1887

Chapter 28 : The Virulence Properties of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

The Virulence Properties of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap28-2.gif

Abstract:

This chapter focuses on virulence properties of . Using primarily biochemical approaches, it was established almost thirty years ago that three principal properties distinguished strains from the other oral streptococci isolated from the human oral cavity: (i) their ability to synthesize insoluble adhesive glucans from sucrose; (ii) their relative acid tolerance (aciduricity); and (iii) their rapid production of lactic acid from dietary sugars. Furthermore, the importance of these properties relative to cariogenicity was subsequently confirmed utilizing genetic approaches with defined mutants and rat model systems. The development of recombinant DNA techniques as well as gene inactivation strategies was crucial in this regard. These approaches identified a number of genes of the mutans streptococci that influenced the virulence of these organisms, including the genes coding for glucosyltransferases (Gtfs), the and genes encoding glucan-binding proteins, expressing a cell surface adhesion, and the gene involved in intracellular polysaccharide storage. In addition, a number of other genes that have been shown to affect potential virulence properties in vitro were also characterized, including some involved in the stress responses of (, , , and an apurinic-apyrimidinic endonuclease gene).

Citation: Kuramitsu H. 2006. The Virulence Properties of , p 340-346. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch28

Key Concept Ranking

Gene Expression and Regulation
0.48193976
16s rRNA Sequencing
0.42346707
Human Infectious Diseases
0.4009253
0.48193976
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816513.chap28
1. Ajdic, D.,, W. M. McShan,, R. E. McLaughlin,, G. Savic,, J. Chang,, M. B. Carson,, C. Primeaux,, R. Tian,, S. Kenton,, H. Jia,, S. Lin,, Y. Qian,, S. Li,, H. Zhu,, F. Najar,, H. Lai,, J. White,, B. A. Roe,, and J. J. Ferretti. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 99:1443414439.
2. Alloing, G.,, B. Martin,, C. Granadel,, and J. P. Claverys. 1998. Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29:7583.
3. Baev, D.,, R. England,, and H. K. Kuramitsu. 1999. Stress induced membrane association of Streptococcus mutans GTP-binding protein, an essential G-protein, and investigation of its physiological role by utilizing an antisense RNA strategy. Infect. Immun. 67:45104516.
4. Banas, J. A. 2004. Virulence properties of Streptococcus mutans. Front. Biosci. 9:12671277.
5. Banas, J. A.,, and M. M. Vickerman. 2003. Glucan-binding proteins of oral streptococci. Crit. Rev. Oral Biol. Med. 14:8999.
6. Bassler, B. 2002. Small talk. Cell-to-cell communication in bacteria. Cell 109:421424.
7. Beeston, A. L.,, and M. G. Surette. 2002. pfs-Dependent regulation of autoinducer-2 production in Salmonella enteritica serovar Typhimurium. J. Bacteriol. 184:34503456.
8. Bhagwat, S. P.,, J. Nary,, and R. A. Burne. 2001. Effects of mutating putative two-component systems on biofilm formation by Streptococcus mutans UA159. FEMS Microbiol. Lett. 205:225230.
9. Bowen, W. H.,, K. M. Schilling,, E. Giertsen,, S. Person,, S. F. Lee,, A. S. Bleiweis,, and D. Beeman. 1991. Role of a cell surface-associated protein in adherence and dental caries. Infect. Immun. 59:46064609.
10. Burne, R. A. 1998. Oral streptococci... products of their environment. J. Dent. Res. 77:445452.
11. Caufield, P. W.,, G. R. Shah,, and S. K. Hollingshead. 1990. Use of transposon Tn916 to inactivate and isolate a mutacin-associated gene from Streptococcus mutans. Infect. Immun. 58:41264135.
12. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, K. R. Kerber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
13. Crowley, P. J.,, L. J. Brady,, S. M. Michalek,, and A. S. Bleiweis. 1999. Virulence of a spaP mutant of Streptococcus mutans in a gnotobiotic rat model. Infect. Immun. 67:12011206.
14. Cvitkovitch, D. G. 2001. Genetic competence and transformation in oral streptococci. Crit. Rev. Oral Biol. Med. 12:217243.
15. Cvitkovitch, D. G.,, and I. R. Hamilton. 1994. Biochemical change exhibited by oral streptococci resulting from laboratory subculturing. Oral Microbiol. Immunol. 9:209217.
16. Cvitkovitch, D. G.,, Y. H. Li,, and R. P. Ellen. 2003. Quorum sensing and biofilm formation in streptococcal infections. J. Clin. Investig. 112:16261632.
17. Cvitkovitch, D. G.,, J. A. Gutierrez,, J. Behari,, P. J. Youngman,, J. E. Wetz,, P. J. Crowley,, J. D. Hillman,, L. J. Brady,, and A. S. Bleiweis. 2000. Tn917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182:149154.
18. Freedman, M. L.,, J. M. Tanzer,, and A. L. Coykendall,. 1981. The use of genetic variants in the study of dental caries, p. 247261. In J. M. Tanzer, (ed.), Animal Models in Cariology. Information Retrieval Inc., Washington, D.C.
19. Frias, J.,, E. Olle,, and M. Alsina. 2001. Periodontal pathogens produce quorum sensing signals. Infect. Immun. 69:34313434.
20. Gutierrez, J. A.,, P. A. Crowley,, D. P. Brown,, J. D. Hillman,, P. Youngman,, and A. S. Bleiweis. 1996. Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J. Bacteriol. 178:41664175.
21. Hahn, K.,, R. C. Faustoferri,, and R. G. Quivey, Jr. 1999. Induction of an AP endonuclease activity in Streptococcus mutans during growth at low pH. Mol. Microbiol. 31:14891498.
22. Hamada, S.,, and H. D. Slade. 1980. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 44:331384.
23. Harris, G. S.,, S. M. Michalek,, and R. Curtiss III. 1992. Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. Infect. Immun. 60:31753185.
24. Hazlett, K. R. O.,, S. M. Michalek,, and J. A. Banas. 1998. Inactivation of the gbpA gene of Streptococcus mutans increases virulence and promotes in vivo accumulation of recombinations between glucosyltransferases B and C genes. Infect. Immun. 66:21802185.
25. Hillman, J. D. 2002. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Leeuwenhoek 82:361366.
26. Ji, Y.,, B. Zhang,, S. F. Van Horn,, P. Warren,, G. Woodnutt,, M. K. R. Burnham,, and M. Rosenberg. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:22662269.
27. Kleinberg, I. 2002. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: an alternative to Streptococcus mutans and the specific plaque hypothesis. Crit. Rev. Oral Biol. Med. 13:108125.
28. Koga, T.,, T. Oho,, Y. Shimazaki,, and Y. Nakano. 2002. Immunization against dental caries. Vaccine 20:20272044.
29. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42:627656.
30. Kremer, B. H.,, M. van der Kraan,, P. J. Crowley,, I. R. Hamilton,, L. J. Brady,, and A. S. Bleiweis. 2001. Characterization of the sat operon in Streptococcus mutans: evidence for a role of Ffh in acid tolerance. J. Bacteriol. 183:25432552.
31. Kroes, I.,, P. W. Lepp,, and D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA 96:1454714552.
32. Kuramitsu, H. K. 1993. Virulence factors of mutans streptococci: role of molecular genetics. Crit. Rev. Oral Biol. Med. 4:159176.
33. Kuramitsu, H. K., 2000. Streptococcus mutans: molecular genetic analysis, p. 280286. In V. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
34. Kuramitsu, H. K.,, and V. Trappa. 1984. Genetic exchange between oral streptococci during mixed growth. J. Gen. Microbiol. 130:24972500.
35. Lau, P. C.,, C. K. Sung,, J. H. Lee,, D. A. Morrison,, and D. G. Cvitkovitch. 2002. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J. Microbiol. Methods. 49:193205.
36. Lemos, J. A.,, T. A. Brown, Jr.,, and R. A. Burne. 2004. Effects of RelA in key virulence properties of planktonic and biofilm populations of Streptococcus mutans. Infect. Immun. 72:14311440.
37. Lemos, J. A.,, Y. Y. Chen,, and R. A. Burne. 2001. Genetic and physiological analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans. J. Bacteriol. 183:60746084.
38. Len, A. C.,, D. W. Harty,, and N. A. Jacques. 2004a. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150:13391351.
39. Len, A. C.,, D. W. Harty,, and N. A. Jacques. 2004b. Proteomic analysis of Streptococcus mutans metabolic phenotype during acid tolerance. Microbiology 150:13531366.
40. Li, Y. H.,, P. C. Lau,, N. Tang,, G. Svensater,, R. P. Ellen,, and D. G. Cvitokovtich. 2002. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J. Bacteriol. 184: 63336342.
41. Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50:353380.
42. Loo, C. Y.,, D. A. Corliss,, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes which code for biofilm phenotypes. J. Bacteriol. 182:13741382.
43. Mattos-Graner, R. O.,, S. Jin,, W. F. King,, T. Chen,, D. J. Smith,, and M. J. Duncan. 2001. Cloning of the Streptococcus mutans gene encoding glucan binding protein B and analysis of genetic stability and protein production in clinical isolates. Infect. Immun. 69:69316941.
