. Quintiliani,, R., and P. Courvalin. 1996. Genetics of glycopeptide resistance in enterococci. Microb. Drug Resist. 2: 219 223.
66. Firth, N.,, S. Apisiridej,, T. Berg,, B. A. O’Rourke,, S. Curnock,, K. G. H. Dyke,, and R. A. Skurray. 2000. Replication of staphylococcal multiresistance plasmids. J. Bacteriol. 182: 2170 2178.
67. Flannagan, S. E.,, J. W. Chow,, S. M. Donabedian,, W. J. Brown,, M. B. Perri,, M. J. Zervos,, Y. Ozawa,, and D. B. Clewell. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob. Agents Chemother. 47: 3954 3959.
68. Flannagan, S. E.,, and D. B. Clewell. 1991. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J. Bacteriol. 173: 7136 7141.
69. Flannagan, S. E.,, and D. B. Clewell. 2002. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus. Mol. Microbiol. 44: 803 817.
70. Flannagan, S. E.,, L. A. Zitzow,, Y. A. Su,, and D. B. Clewell. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32: 350 354.
71. Foster, K. A.,, M. H. Barnes,, R. O. Stephenson,, M. M. Butler,, D. J. Skow,, W. A. LaMarr,, and N. C. Brown. 2003. DNA polymerase III of Enterococcus faecalis: expression and characterization of recombinant enzymes encoded by the polC and dnaE genes. Protein Expr. Purif. 27: 90 97.
72. Francia, M. V.,, and D. B. Clewell. 2002. Amplification of the tetracycline resistance determinant of pAM alpha 1 in Enterococcus faecalis requires a site-specific recombination event involving relaxase. J. Bacteriol. 184: 5187 5193.
73. Francia, M. V.,, and D. B. Clewell. 2002. Transfer origins in the conjugative Enterococcus faecalis plasmids pAD1 and pAM373: identification of the pAD1 nic site, a specific relaxase and a possible TraG-like protein. Mol. Microbiol. 45: 375 395.
74. Francia, M. V.,, S. Fujimoto,, P. Tille,, K. E. Weaver,, and D. B. Clewell. 2004. Replication of Enterococcus faecalis pheromone-responding plasmid pAD1: location of the minimal replicon and oriV Site and RepA involvement in initiation of replication. J. Bacteriol. 186: 5003 5016.
75. Francia, M. V.,, W. Haas,, R. Wirth,, E. Samberger,, A. Mscholl-Silberhorn,, M. S. Gilmore,, Y. Ike,, K. E. Weaver,, F. Y. An,, and D. B. Clewell. 2001. Completion of the nucleotide sequence of the Enterococcus faecalis conjugative virulence plasmid pAD1 and identification of a second transfer origin. Plasmid 46: 117 127.
76. Francia, M. V.,, K. E. Weaver,, and D. B. Clewell. Unpublished observations.
77. Franke, A. E.,, and D. B. Clewell. 1981. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145: 494 502.
78. Fujimoto, S.,, and D. B. Clewell. 1998. Regulation of the pAD1 sex pheromone response of Enterococcus faecalis by direct interaction between the cAD1 peptide mating signal and the negatively regulating, DNA-binding TraA protein. Proc. Natl. Acad. Sci. USA 95: 6430 6435.
79. Fujimoto, S.,, H. Tomita,, E. Wakamatsu,, K. Tanimoto,, and Y. Ike. 1995. Physical mapping of the conjugative bacteriocin plasmid pPD1 of Enterococcus faecalis and identification of the determinant related to the pheromone response. J. Bacteriol. 177: 5574 5581.
80. Fuqua, W.,, and S. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176: 2796 2806.
81. Garnier, F.,, S. Taourit,, P. Glaser,, P. Courvalin,, and M. Galimand. 2000. Characterization of transposon Tn 1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146: 1481 1489.
82. Gawron-Burke, C.,, and D. B. Clewell. 1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300: 281 284.
83. Gerdes, K.,, J. Møller-Jensen,, and R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37: 455 466.
84. Gering, M.,, F. Gotz,, and R. Bruckner. 1996. Sequence and analysis of the replication region of the Staphylococcus xylosus plasmid pSX267. Gene 182: 117 122.
85. Ghim, S.-Y.,, C. C. Kim,, E. R. Bonner,, J. N. D’Elia,, G. K. Grabner,, and R. L. Switzer. 1999. The Enterococcus faecalis pyr operon is regulated by autogenous transcriptional attenuation at a single site in the 5' leader. J. Bacteriol. 181: 1324 1329.
86. Grady, R.,, and F. Hayes. 2003. Axe-Txe, a broad spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol. 47: 1419 1432.
87. Grainge, I.,, and M. Jayaram. 1999. The integrase family of recombinases: organization and function of the active site. Mol. Microbiol. 33: 449 456.
88. Greenfield, T. J.,, E. Ehli,, T. Kirshenmann,, T. Franch,, K. Gerdes,, and K. E. Weaver. 2000. The antisense RNA of the par locus of pAD1 regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol. Microbiol. 37: 652 660.
89. Greenfield, T. J.,, T. Franch,, K. Gerdes,, and K. E. Weaver. 2001. Antisense RNA regulation of the par post-segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI. Mol. Microbiol. 42: 527 537.
90. Greenfield, T. J.,, and K. E. Weaver. 2000. Antisense RNA regulation of the pAD1 par post-segregational killing system requires interaction at the 5' and 3' ends of the RNAs. Mol. Microbiol. 37: 661 670.
91. Haas, W.,, B. D. Shepard,, and M. S. Gilmore. 2002. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature 415: 84 87.
92. Hancock, L.,, and M. Perego. 2002. Two-component signal transduction in Enterococcus faecalis. J. Bacteriol. 184: 5819 5825.
93. Hancock, L. E.,, B. D. Shepard,, and M. S. Gilmore. 2003. Molecular analysis of the Enterococcus faecalis serotype 2 polysaccharide determinant. J. Bacteriol. 185: 4393 4401.
94. Hayes, F. 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301: 1496 1499.
95. Heath, D.,, F. An,, K. Weaver,, and D. Clewell. 1995. Phase variation of Enterococcus faecalis pAD1 conjugation functions relates to changes in iteron sequence region. J. Bacteriol. 177: 5453 5459.
96. Heaton, M. P.,, L. F. Discotto,, M. J. Pucci,, and S. Handwerger. 1996. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171: 9 17.
97. Héchard, Y.,, C. Pelletier,, Y. Cenatiempo,, and J. Frère. 2001. Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147: 1575 1580.
98. Hedberg, P. J.,, B. A. B. Leonard,, R. E. Ruhfel,, and G. M. Dunny. 1996. Identification and characterization of the genes of Enterococcus faecalis plasmid pCF10 involved in replication and in negative control of pheromone-inducible conjugation. Plasmid 35: 46 57.
99. Higgins, M. L.,, and G. D. Shockman. 1976. Study of a cycle of cell wall assembly in Streptococcus faecalis by three-dimensional reconstruction of thin sections of cells. J. Bacteriol. 127: 1346 1358.
100. Hinerfeld, D.,, and G. Churchward. 2001. Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J. Bacteriol. 183: 2947 2951.
101. Hinerfeld, D.,, and G. Churchward. 2001. Xis protein of the conjugative transposon Tn 916 plays dual opposing roles in transposon excision. Mol. Microbiol. 41: 1459 1467.
102. Hirt, H.,, R. Wirth,, and A. Muscholl. 1996. Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: detection of a new insertion element on pPD1 and implications for the evolution of this plasmid family. Mol. Gen. Genet. 252: 640 647.
103. Hoch, J. A.,, and T. J. Silhavy. 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
104. Hodel-Christian, S. L.,, and B. E. Murray. 1991. Characterization of the gentamicin resistance transposon Tn5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn4001 and Tn4031. Antimicrob. Agents Chemother. 35: 1147 1152.
105. Holman, T. R.,, Z. Wu,, B. L. Wanner,, and C. T. Walsh. 1994. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33: 4625 4631.
106. Hosking, S.,, M. Deadman,, E. Moxon,, J. Peden,, N. Saunders,, and N. High. 1998. An in silico evaluation of Tn916 as a tool for generalized mutagenesis in Haemophilus influenzae Rd. Microbiology 144: 2525 2530.
107. Ike, Y.,, K. Tanimoto,, H. Tomita,, K. Takeuchi,, and S. Fujimoto. 1998. Efficient transfer of the pheromone-independent Enterococcus faecium plasmid pMG1 (Gmr) (65.1 kilobases) to Enterococcus strains during broth mating. J. Bacteriol. 180: 4886 4892.
108. Ip, S. C. Y.,, M. Bregu,, F.-X. Barre,, and D. J. Sherratt. 2003. Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination. EMBO J. 22: 6399 6407.
109. Ireton, K.,, N. Gunther, 4th, and A. Grossman. 1994. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176: 5320 5329.
110. Jaworski, D.,, and D. Clewell. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol. 176: 3328 3335.
111. Jaworski, D.,, and D. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177: 6644 6651.
111a.. Joint Genome Institute. Enterococcus faecium genome. http://genome.jgi-psf.org/draft_microbes/entfa/entfa. home.html
112. Khan, S. 1997. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61: 442 455.
113. Khan, S. A. 2003. DNA-protein interactions during the initiation and termination of plasmid pT181 rolling-circle replication. Prog. Nucleic Acid Res. Mol. Biol. 75: 113 137.
114. Khan, S. A. 2000. Plasmid rolling-circle replication: recent developments. Mol. Microbiol. 37: 477 484.
115. Kunst, F.,, N. Ogasawara,, I. Moszer,, A. M. Albertini,, G. Alloni,, V. Azevedo,, M. G. Bertero,, P. Bessieres,, A. Bolotin,, S. Borchert,, R. Borriss,, L. Boursier,, A. Brans,, M. Braun,, S. C. Brignell,, S. Bron,, S. Brouillet,, C. V. Bruschi,, B. Caldwell,, V. Capuano,, N. M. Carter,, S.-K. Choi,, J.-J. Codani,, I. F. Connerton,, N. J. Cummings,, R. A. Daniel,, F. Denizot,, K. M. Devine,, A. Dusterhoft,, S. D. Ehrlich,, P. T. Emmerson,, K. D. Entian,, J. Errington,, C. Fabret,, E. Ferrari,, D. Foulger,, C. Fritz,, M. Fujita,, Y. Fujita,, S. Fuma,, A. Galizzi,, N. Galleron,, S.-Y. Ghim,, P. Glaser,, A. Goffeau,, E. J. Golightly,, G. Grandi,, G. Guiseppi,, B. J. Guy,, K. Haga,, J. Haiech,, C. R. Harwood,, A. Henaut,, H. Hilbert,, S. Holsappel,, S. Hosono,, M.-F. Hullo,, M. Itaya,, L. Jones,, B. Joris,, D. Karamata,, Y. Kasahara,, M. Klaerr- Blanchard,, C. Klein,, Y. Kobayashi,, P. Koetter,, G. Koningstein,, S. Krogh,, M. Kumano,, K. Kurita,, A. Lapidus,, S. Lardinois,, J. Lauber,, V. Lazarevic,, S.-M. Lee,, A. Levine,, H. Liu,, S. Masuda,, C. Mauel,, C. Medigue,, N. Medina,, R. P. Mellado,, M. Mizuno,, D. Moestl,, S. Nakai,, M. Noback,, D. Noone,, M. O’Reilly,, K. Ogawa,, A. Ogiwara,, B. Oudega,, S.-H. Park,, V. Parro,, T. M. Pohl,, D. Portetelle,, S. Porwollik,, A. M. Prescott,, E. Presecan,, P. Pujic,, B. Purnelle, et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
116. Kwong, S. M.,, R. A. Skurray,, and N. Firth. 2004. Staphylococcus aureus multiresistance plasmid pSK41: analysis of the replication region, initiator protein binding and antisense RNA regulation. Mol. Microbiol. 51: 497 509.
117. Lancaster, H.,, A. P. Roberts,, R. Bedi,, M. Wilson,, and P. Mullany. 2004. Characterization of Tn916S, a Tn916-like element containing the tetracycline resistance determinant tet(S). J. Bacteriol. 186: 4395 4398.
118. Leavis, H.,, J. Top,, N. Shankar,, K. Borgen,, M. Bonten,, J. van Embden,, and R. J. L. Willems. 2004. A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J. Bacteriol. 186: 672 682.
119. Leboeuf, C.,, L. Leblanc,, Y. Auffray,, and A. Hartke. 2000. Characterization of the ccpA gene of Enterococcus faecalis: identification of starvation-inducible proteins regulated by CcpA. J. Bacteriol. 182: 5799 5806.
120. Le Breton, Y.,, G. Boel,, A. Benachour,, H. Prevost,, Y. Auffray,, and A. Rince. 2003. Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ. Microbiol. 5: 329 337.
121. Le Chatelier, E.,, O. J. Becherel,, E. d’Alencon,, D. Canceill,, S. D. Ehrlich,, R. P. P. Fuchs,, and L. Janniere. 2004. Involvement of DnaE, the second replicative dna polymerase from Bacillus subtilis, in DNA mutagenesis. J. Biol. Chem. 279: 1757 1767.
122. Le Chatelier, E.,, L. Janniere,, S. D. Ehrlich,, and D. Canceill. 2001. The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMbeta 1 from gram-positive bacteria. J. Biol. Chem. 276: 10234 10246.
123. Leclercq, R.,, E. Derlot,, J. Duval,, and P. Courvalin. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319: 157 161.
124. Lemon, K. P.,, and A. D. Grossman. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282: 1516 1519.
125. Leonard, B. A. B.,, A. Podbielski,, P. J. Hedberg,, and G. M. Dunny. 1996. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation. Proc. Natl. Acad. Sci. USA 93: 260 264.
126. Ligozzi, M.,, F. Pittaluga,, and R. Fontana. 1993. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J. Bacteriol. 175: 2046 2051.
127. Lopez de Saro, F. J.,, A.-Y. Moon Woody,, and J. D. Helmann. 1995. Structural analysis of the Bacillus subtilis[ delta] factor: a protein polyanion which displaces RNA from RNA polymerase. J. Mol. Biol. 252: 189 202.
128. Lovett, S. T. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol. 52: 1243 1253.
129. Low, Y. L.,, N. S. Jakubovics,, J. C. Flatman,, H. F. Jenkinson,, and A. W. Smith. 2003. Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis. J. Med. Microbiol. 52: 113 119.
130. Lu, F.,, and G. Churchward. 1994. Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13: 1541 1548.
131. Lu, F.,, and G. Churchward. 1995. Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J. Bacteriol. 177: 1938 1946.
132. Manganelli, R.,, S. Ricci,, and G. Pozzi. 1997. The joint of Tn916 circular intermediates is a homoduplex in Enterococcus faecalis. Plasmid 38: 71 78.
133. Marra, D.,, B. Pethel,, G. G. Churchward,, and J. R. Scott. 1999. The frequency of conjugative transposition of Tn916 is not determined by the frequency of excision. J. Bacteriol. 181: 5414 5418.
134. Marra, D.,, and J. R. Scott. 1999. Regulation of excision of the conjugative transposon Tn 916. Mol. Microbiol. 31: 609 621.
135. Marra, D.,, J. G. Smith,, and J. R. Scott. 1999. Excision of the conjugative transposon Tn916 in Lactococcus lactis. Appl. Environ. Microbiol. 65: 2230 2231.
136. Marshall, C. G.,, G. Broadhead,, B. K. Leskiw,, and G. C. Wright. 1997. D-ala-D-ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl. Acad. Sci. USA 94: 6480 6483.
137. Marshall, C. G.,, I. A. D. Lessard,, I. S. Park,, and G. D. Wright. 1998. Glycopeptide antibiotic resistance in glycopeptide-producing organisms. Antimicrob. Agents Chemother. 42: 2215 2220.
138. Morlot, C.,, M. Noirclerc-Savoye,, A. Zapun,, O. Dideberg,, and T. Vernet. 2004. The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol. Microbiol. 51: 1641 1648.
139. Morlot, C.,, A. Zapun,, O. Dideberg,, and T. Vernet. 2003. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol. Microbiol. 50: 845 855.
140. Murata, T.,, I. Yamato,, K. Igarashi,, and Y. Kakinuma. 1996. Intracellular Na+ regulates transcription of the ntp operon encoding a vacuolar-type Na+-translocating ATPase in Enterococcus hirae. J. Biol. Chem. 271: 23661 23666.
141. Muscholl-Silberhorn, A. B. 2000. Pheromone-regulated expression of sex pheromone plasmid pAD1-encoded aggregation substance depends on at least six upstream genes and a cis-acting, orientation-dependent factor. J. Bacteriol. 182: 3816 3825.
142. Mylonakis, E.,, M. Engelbert,, X. Qin,, C. D. Sifri,, B. E. Murray,, F. M. Ausubel,, M. S. Gilmore,, and S. B. Calderwood. 2002. The Enterococcus faecalis fsrB gene, a key component of the fsr quorum-sensing system, is asso ciated with virulence in the rabbit endophthalmitis model. Infect. Immun. 70: 4678 4681.
143. Nakayama, J.,, Y. Cao,, T. Horii,, S. Sakuda,, A. D. L. Akkermans,, W. M. deVos,, and H. Nagasawa. 2001. Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Mol. Microbiol. 41: 145 154.
144. Nakayama, J.,, Y. Takanami,, T. Horii,, S. Sakuda,, and A. Suzuki. 1997. Molecular mechanism of peptide-specific pheromone signaling in Enterococcus faecalis: function of pheromone receptor TraA and pheromone binding protein TraC encoded by pPD1. J. Bacteriol. 180: 449 456.
145. Nandi, S.,, J. J. Maurer,, C. Hofacre,, and A. O. Summers. 2004. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 101: 7118 7122.
146. Norgren, M.,, and J. R. Scott. 1991. The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J. Bacteriol. 173: 319 324.
147. Novick, R. P. 1998. Contrasting lifestyles of rolling-circle phages and plasmids. Trends Biochem. Sci. 23: 434 438.
148. Ogasawara, N.,, and H. Yoshikawa. 1992. Genes and their organization in the replication origin region of the bacterial chromosome. Mol. Microbiol. 6: 629 634.
149. Ohmori, H.,, E. C. Friedberg,, R. P. Fuchs,, M. F. Goodman,, F. Hanaoka,, D. Hinkle,, T. A. Kunkel,, C. W. Lawrence,, Z. Livneh,, T. Nohmi,, L. Prakash,, S. Prakash,, T. Todo,, G. C. Walker,, Z. Wang,, and R. Woodgate. 2001. The Y-family of DNA polymerases. Molec. Cell 8: 7 9.
150. O’Keeffe, T.,, C. Hill,, and R. P. Ross. 1999. Characterization and heterologous expression of the genes encoding enterocin a production, immunity, and regulation in Enterococcus faecium DPC1146. Appl. Environ. Microbiol. 65: 1506 1515.
151. Osborn, A. M.,, and D. Boltner. 2002. When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48: 202 212.
152. Ozawa, Y.,, K. Tanimoto,, S. Fujimoto,, H. Tomita,, and Y. Ike. 1997. Cloning and genetic analysis of the UV resistance determinant (uvr) encoded on the Enterococcus faecalis pheromone-responsive conjugative plasmid pAD1. J. Bacteriol. 179: 7468 7475.
153. Panina, E. M.,, A. G. Vitreschak,, A. A. Mironov,, and M. S. Gelfand. 2003. Regulation of biosynthesis and transport of aromatic amino acids in low-GC gram-positive bacteria. FEMS Microbiol. Lett. 222: 211 220.
154. Patino, L. A.,, P. Courvalin,, and B. Perichon. 2002. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J. Bacteriol. 184: 6457 6464.
155. Paul Ross, R.,, and A. Claiborne. 1997. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol. Lett. 151: 177 183.
156. Paulsen, I. T.,, L. Banerjei,, G. S. A. Myers,, K. E. Nelson,, R. Seshadri,, T. D. Read,, D. E. Fouts,, J. A. Eisen,, S. R. Gill,, J. F. Heidelberg,, H. Tettelin,, R. J. Dodson,, L. Umayam,, L. Brinkac,, M. Beanan,, S. Daugherty,, R. T. DeBoy,, S. Durkin,, J. Kolonay,, R. Madupu,, W. Nelson,, J. Vamathevan,, B. Tran,, J. Upton,, T. Hansen,, J. Shetty,, H. Khouri,, T. Utterback,, D. Radune,, K. A. Ketchum,, B. A. Dougherty,, and C. M. Fraser. 2003. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299: 2071 2074.
157. Perichon, B.,, B. Casadewall,, P. Reynolds,, and P. Courvalin. 2000. Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired D-alanine: D-alanine ligase. Antimicrob. Agents Chemother. 44: 1346 1348.
158. Perkins, J. B.,, and P. Youngman. 1983. Streptococcus plasmid pAMα1 is a composite of two separable replicons, one of which is closely related to Bacillus plasmid pBC16. J. Bacteriol. 155: 607 615.
