1887

Chapter 39 : Extracellular Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Extracellular Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap39-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap39-2.gif

Abstract:

produces a large number of extracellular enzymes, many of which are regarded as important virulence factors. Some extracellular enzymes contribute to the virulence of staphylococci by attacking molecules involved in host defenses against infection. Searches in the genome sequences of several strains identified 22 genes coding for extracellular enzymes. Coagulase production is the principal criterion used in the clinical microbiology laboratory for the identification of . Several reports have indicated that site-specific inactivation of the coagulase gene does not impair virulence in experimental endocarditis, subcutaneous, or mammary infections of mice. The streptokinase-plasmin complex, on the other hand, is insensitive to inhibition by α-antiplasmin. Staphylokinase (Sak) also has a higher affinity for plasmin(ogen) bound to fibrin than for free plasmin(ogen). Most lipases are also active against acyl p-nitrophenylesters, Tweens (polyoxyethylenesorbitan), and sometimes phospholipids. A role in virulence has also been suggested, based on the observation that staphylococcal lipase impairs granulocyte function. Staphylococcal abscesses contain long-chain free fatty acids and other neutral lipids that are bacteriocidal to . Fatty acid-modifying enzyme (FAME), which is found in culture supernatants of about 80% of strains, can inactivate these bacteriocidal lipids by catalyzing the esterification of these lipids to alcohols, preferably cholesterol. Hyaluronic acid is a ubiquitous component of the extracellular matrix of vertebrates. Extracellular enzymes that could hydrolyze hyaluronic acid were therefore among the first enzymes to be implicated in bacterial pathogenesis.

Citation: Arvidson S. 2006. Extracellular Enzymes, p 478-485. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch39

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.4255062
0.4255062
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cascade of maturation of the extracellular proteases of . Question marks represent unidentified proteases.