44. Matsumura, M.,, T. Izumi,, M. Matsumoto,, M. Tsuji,, T. Fujiwara,, and T. Ooshima. 2003. The role of glucan-binding proteins in the cariogenicity of Streptococcus mutans. Microbiol. Immunol. 47:213215.
45. Merritt, J. E.,, F. Qi,, S. D. Goodman,, M. H. Anderson,, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71:19721979.
46. Ooshima, T.,, M. Matsumura,, T. Hoshino,, S. Kawabata,, S. Sobue,, and T. Fujiwara. 2001. Contributions of three glucosyltransferases to sucrose-dependent adherence of Streptococcus mutans. J. Dent. Res. 80:16721677.
47. Palmer, R., Jr.,, S. M. Gordon,, J. O. Cisar,, and P. E. Kolenbrander. 2003. Coaggregation-mediated interactions of streptococcal actinomyces detected in human dental plaque. J. Bacteriol. 185:34003409.
48. Russell, M. W.,, N. K. Childers,, S. M. Michalek,, D. J. Smith,, and M. A. Taubman. 2004. A caries vaccine? The state of the science of immunization against dental caries. Caries Res. 38:230235.
49. Sato, Y.,, K. Okamoto,, and H. Kizaki. 2002. gbpC and pac gene mutations detected in Streptococcus mutans GS-5. Oral Microbiol. Immunol. 17:263266.
50. Sato, Y.,, Y. Yamamoto,, and H. Kizaki. 2000. Xylitol-induced elevated expression of the gbpC gene in a population of Streptococcus mutans cells. Eur. J. Oral Sci. 108:538545.
51. Sato, Y.,, K. Okamoto,, A. Kagami,, Y. Yamamoto,, K. Ohta,, T. Igarashi,, and H. Kizaki. 2004. Application of in vitro mutagenesis to identify the gene responsible for cold agglutination phenotype of Streptococcus mutans. Microbiol. Immunol. 48:444456.
52. Shah, D. S.,, and R. R. Russell. 2004. A novel glucanbinding protein with lipase activity from the oral pathogen Streptococcus mutans. Microbiology 150:19471956.
53. Svensater, G.,, J. Welin,, J. C. Wilkins,, D. Beighton,, and I. R. Hamilton. 2001. Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 205:139146.
54. Tanzer, J. M., 1992. Microbiology of dental caries, p.377424. In J. Slots, and M. A. Taubman (ed.), Contemporary Oral Microbiology and Immunology. Mosby Year Book, St. Louis, Mo.
55. Tsumori, H.,, and H. K. Kuramitsu. 1997. The role of Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol. Immunol. 12:274280.
56. Vasil, M. L. 2003. DNA microarrays in analysis of quorum sensing: strengths and limitations. J. Bacteriol. 185:20612065.
57. Venter, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelson,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, Y. H. Rogers,, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:6674.
57a.. Wang, B. Y.,, and H. K. Kuramitsu. 2005. Interactions between oral bacteria: inhibition of Streptococcus mutans bacteriocin production by Streptococcus gordonii. Appl. Environ. Microbiol. 71:354362.
58. Weerkamp, A.,, L. Larik-Bongaerts,, and D. G. Vogel. 1977. Bacteriocins as factors in the in vitro interaction between oral streptococci in plaque. Infect. Immun. 16:773780.
59. Weilin, J.,, J. C. Wilkins,, D. Beighton,, and G. Svensater. 2004. Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl. Environ. Microbiol. 70:37363741.
60. Wen, Z. T.,, and R. A. Burne. 2003. Functional genomics approach to identify genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68:11961203.
61. Wen, Z. T.,, and R. A. Burne. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J. Bacteriol. 186:26822691.
62. Yamashita, Y.,, T. Takehara,, and H. K. Kuramitsu. 1993. Molecular characerization of a Streptococcus mutans mutant altered in environmental stress responses. J. Bacteriol. 175:62206228.
62a.. Yonezawa, H.,, and H. K. Kuramitsu. 2005. Genetic analysis of a unique bacteriocin, Smb, produced by Streptococcus mutans GS5. Antimicrob. Agents Chemother. 49:541548.
63. Yoshida, A.,, and H. K. Kuramitsu. 2002a. Multiple Streptococcus mutans genes are involved in biofilm formation. Appl. Environ. Microbiol. 68:62836291.
64. Yoshida, A.,, and H. K. Kuramitsu. 2002b. Streptococcus mutans biofilm formation: utilization of a gtfB promotergreen fluorescent protein (PgtfB::gfp) construct to monitor development. Microbiology 148:33883394.

Tables

Generic image for table
TABLE 1

Virulence factors of identified in vivo

See text for references.

Citation: Kuramitsu H. 2006. The Virulence Properties of , p 340-346. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error