159. Perkins, J. B.,, and P. J. Youngman. 1984. A physical and functional analysis of Tn917, a Streptococcus transposon in the Tn3 family that functions in Bacillus. Plasmid 12: 119 138.
160. Permina, E. A.,, A. A. Mironov,, and M. S. Gelfand. 2002. Damage-repair error-prone polymerases of eubacteria: association with mobile genome elements. Gene 293: 133 140.
161. Pethel, B.,, and G. Churchward. 2000. Coupling sequences flanking Tn916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid 43: 123 129.
162. Podbielski, A.,, and B. Kreikemeyer. 2004. Cell densitydependent regulation: basic principles and effects on the virulence of gram-positive cocci. Int. J. Infect. Dis. 8: 81 95.
163. Pontius, L. T.,, and D. B. Clewell. 1991. A phase variation event that activates conjugation functions encoded by the Enterococcus faecalis plasmid pAD1. Plasmid 26: 172 185.
164. Portillo, A.,, F. Ruiz-Larrea,, M. Zarazaga,, A. Alonso,, J. L. Martinez,, and C. Torres. 2000. Macrolide resistance genes in Enterococcus spp. Antimicrob. Agents Chemother. 44: 967 971.
165. Possoz, C.,, C. Ribard,, J. Gagnat,, J.-L. Pernodet,, and M. Guerineau. 2001. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol. Microbiol. 42: 159 166.
166. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1989. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 8: 2425 2433.
167. Pucci, M.,, J. Thanassi,, L. Discotto,, R. Kessler,, and T. Dougherty. 1997. Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci. J. Bacteriol. 179: 5632 5635.
168. Qin, X.,, K. V. Singh,, G. M. Weinstock,, and B. E. Murray. 2001. Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J. Bacteriol. 183: 3372 3382.
169. Qin, X.,, K. V. Singh,, G. M. Weinstock,, and B. E. Murray. 2000. Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect. Immun. 68: 2579 2586.
170. Quintiliani, R., Jr.,, and P. Courvalin. 1996. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172: 1 8.
170a.. Ramirez-Arcos, S.,, J. Szeto,, J.-A. R. Dillon,, and W. Margolin. 2002. Conservation of dynamic localization among MinD and MinE orthologs: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli. Mol. Microbiol. 46: 493 504.
171. Rice, L. B.,, S. Bellais,, L. L. Carias,, R. Hutton-Thomas,, R. A. Bonomo,, P. Caspers,, M. G. Page,, and L. Gutmann. 2004. Impact of specific pbp5 mutations on expression of β-lactam resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 48: 3028 3032.
172. Rice, L. B.,, and L. L. Carias. 1998. Transfer of Tn5385, a composite, multiresistance chromosomal element from Enterococcus faecalis. J. Bacteriol. 180: 714 721.
173. Rice, L. B.,, L. L. Carias,, R. Hutton-Thomas,, F. Sifaoui,, L. Gutmann,, and S. D. Rudin. 2001. Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 45: 1480 1486.
174. Roberts, A. P.,, P. A. Johanesen,, D. Lyras,, P. Mullany,, and J. I. Rood. 2001. Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147: 1243 1251.
175. Rowe-Magnus, D. A.,, and D. Mazel. 2001. Integrons: natural tools for bacterial genome evolution. Curr. Opin. Microbiol. 4: 565 569.
176. Rudy, C.,, J. Scott,, and G. Churchward. 1997. DNA binding by the Xis protein of the conjugative transposon Tn916. J. Bacteriol. 179: 2567 2572.
177. Rudy, C.,, K. Taylor,, D. Hinerfeld,, J. Scott,, and G. Churchward. 1997. Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 25: 4061 4066.
178. Ruhfel, R.,, D. Manias,, and G. Dunny. 1993. Cloning and characterization of a region of the Enterococcus faecalis conjugative plasmid, pCF10, encoding a sexpheromone-binding function. J. Bacteriol. 175: 5253 5259.
179. Sahm, D. F.,, M. K. Marsilio,, and P. G. Piazza. 1999. Antimicrobial resistance in key bloodstream bacterial isolates: electronic surveillance with the Surveillance Network Database—USA. Clin. Infect. Dis. 29: 259 263.
180. Sapunaric, F.,, C. Franssen,, P. Stefanic,, A. Amoroso,, O. Dardenne,, and J. Coyette. 2003. Redefining the role of psr in β-lactam resistance and cell autolysis of Enterococcus hirae. J. Bacteriol. 185: 5925 5935.
181. Schwarz, F. V.,, V. Perreten,, and M. Teuber. 2002. Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid 46: 170 187.
182. Scott, J. R.,, F. Bringel,, D. Marra,, G. Van Alstine,, and C. K. Rudy. 1994. Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11: 1099 1108.
183. Senghas, E.,, J. M. Jones,, M. Yamamoto,, C. Gawron-Burke,, and D. B. Clewell. 1988. Genetic organization of the bacterial conjugative transposon Tn916. J. Bacteriol. 170: 245 249.
184. Shankar, N.,, A. S. Baghdayan,, and M. S. Gilmore. 2002. Modulation of virulence within a pathogenicity island in vancomycin-resistant Enterococcus faecalis. Nature 417: 746 750.
185. Shaw, J. H.,, and D. B. Clewell. 1985. Complete nucleotide sequence of macrolide-lincosamide-streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 164: 782 796.
186. Shepard, B. D.,, and M. S. Gilmore. 1999. Identification of aerobically and anaerobically induced genes in Enterococcus faecalis by random arbitrarily primed PCR. Appl. Environ. Microbiol. 65: 1470 1476.
187. Shoemaker, N. B.,, R. D. Barber,, and A. A. Salyers. 1989. Cloning and characterization of a Bacteroides conjugal tetracycline-erythromycin resistance element by using a shuttle cosmid vector. J. Bacteriol. 171: 1294 1302.
188. Shoemaker, N. B.,, M. D. Smith,, and W. R. Guild. 1980. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in Pneumococcus. Plasmid 3: 80 87.
189. Solioz, M.,, and J. V. Stoyanov. 2003. Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev. 27: 183 195.
190. Su, Y.,, P. He,, and D. Clewell. 1992. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36: 769 778.
191. Su, Y. A.,, and D. B. Clewell. 1993. Characterization of the left 4 kb of conjugative transposon Tn916: determinants involved in excision. Plasmid 30: 234 250.
192. Tanaka, T.,, and M. Ogura. 1998. A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis. FEBS Lett. 422: 243 246.
193. Tanimoto, K.,, F. An,, and D. Clewell. 1993. Characterization of the traC determinant of the Enterococcus faecalis hemolysin-bacteriocin plasmid pAD1: binding of sex pheromone. J. Bacteriol. 175: 5260 5264.
194. Tanimoto, K.,, and Y. Ike. 2002. Analysis of the conjugal transfer system of the pheromone- independent highly transferable enterococcus plasmid pMG1: identification of a tra gene (traA) up-regulated during conjugation. J. Bacteriol. 184: 5800 5804.
195. Taylor, K.,, and G. Churchward. 1997. Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J. Bacteriol. 179: 1117 1125.
196.. Teng, F.,, L. Wang,, K. V. Singh,, B. E. Murray,, and G. M. Weinstock. 2002. Involvement of phoP-phoS homologs in Enterococcus faecalis virulence. Infect. Immun. 70: 1991 1996.
196a.. The Institute for Genome Research. Enterococcus faecalis genome. http://www.tigr.org/tigr-scripts/CMR2/GenomePage3.spl?database=gef.
197. Tomita, H.,, and D. B. Clewell. 2000. A pAD1-encoded small RNA molecule, mD, negatively regulates Enterococcus faecalis pheromone response by enhancing transcription termination. J. Bacteriol. 182: 1062 1073.
198. Tomita, H.,, K. Tanimoto,, S. Hayakawa,, K. Morinaga,, K. Ezaki,, H. Oshima,, and Y. Ike. 2003. Highly conjugative pMG1-like plasmids carrying Tn1546-like transposons that encode vancomycin resistance in Enterococcus faecium. J. Bacteriol. 185: 7024 7028.
199. Trotter, K. M.,, and G. M. Dunny. 1990. Mutants of Enterococcus faecalis deficient as recipients in mating with donors carrying pheromone-inducible plasmids. Plasmid 24: 57 67.
200. Uttley, A. H.,, C. H. Collins,, J. Naidoo,, and R. C. George. 1988. Vancomycin-resistant enterococci. Lancet 1: 57 58.