Citation: Arvidson S. 2006. Extracellular Enzymes, p 478-485. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap39
1. Arvidson, S. O., 1983. Extracellular enzymes from Staphylococcus aureus, p. 745808. In C. S. F. Easmon, and C. Adlam (ed.), Staphylococci and Staphylococcal Infections, vol. 2. Academic Press Inc., London, United Kingdom.
2. Banbula, A.,, J. Potempa,, J. Travis,, C. Fernandez-Catalan,, K. Mann,, R. Huber,, W. Bode,, and F. Medrano. 1998. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 Å resolution. Structure 6:11851193.
3. Birktoft, J. J.,, and K. Breddam. 1994. Glutamyl endopeptidases. Methods Enzymol. 244:114126.
4. Boden, M. K.,, and J. I. Flock. 1989. Fibrinogen-binding protein/clumping factor from Staphylococcus aureus. Infect. Immun. 57:23582363.
5. Chamberlain, N. R.,, and S. A. Brueggemann. 1997. Characterisation and expression of fatty acid modifying enzyme produced by Staphylococcus epidermidis. J. Med. Microbiol. 46:693697.
6. Chamberlain, N. R.,, and B. Imanoel. 1996. Genetic regulation of fatty acid modifying enzyme from Staphylococcus aureus. J. Med. Microbiol. 44:125129.
7. Chan, P. F.,, and S. J. Foster. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180:62326241.
8. Chesneau, O.,, and N. el Solh. 1994. Primary structure and biological features of a thermostable nuclease isolated from Staphylococcus hyicus. Gene 145:4147.
9. Cheung, A. I.,, S. J. Projan,, R. E. Edelstein,, and V. A. Fischetti. 1995. Cloning, expression, and nucleotide sequence of a Staphylococcus aureus gene (fbpA) encoding a fibrinogen-binding protein. Infect. Immun. 63:19141920.
10. Cheung, A. L.,, J. M. Koomey,, C. A. Butler,, S. J. Projan,, and V. A. Fischetti. 1992. Regulation of exoprotein expression in Staphylococcus aureus by a locus (sar) distinct from agr. Proc. Natl. Acad. Sci. USA 89:64626466.
11. Coleman, D. C.,, D. J. Sullivan,, R. J. Russell,, J. P. Arbuthnott,, B. F. Carey,, and H. M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135(Pt 6):16791697.
12. Collen, D. 1998. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat. Med. 4:279284.
13. Coulter, S. N.,, W. R. Schwan,, E. Y. Ng,, M. H. Langhorne,, H. D. Ritchie,, S. Westbrock-Wadman,, W. O. Hufnagle,, K. R. Folger,, A. S. Bayer,, and C. K. Stover. 1998. Staphylococcus aureus genetic loci impacting growth and survival in multiple infection environments. Mol. Microbiol. 30:393404.
14. Daugherty, S.,, and M. G. Low. 1993. Cloning, expression, and mutagenesis of phosphatidylinositol-specific phospholipase C from Staphylococcus aureus: a potential staphylococcal virulence factor. Infect. Immun. 61:50785089.
15. Drapeau, G. R. 1978. Role of metalloprotease in activation of the precursor of staphylococcal protease. J. Bacteriol. 136:607613.
16. Dubin, G. 2003. Defense against own arms: staphylococcal cysteine proteases and their inhibitors. Acta Biochim. Pol. 50:715724.
17. Dubin, G.,, M. Krajewski,, G. Popowicz,, J. Stec-Niemczyk,, M. Bochtler,, J. Potempa,, A. Dubin,, and T. A. Holak. 2003. A novel class of cysteine protease inhibitors: solution structure of staphostatin A from Staphylococcus aureus. Biochemistry 42:1344913456.
18. Farrell, A. M.,, D. Taylor,, and K. T. Holland. 1995. Cloning, nucleotide sequence determination and expression of the Staphylococcus aureus hyaluronate lyase gene. FEMS Microbiol. Lett. 130:8185.
19. Friedrich, R.,, P. Panizzi,, P. Fuentes-Prior,, K. Richter,, I. Verhamme,, P. J. Anderson,, S. Kawabata,, R. Huber,, W. Bode,, and P. E. Bock. 2003. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425:535539.
20. Giraudo, A. T.,, A. L. Cheung,, and R. Nagel. 1997. The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level. Arch. Microbiol. 168:5358.
21. Goh, S. H.,, S. K. Byrne,, J. L. Zhang,, and A. W. Chow. 1992. Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J. Clin. Microbiol. 30:16421645.
22. Hofmann, B.,, D. Schomburg,, and H. J. Hecht. 1993. Crystal structure of a thiol proteinase from Staphylococcus aureus V-8 in the E-64 inhibitor complex. Acta Crystallogr. 49(Suppl.):102.
23. Hookey, J. V.,, J. F. Richardson,, and B. D. Cookson. 1998. Molecular typing of Staphylococcus aureus based PCR restriction fragment polymorphism and DNA sequence analysis of the coagulase gene. J. Clin. Microbiol. 36:10831089.
24. Hynes, T. R.,, and R. O. Fox. 1991. The crystal structure of staphylococcal nuclease refined at 1.7 Å resolution. Proteins 10:92105.
25. Jin, T.,, M. Bokarewa,, T. Foster,, J. Mitchell,, J. Higgins,, and A. Tarkowski. 2004. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172:11691176.
26. Kapral, F. A.,, S. Smith,, and D. Lal. 1992. The esterification of fatty acids by Staphylococcus aureus fatty acid modifying enzyme (FAME) and its inhibition by glycerides. J. Med. Microbiol. 37:235237.
27. Karlsson, A.,, and S. Arvidson. 2002. Variation in extracellular protease production among clinical isolates of Staphylococcus aureus due to different levels of expression of the protese repressor sarA. Infect. Immun. 70:42394246.
28. Karlsson, A.,, P. Saravia-Otten,, K. Tegmark,, E. Morfeldt,, and S. Arvidson. 2001. Decreased amounts of cell wall-associated protein A and fibronectin-binding proteins in Staphylococcus aureus sarA mutants due to up-regulation of extracellular proteases. Infect. Immun. 69:47424748.
29. Kawabata, S.,, T. Morita,, S. Iwanaga,, and H. Igarashi. 1985. Enzymatic properties of staphylothrombin, an active molecular complex formed between staphylocoagulase and human prothrombin. J. Biochem. (Tokyo) 98:16031614.
30. Kondo, I.,, and K. Fujise. 1977. Serotype B staphylococcal bacteriophage singly converting staphylokinase. Infect. Immun. 18:266272.
31. Kotting, J.,, H. Eibl,, and F. J. Fehrenbach. 1988. Substrate specificity of Staphylococcus aureus (TEN5) lipases with isomeric oleoyl-sn-glycerol ethers as substrates. Chem. Phys. Lipids 47:117122.
32. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:12251240.
33. Lebeau, C.,, F. Vandenesch,, T. Greenland,, R. P. Novick,, and J. Etienne. 1994. Coagulase expression in Staphylococcus aureus is positively and negatively modulated by an agr-dependent mechanism. J. Bacteriol. 176:55345536.
34. Lee, C. Y.,, and J. J. Iandolo. 1986. Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166:385391.
35. Liebl, W.,, and F. Gotz. 1986. Studies on lipase directed export of Escherichia coli beta-lactamase in Staphylococcus carnosus. Mol. Gen. Genet. 204:166173.
36. Lin, B.,, W. F. Averett,, and D. G. Pritchard. 1997. Identification of a histidine residue essential for enzymatic activity of group B streptococcal hyaluronate lyase. Biochem. Biophys. Res. Commun. 231:379382.
37. Long, J. P.,, J. Hart,, W. Albers,, and F. A. Kapral. 1992. The production of fatty acid modifying enzyme (FAME) and lipase by various staphylococcal species. J. Med. Microbiol. 37:232234.
38. Makris, G.,, J. D. Wright,, E. Ingham,, and K. T. Holland. 2004. The hyaluronate lyase of Staphylococcus aureus—a virulence factor? Microbiology 150:20052013.
39. Marques, M. B.,, P. F. Weller,, J. Parsonnet,, B. J. Ransil,, and A. Nicholson-Weller. 1989. Phosphatidylinositol-specific phospholipase C, a possible virulence factor of Staphylococcus aureus. J. Clin. Microbiol. 27:24512454.
40. Massimi, I.,, E. Park,, K. