1887

Chapter 33 : Genetics: Accessory Elements and Genetic Exchange

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Genetics: Accessory Elements and Genetic Exchange, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap33-2.gif

Abstract:

It is clear that the acquisition, maintenance, and dissemination of accessory elements have been central to the ongoing success of staphylococci as pathogens. Staphylococci represent a salient illustration of the adaptability afforded to microorganisms by access to additional functions through gene transfer mechanisms. Although DNA can be introduced into staphylococci in the laboratory via each of the three traditional bacterial gene transfer mechanisms—transformation, transduction, and conjugation—the latter two are believed to be the most significant mediators of natural genetic exchange. Most staphylococcal plasmids can be categorized as one of three main classes based on physical/genetic organization and functional characteristics, although another group, the pSK639 family plasmids, should be considered a fourth class. Staphylococcal insertion sequences and transposons are discussed in this chapter. Gene transfer mechanisms, together with accessory elements such as plasmids, transposable elements, prophages, and pathogenicity and resistance islands, serve as catalysts for microbial evolution by providing access to a shared reservoir of niche-adaptive functions. However, just as importantly, the combination of comparative genomics and sequence-based strain typing is clarifying the relationships between clinical strains. These studies are providing a new perspective on the scope and importance of the accessory genome, demonstrating that variation in pathogenic potential largely does not reside in the core genome, but rather that it is primarily attributable to the complement of mobile accessory elements that are present.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.5130208
Gene Expression and Regulation
0.4543918
Mobile Genetic Elements
0.4411725
0.5130208
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Maps of the RC plasmid family prototypes, pT181, pC194, pE194, and pSN2, and the mobilizable pT181 family plasmid, pC221 ( ); see text for additional references. Plasmid sizes are shown on the right. Genes (arrowed boxes) and loci encoding the following functions are indicated: , chloramphenicol resistance; , double-stranded origin of DNA replication; , erythromycin resistance; //, plasmid mobilization; , plasmid recombination/mobilization; ////, initiation of plasmid replication; , single-stranded origin of DNA replication; (K), tetracycline resistance. Restriction sites shown: A, I; C, I; E, RI; H, dIII; Hp, II; K, I; P, II; T, I; V, RV.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Maps of representative pSK639 family plasmids, pSK639 and pSK818 ( ). The locations of IS copies are marked by solid boxes, and the position of the cointegrated pT181-like plasmid within pSK818 is indicated. Plasmid sizes are shown on the right. Genes (arrowed boxes) and loci encoding the following functions are indicated: , trimethoprim resistance; , plasmid mobilization; , plasmid recombination/mobilization; , initiation of plasmid replication; , single-stranded origin of DNA replication; (K), tetracycline resistance; , thymidylate synthetase. Restriction sites shown: B, II; E, RI; K, I; S, I; V, RV.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Maps of representative β-lactamase/heavy metal multiresistance plasmids pI524, pSK23, pI258, and pI9789:: Tn ( ); see text for additional references. The family to which each plasmid belongs is shown in parentheses on the left, and plasmid sizes are indicated on the right. The positions of transposons are shown above each map. Open and solid boxes denote copies of IS and IS, respectively. Selected loci encoding the following functions are indicated beneath the maps: , aminoglycoside resistance; , arsenic resistance; , penicillin resistance; , cadmium resistance; , erythromycin resistance; , mercury resistance; , multidrug resistance to antiseptics and disinfectants; , initiation of plasmid replication. Restriction sites shown: B, II; E, RI.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Maps of representative pSK1 family multiresistance plasmids, pSK1 and pSK4 ( ); see text for additional references. Plasmid sizes are indicated on the right. The positions of transposons are indicated above each map. Open and solid boxes denote copies of IS and IS, respectively. Selected loci encoding the following functions are indicated beneath the maps: , aminoglycoside resistance; , penicillin resistance; , trimethoprim resistance; , multidrug resistance to antiseptics and disinfectants; , initiation of plasmid replication. Restriction sites shown: B, II; E, RI.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Maps of representative conjugative multiresistance plasmids pSK41, pJE1, pUW3626, pGO1, and pLW1043 ( ); see text for additional references. Plasmid sizes are indicated on the right. The positions of transposons and an integrated copy of the RC plasmid, pUB110, are indicated above each map; the latter and other small cointegrated plasmids are denoted by double lines. Solid boxes denote copies of IS, including the element interrupted by Tn in pLW1043, and open boxes represent truncated copies of IS. Selected loci encoding the following functions are indicated beneath the maps: /, aminoglycoside resistances; , penicillin resistance; , bleomycin resistance; , trimethoprim resistance; , origin of conjugative DNA transfer; , initiation of plasmid replication; , multidrug resistance to antiseptics and disinfectants; , conjugative transfer; , glycopeptide resistance. Restriction sites shown: B, II; E, RI. The position of the II site within IS indicates the orientation of the element.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Maps of representative SCC elements ( ). The sizes of the elements are indicated on the right. The positions of transposons Tn and ψTn and cointegrated copies of the RC plasmids pUB110 and pT181 are shown; the plasmids are denoted by double lines. Solid boxes denote copies of IS, and open ovals indicate the position of ψIS, an IS remnant located adjacent to a deletion that removed and part of ). Arrowheads denote TIRs. Non-SCC chromosomal DNA is shown hatched. Selected loci encoding the following functions are indicated: , aminoglycoside resistance; , bleomycin resistance; , cadmium resistance; , recombinases; , MLS resistance; , methicillin resistance; /, regulation of methicillin resistance; , spectinomycin resistance; (K), tetracycline resistance.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Maps of representative SaPI elements ( ). The sizes of the elements are indicated on the right. Arrowheads denote left and right directly repeated attachment sequences (attL and attR). Non-SaPI DNA is shown hatched. The position of the transposon-like structure in SaPI-bov2 is shown; the 149-bp direct repeats that bound the structure are denoted as boxes that contain white arrowheads representing IS257-like TIRs. Selected loci encoding the following functions are indicated: bap, biofilm-associated protein; int, integrase; seb, enterotoxin B; sec, enterotoxin C; sec1, enterotoxin C1; sek, enterotoxin K; sel, enterotoxin L; sel′, enterotoxin L remnant; sem, enterotoxin M; sip, staphylococcal integrase protein; ter, phage-like encapsidation terminase; tnp, IS257-like transposase; tst, toxic shock toxin 1.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap33
1. Al-Masaudi, S. B.,, M. J. Day,, and A. D. Russell. 1991. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J. Appl. Bacteriol. 71:239243.
2. Apisiridej, S.,, A. Leelaporn,, C. D. Scaramuzzi,, R. A. Skurray,, and N. Firth. 1997. Molecular analysis of a mobilizable theta-mode trimethoprim resistance plasmid from coagulase-negative staphylococci. Plasmid 38:1324.
3. Archer, G. L.,, D. R. Dietrick,, and J. L. Johnston. 1985. Molecular epidemiology of transmissible gentamicin resistance among coagulase-negative staphylococci in a cardiac surgery unit. J. Infect. Dis. 151:243251.
4. Archer, G. L.,, D. M. Niemeyer,, J. A. Thanassi,, and M. J. Pucci. 1994. Dissemination among staphylococci of DNA sequences associated with methicillin resistance. Antimicrob. Agents Chemother. 38:447454.
5. Archer, G. L.,, and J. Scott. 1991. Conjugative transfer genes in staphylococcal isolates from the United States. Antimicrob. Agents Chemother. 35:25002504.
6. Archer, G. L.,, J. A. Thanassi,, D. M. Niemeyer,, and M. J. Pucci. 1996. Characterization of IS1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 40:924929.
7. Archer, G. L.,, and W. D. Thomas, Jr., 1990. Conjugative transfer of antimicrobial resistance genes between staphylococci, p. 115122. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York, N.Y.
8. Aubert, S.,, K. G. H. Dyke,, and N. El Solh. 1998. Analysis of two Staphylococcus epidermidis plasmids coding for resistance to streptogramin A. Plasmid 40:238242.
9. Baba, T.,, F. Takeuchi,, M. Kuroda,, H. Yuzawa,, K. Aoki,, A. Oguchi,, Y. Nagai,, N. Iwama,, K. Asano,, T. Maimi,, H. Kuroda,, L. Cui,, K. Yamamoto,, and K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:18191827.
10. Barr, V.,, K. Barr,, M. R. Millar,, and R. W. Lacey. 1986. β-lactam antibiotics increase the frequency of plasmid transfer in Staphylococcus aureus. J. Antimicrob. Chemother. 17:409413.
11. Berg, T.,, N. Firth,, S. Apisiridej,, A. Hettiaratchi,, A. Leelaporn,, and R. A. Skurray. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative plasmids. J. Bacteriol. 180:43504359.
12. Byrne, M. E.,, M. T. Gillespie,, and R. A. Skurray. 1990. Molecular analysis of a gentamicin resistance transposon-like element on plasmids isolated from North American Staphylococcus aureus strains. Antimicrob. Agents Chemother. 34:21062113.
13. Chesneau, O.,, R. Lailler,, A. Derbise,, and N. El Solh. 1999. Transposition of IS1181 in the genomes of Staphylococcus and Listeria. FEMS Microbiol. Lett. 177:93100.
14. Climo, M. W.,, V. K. Sharma,, and G. L. Archer. 1996. Identification and characterization of the origin of conjugative transfer (oriT) and a gene (nes) encoding a single-stranded endonuclease on the staphylococcal plasmid pGO1. J. Bacteriol. 178:49754983.
15. Coleman, D.,, J. Knights,, R. Russell,, D. Shanley,, T. H. Birkbeck,, G. Dougan,, and I. Charles. 1991. Insertional inactivation of the Staphylococcus aureus β-toxin by bacteriophage Φ13 occurs by site- and orientation-specific integration of the Φ13 genome. Mol. Microbiol. 5:933939.
16. Conlon, K. M.,, H. Humphreys,, and J. P. O’Gara. 2004. Inactivations of rsbU and sarA by IS256 represent novel mechanisms of biofilm phenotypic variation in Staphylococcus epidermidis. J. Bacteriol. 186:62086219.
17. Couto, I.,, S. W. Wu,, A. Tomasz,, and H. de Lencastre. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J. Bacteriol. 185:645653.
18. Derbise, A.,, G. de Cespedes,, and N. El Solh. 1997. Nucleotide sequence of the Staphylococcus aureus transposon, Tn5405, carrying aminoglycosides resistance genes. J. Basic Microbiol. 37:16.
19. Derbise, A.,, K. G. H. Dyke,, and N. El Solh. 1996. Characterization of a Staphylococcus aureus transposon, Tn5405, located within Tn5404 and carrying the aminoglycoside resistance genes, aphA-3 and aadE. Plasmid 35:174188.
20. Derbise, A.,, K. G. H. Dyke,, and N. El Solh. 1995. Rearrangements in the staphylococcal β-lactamase-encoding plasmid, pIP1066, including a DNA inversion that generates two alternative transposons. Mol. Microbiol. 17:769779.
21. Dougherty, B. A.,, C. Hill,, J. F. Weidman,, D. R. Richardson,, J. C. Venter,, and R. P. Ross. 1998. Sequence and analysis of the 60 kb conjugative, bacteriocin-producing plasmid pMRC01 from Lactococcus lactis DPC3147. Mol. Microbiol. 29:10291038.
22. Dyke, K.,, and P. Gregory,. 1997. Resistance mediated by β-lactamase, p. 139157. In K. B. Crossley, and G. L. Archer (ed.), The Staphylococci in Human Disease. Churchill Livingstone, New York, N.Y.
23. Evans, J.,, and K. G. H. Dyke. 1988. Characterization of the conjugation system associated with the Staphylococcus aureus plasmid pJE1. J. Gen. Microbiol. 134:18.
24. Firth, N.,, S. Apisiridej,, T. Berg,, B. A. O’Rourke,, S. Curnock,, K. G. H. Dyke,, and R. A. Skurray. 2000. Replication of staphylococcal multiresistance plasmids. J. Bacteriol. 182:21702178.
25. Firth, N.,, S. Apisiridej,, and R. A. Skurray. Unpublished data.
26. Firth, N.,, T. Berg,, and R. A. Skurray. 1999. Evolution of conjugative plasmids from Gram-positive bacteria. Mol. Microbiol. 31:15981599.
27. Firth, N.,, K. P. Ridgway,, M. E. Byrne,, P. D. Fink,, L. Johnson,, I. T. Paulsen,, and R. A. Skurray. 1993. Analysis of a transfer region from the staphylococcal conjugative plasmid pSK41. Gene 136:1325.
28. Firth, N.,, and R. A. Skurray. 1998. Mobile elements in the evolution and spread of multiple-drug resistance in staphylococci. Drug Resist. Updates 1:4958.
29. Fitzgerald, J. R.,, D. E. Sturdevant,, S. M. Mackie,, S. R. Gill,, and J. M. Musser. 2001. Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc. Natl. Acad. Sci. USA. 98:88218826.
30. Flannagan, S. E.,, J. W. Chow,, S. M. Donabedian,, W. J. Brown,, M. B. Perri,, M. J. Zervos,, Y. Ozawa,, and D. B. Clewell. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob. Agents Chemother. 47:39543959.
31. Gering, M.,, F. Gütz,, and R. Bruckner. 1996. Sequence and analysis of the replication region of the Staphylococcus xylosus plasmid pSX267. Gene 182:117122.
32. Gillespie, M. T.,, B. R. Lyon,, and R. A. Skurray. 1988. Structural and evolutionary relationships of β-lactamase transposons from Staphylococcus aureus. J. Gen. Microbiol. 134:28572866.
33. Gillespie, M. T.,, and R. A. Skurray. 1986. Plasmids in multiresistant Staphylococcus aureus. Microbiol. Sci. 3:5358.
34. Grohmann, E.,, G. Muth,, and M. Espinosa. 2003. Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67:277301.
35. Grohmann, E.,, E. L. Zechner,, and M. Espinosa. 1997. Determination of specific DNA strand discontinuities with nucleotide resolution in exponentionally growing bacteria harboring rolling circle-replicating plasmids. FEMS Microbiol. Lett. 152:363369.
36. Gruss, A.,, and S. D. Ehrlich. 1989. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53:231241.
37. Guzmán, L. M.,, and M. Espinosa. 1997. The mobilization protein, MobM, of the streptococcal plasmid pMV158 specifically cleaves supercoiled DNA at the plasmid oriT. J. Mol. Biol. 266:688702.
38. Haroche, J.,, J. Allignet,, and N. El Solh. 2002. Tn5406, a new staphylococcal transposon conferring resistance to streptogramin A and related compounds including dalfopristin. Antimicrob. Agents Chemother. 46:23372343.
39. Helinski, D. R.,, A. E. Toukdarian,, and R. P. Novick,. 1996. Replication control and other stable maintenance mechanisms of plasmids, p. 22952324. In F. C. Neidhardt,, R. CurtissIII,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
40. Hiramatsu, K.,, L. Cui,, M. Kuroda,, and T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9:486493.
41. Hodel-Christian, S. L.,, and B. E. Murray. 1992. Comparison of the gentamicin resistance transposon Tn5281 with regions encoding gentamicin resistance in Enterococcus faecalis isolates from diverse geographic locations. Antimicrob. Agents Chemother. 36:22592264.
42. Holden, M. T.,, E. J. Feil,, J. A. Lindsay,, S. J. Peacock,, N. P. Day,, M. C. Enright,, T. J. Foster,, C. E. Moore,, L. Hurst,, R. Atkin,, A. Barron,, N. Bason,, S. D. Bentley,, C. Chillingworth,, T. Chillingworth,, C. Churcher,, L. Clark,, C. Corton,, A. Cronin,, J. Doggett,, L. Dowd,, T. Feltwell,, Z. Hance,, B. Harris,, H. Hauser,, S. Holroyd,, K. Jagels,, K. D. James,, N. Lennard,, A. Line,, R. Mayes,, S. Moule,, K. Mungall,, D. Ormond,, M. A. Quail,, E. Rabbinowitsch,, K. Rutherford,, M. Sanders,, S. Sharp,, M. Simmonds,, K. Stevens,, S. Whitehead,, B. G. Barrell,, B. G. Spratt,, and J. Parkhill. 2004. Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 101:97869791.
43. Horaud, T.,, G. de Cespédès,, and P. Trieu-Cuot. 1996. Chromosomal gentamicin resistance transposon Tn3706 in Streptococcus agalactiae B128. Antimicrob. Agents Chemother. 40:10851090.
44. Iandolo, J. J.,, J. P. Bannantine,, and G. C. Stewart,. 1997. Genetic and physical map of the chromosome of Staphylococcus aureus, p. 3953. In K. B. Crossley, and G. L. Archer (ed.), The Staphylococci in Human Disease. Churchill Livingstone, New York, N.Y.
45. Ito, T.,, X. X. Ma,, F. Takeuchi,, K. Okuma,, H. Yuzawa,, and K. Hiramatsu. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48:26372651.
46. Ito, T.,, K. Okuma,, X. X. Ma,, H. Yuzawa,, and K. Hiramatsu. 2003. Insights on antibiotic resistance of Staphylococcus aureus from its whole genome: genomic island SCC. Drug Resist. Updates 6:4152.
47. Jaffe, H. W.,, H. M. Sweeney,, C. Nathan,, R. A. Weinstein,, S. A. Kabins,, and S. Cohen. 1980. Identity and inter-specific transfer of gentamicin-resistance plasmids in Staphylococcus aureus and Staphylococcus epidermidis. J. Infect. Dis. 141:738747.
48. Jaffe, H. W.,, H. M. Sweeney,, R. A. Weinstein,, S. A. Kabins,, C. Nathan,, and S. Cohen. 1982. Structural and phenotypic varieties of gentamicin resistance plasmids in hospital strains of Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob. Agents Chemother. 21:773779.
49. Katayama, Y.,, F. Takeuchi,, T. Ito,, X. X. Ma,, Y. Ui-Mizutani,, I. Kobayashi,, and K. Hiramatsu. 2003. Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 185:27112722.
50. Khan, S. A. 1997. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61:442455.
51. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:12251240.
52. Lacey, R. W. 1980. Evidence for two mechanisms of plasmid transfer in mixed cultures of Staphylococcus aureus. J. Gen. Microbiol. 119:423435.
53. Lee, C. Y.,, and J. J. Iandolo. 1986. Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166:385391.
54. Leelaporn, A.,, N. Firth,, M. E. Byrne,, E. Roper,, and R. A. Skurray. 1994. Possible role of insertion sequence IS257 in dissemination and expression of high- and low-level trimethoprim resistance in staphylococci. Antimicrob. Agents Chemother. 38:22382244.
55. Leelaporn, A.,, N. Firth,, I. T. Paulsen,, and R. A. Skurray. 1996. IS257-mediated cointegration in the evolution of a family of staphylococcal trimethoprim resistance plasmids. J. Bacteriol. 178:60706073.
56. Lindsay, J. A.,, and M. T. Holden. 2004. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12:378385.
57. Luong, T. T.,, S. Ouyang,, K. Bush,, and C. Y. Lee. 2002. Type 1 capsule genes of Staphylococcus aureus are carried in a staphylococcal cassette chromosome genetic element. J. Bacteriol. 184:36233629.
58. Lyon, B. R.,, and R. Skurray. 1987. Antimicrobial resistance of Staphylococcus aureus: genetic basis. Microbiol. Rev. 51:88134.
59. Macrina, F. L.,, and G. L. Archer,. 1993. Conjugation and broad host range plasmids in streptococci and staphylococci, p. 313329. In D. B. Clewell (ed.), Bacterial Conjugation. Plenum Press, New York, N.Y.
60. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger-Bachi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:19531959.
61. Maki, H.,, and K. Murakami. 1997. Formation of potent hybrid promoters of the mutant llm gene by IS256 transposition in methicillin-resistant Staphylococcus aureus. J. Bacteriol. 179:69446948.
62. Matsuo, H.,, M. Kobayashi,, T. Kumagai,, M. Kuwabara,, and M. Sugiyama. 2003. Molecular mechanism for the enhancement of arbekacin resistance in a methicillin-resistant Staphylococcus aureus. FEBS Lett. 546:401406.
63. Minakhina, S.,, G. Kholodii,, S. Mindlin,, O. Yurieva,, and V. Nikiforov. 1999. Tn5053 family transposons are res hunters sensing plasmidal res sites occupied by cognate resolvases. Mol. Microbiol. 33:10591068.
64. Mongkolrattanothai, K.,, S. Boyle,, T. V. Murphy,, and R. S. Daum. 2004. Novel non-mecA-containing staphylococcal chromosomal cassette composite island containing pbp4 and tagF genes in a commensal staphylococcal species: a possible reservoir for antibiotic resistance islands in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:18231836.
65. Morton, T. M.,, D. M. Eaton,, J. L. Johnston,, and G. L. Archer. 1993. DNA sequence and units of transcription of the conjugative transfer gene complex (trs) of Staphylococcus aureus plasmid pGO1. J. Bacteriol. 175:44364447.
66. Murphy, E., 1990. Properties of the site-specific transposable element Tn554, p. 123135. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York, N.Y.
67. Needham, C.,, W. C. Noble,, and K. G. H. Dyke. 1995. The staphylococcal insertion sequence IS257 is active. Plasmid 34:198205.
68. Netz, D. J. A.,, R. Pohl,, A. G. Beck-Sickinger,, T. Selmer,, A. J. Pierik,, M. C. F. Bastos,, and H.-G. Sahl. 2002. Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J. Mol. Biol. 319:745756.
69. Netz, D. J. A.,, H.-G. Sahl,, R. Marcolino,, J. S. Nascimento,, S. S. Oliveira,, M. B. Soares,, and M. C. F. Bastos. 2001. Molecular characterisation of aureocin A70, a multipeptide bacteriocin isolated from Staphylococcus aureus. J. Mol. Biol. 311:939949.
70. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49:93105.
71. Novick, R. P. 1989. Staphylococcal plasmids and their replication. Ann. Rev. Microbiol. 43:537565.
72. Novick, R. P., 1990. The Staphylococcus as a molecular genetic system, p. 137. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York, N.Y.
73. Novick, R. P.,, I. Edelman,, M. D. Schwesinger,, A. D. Gruss,, E. C. Swanson,, and P. A. Pattee. 1979. Genetic translocation in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 76:400404.
74. Okuma, K.,, K. Iwakawa,, J. D. Turnidge,, W. B. Grubb,, J. M. Bell,, F. G. O’Brien,, G. W. Coombs,, J. W. Pearman,, F. C. Tenover,, M. Kapi,, C. Tiensasitorn,, T. Ito,, and K. Hiramatsu. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40:42894294.
75. Paulsen, I. T.,, N. Firth,, and R. A. Skurray,. 1997. Resistance to antimicrobial agents other than β-lactams, p. 175212. In K. B. Crossley, and G. L. Archer (ed.), The Staphylococci in Human Disease. Churchill Livingstone, New York, N.Y.
76. Paulsen, I. T.,, M. T. Gillespie,, T. G. Littlejohn,, O. Hanvivatvong,, S. J. Rowland,, K. G. H. Dyke,, and R. A. Skurray. 1994. Characterisation of sin, a potential recombinase-encoding gene from Staphylococcus aureus. Gene 141:109114.
77. Perichon, B.,, and P. Courvalin. 2004. Heterologous expression of the enterococcal vanA operon in methicillinresistant Staphylococcus aureus. Antimicrob. Agents Chemother. 48:42814285.
78. Projan, S. J. Unpublished data.
79. Projan, S. J.,, and G. L. Archer. 1989. Mobilization of the relaxable Staphylococcus aureus plasmid pC221 by the conjugative plasmid pGO1 involves three pC221 loci. J. Bacteriol. 171:18411845.
80. Projan, S. J.,, and R. Novick. 1988. Comparative analysis of five related staphylococcal plasmids. Plasmid 19:203221.
81. Quintiliani, R., Jr.,, and P. Courvalin. 1996. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172:18.
82. Rice, L. B.,, L. L. Carias,, and S. H. Marshall. 1995. Tn5384, a composite enterococcal mobile element conferring resistance to erythromycin and gentamicin whose ends are directly repeated copies of IS256. Antimicrob. Agents Chemother. 39:11471153.
83. Robinson, D. A.,, and M. C. Enright. 2004. Evolution of Staphylococcus aureus by large chromosomal replacements. J. Bacteriol. 186:10601064.
84. Robinson, D. A.,, and M. C. Enright. 2003. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 47:39263934.
85. Rouch, D. A.,, M. E. Byrne,, Y. C. Kong,, and R. A. Skurray. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J. Gen. Microbiol. 133:30393052.
86. Rouch, D. A.,, D. S. Cram,, D. DiBerardino,, T. G. Littlejohn,, and R. A. Skurray. 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol. Microbiol. 4:20512062.
87. Rouch, D. A.,, L. J. Messerotti,, L. S. Loo,, C. A. Jackson,, and R. A. Skurray. 1989. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol. Microbiol. 3:161175.
88. Rowland, S.,, and K. G. H. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4:961975.
89. Rowland, S.-J.,, W. M. Stark,, and M. R. Boocock. 2002. Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol. Microbiol. 44:607619.
90. Ruzin, A.,, J. Lindsay,, and R. P. Novick. 2001. Molecular genetics of SaPI1—a mobile pathogenicity island in Staphylococcus aureus. Mol. Microbiol. 41:365377.
91. Shalita, Z.,, E. Murphy,, and R. P. Novick. 1980. Penicillinase plasmids of Staphylococcus aureus: structural and evolutionary relationships. Plasmid 3:291311.
92. Sharma, V. K.,, J. L. Johnston,, T. M. Morton,, and G. L. Archer. 1994. Transcriptional regulation by TrsN of conjugative transfer genes on staphylococcal plasmid pGO1. J. Bacteriol. 176:34453454.
93. Sheehy, R. J.,, and R. P. Novick. 1975. Studies on plasmid replication. V. Replicative intermediates. J. Mol. Biol. 93: 237253.
94. Simpson, A. E.,, R. A. Skurray,, and N. Firth. 2000. An IS257-derived hybrid promoter directs transcription of a tetA(K) tetracycline resistance gene in the Staphylococcus aureus chromosomal mec region. J. Bacteriol. 182:33453352.
95. Skurray, R. A.,, and N. Firth. 1997. Molecular evolution of multiply-antibiotic-resistant staphylococci. Ciba Found. Symp. 207:167183.
96. Skurray, R. A.,, D. A. Rouch,, B. R. Lyon,, M. T. Gillespie,, J. M. Tennent,, M. E. Byrne,, L. J. Messerotti,, and J. W. May. 1988. Multiresistant Staphylococcus aureus: genetics and evolution of epidemic Australian strains. J. Antimicrob. Chemother. 21:1938.
97. Tennent, J. M.,, B. R. Lyon,, M. Midgley,, I. G. Jones,, A. S. Purewal,, and R. A. Skurray. 1989. Physical and biochemical characterization of the qacA gene encoding antiseptic and disinfectant resistance in Staphylococcus aureus. J. Gen. Microbiol. 135:110.
98. Tenover, F. C.,, L. M. Weigel,, P. C. Appelbaum,, L. K. McDougal,, J. Chaitram,, S. McAllister,, N. Clark,, G. Killgore,, C. M. O’Hara,, L. Jevitt,, J. B. Patel,, and B. Bozdogan. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48:275280.
99. Thumm, G.,, and F. Götz. 1997. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol. Microbiol. 23:12511265.
100. Townsend, D. E.,, S. Bolton,, N. Ashdown,, D. I. Annear,, and W. B. Grubb. 1986. Conjugative, staphylococcal plasmids carrying hitch-hiking transposons similar to Tn554: intra- and interspecies dissemination of erythromycin resistance. Aust. J. Exp. Biol. Med. Sci. 64:367379.
101. Úbeda, C.,, M. A. Tormo,, C. Cucarella,, P. Trotonda,, T. J. Foster,, I. Lasa,, and J. R. Penadés. 2003. Sip, an integrase protein with excision, circularization and integration activities, defines a new family of mobile Staphylococcus aureus pathogenicity islands. Mol. Microbiol. 49:193210.
102. Udo, E. E.,, and W. B. Grubb. 1991. A new incompatibility group plasmid in Staphylococcus aureus. FEMS Microbiol. Lett. 62:3336.
103. Vuong, C.,, S. Kocianova,, Y. Yao,, A. B. Carmody,, and M. Otto. 2004. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J. Infect. Dis. 190:14981505.
104. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan,, J. F. Kolonay,, J. Shetty,, G. E. Killgore,, and F. C. Tenover. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:15691571.
105. Wright, C. L.,, M. E. Byrne,, N. Firth,, and R. A. Skurray. 1998. A retrospective molecular analysis of gentamicin resistance in Staphylococcus aureus strains from UK hospitals. J. Med. Microbiol. 47:173178.
106. Wu, S.,, C. Piscitelli,, H. de Lencastre,, and A. Tomasz. 1996. Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb. Drug Resist. 2:435441.
107. Yamaguchi, T.,, T. Hayashi,, H. Takami,, K. Nakasone,, M. Ohnishi,, K. Nakayama,, S. Yamada,, H. Komatsuzawa,, and M. Sugai. 2000. Phage conversion of exfoliative toxin A production in Staphylococcus aureus. Mol. Microbiol. 38:694705.
108. Yamaguchi, T.,, T. Hayashi,, H. Takami,, M. Ohnishi,, T. Murata,, K. Nakayama,, K. Asakawa,, M. Ohara,, H. Komatsuzawa,, and M. Sugai. 2001. Complete nucleotide sequence of a Staphylococcus aureus exfoliative toxin B plasmid and identification of a novel ADP-ribosyltransferase, EDIN-C. Infect. Immun. 69:77607771.
109. Zhang, S.,, J. J. Iandolo,, and G. C. Stewart. 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol. Lett. 168:227233.
110. Ziebuhr, W.,, V. Krimmer,, S. Rachid,, I. Lossner,, F. Götz,, and J. Hacker. 1999. A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol. Microbiol. 32:345356.

Tables

Generic image for table
TABLE 1

Staphylococcal insertion sequences and transposons

See Paulsen et al. ( ), Firth and Skurray ( ), and the text for references.

In the case of IS, association is based on probable involvement in the acquisition, dissemination, and/or expression of the resistance/phenotype.

TIR, terminal inverted repeat. (I), inverted orientation; (D), direct orientation.

C, chromosome; P, plasmid.

ISis also known as IS.

Tn, Tn, and Tnare likely to be similar or identical to Tn.

Tnis likely to be similar or identical to Tn.

Tnand Tnare likely to be similar or identical to Tn.

(I), inverted orientation.

(D), direct orientation.

Citation: Firth N, Skurray R. 2006. Genetics: Accessory Elements and Genetic Exchange, p 413-426. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error