201. Verneuil, N.,, M. Sanguinetti,, Y. Le Breton,, B. Posteraro,, G. Fadda,, Y. Auffray,, A. Hartke,, and J.-C. Giard. 2004. Effects of the Enterococcus faecalis hypR gene encoding a new transcriptional regulator on oxidative stress response and intracellular survival within macrophages. Infect. Immun. 72: 4424 4431.
202. Waters, C. M.,, and G. M. Dunny. 2001. Analysis of functional domains of the Enterococcus faecalis pheromoneinduced surface protein aggregation substance. J. Bacteriol. 183: 5659 5667.
203. Waters, C. M.,, H. Hirt,, J. K. McCormick,, P. M. Schlievert,, C. L. Wells,, and G. M. Dunny. 2004. An amino-terminal domain of Enterococcus faecalis aggregation substance is required for aggregation, bacterial internalization by epithelial cells and binding to lipoteichoic acid. Mol. Microbiol. 52: 1159 1171.
204. Weaver, K.,, D. Clewell,, and F. An. 1993. Identification, characterization, and nucleotide sequence of a region of Enterococcus faecalis pheromone-responsive plasmid pAD1 capable of autonomous replication. J. Bacteriol. 175: 1900 1909.
205. Weaver, K. E.,, and D. B. Clewell. 1991. Control of Enterococcus faecalis sex pheromone cAD1 elaboration: effects of culture aeration and pAD1 plasmid-encoded determinants. Plasmid 25: 177 189.
206. Weaver, K. E.,, E. A. Ehli,, J. S. Nelson,, and S. Patel. 2004. Antisense RNA regulation by stable complex formation in the Enterococcus faecalis plasmid pAD1 par addiction system. J. Bacteriol. 186: 6400 6408.
207. Weaver, K. E.,, K. D. Jensen,, A. Colwell,, and S. I. Sriram. 1996. Functional analysis of the Enterococcus faecalis plasmid pAD1-encoded stability determinant par. Mol. Microbiol. 20: 53 63.
208. Weaver, K. E.,, L. R. Rice,, and G. Churchward,. 2002. Plasmids and transposons, p. 219 263. In M. S. Gilmore,, D. B. Clewell,, P. Courvalin,, G. Dunny,, B. E. Murray,, and L. B. Rice (ed.), The Enterococci: Pathogenesis, Molecular Biology, and Antibiotic Resistance. ASM Press, Washington, D.C.
209. Weaver, K. E.,, and D. J. Tritle. 1994. Identification and characterization of an Enterococcus faecalis plasmid pAD1-encoded stability determinant which produces two small RNA molecules necessary for its function. Plasmid 32: 168 181.
210. Weaver, K. E.,, K. D. Walz,, and M. S. Heine. 1998. Isolation of a derivative of Escherichia coli-Enterococcus faecalis shuttle vector pAM401 temperature sensitive for maintenance in E. faecalis and its use in evaluating the mechanism of pAD1 par-dependent plasmid stabilization. Plasmid 40: 225 232.
211. Weaver, K. E.,, D. M. Weaver,, C. L. Wells,, C. M. Waters,, M. E. Gardner,, and E. A. Ehli. 2003. Enterococcus faecalis plasmid pAD1-encoded Fst toxin affects membrane permeability and alters cellular responses to lantibiotics. J. Bacteriol. 185: 2169 2177.
212. Weidlich, G.,, R. Wirth,, and D. Galli. 1992. Sex pheromone plasmid pAD1-encoded surface exclusion protein of Enterococcus faecalis. Mol. Gen. Genet. 233: 161 168.
213. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan,, J. F. Kolonay,, J. Shetty,, G. E. Killgore,, and F. C. Tenover. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302: 1569 1571.
214. Wojciak, J. M.,, K. M. Connolly,, and R. T. Clubb. 1999. NMR structure of the Tn916 integrase-DNA complex. Nat. Struct. Biol. 6: 366 373.
215. Woodford, N.,, D. Morrison,, A. P. Johnson,, A. C. Bateman,, J. G. Hastings,, T. S. Elliott,, and B. D. Cookson. 1955. Plasmid-mediated vanB glycopeptide resistance in enterococci. Microb. Drug Resist. 1: 235 240.
216. Wright, G. D.,, T. R. Holman,, and C. T. Walsh. 1993. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32: 5057 5063.
217. Yagi, Y.,, and D. B. Clewell. 1980. Recombination-deficient mutant of Streptococcus faecalis. J. Bacteriol. 143: 966 970.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error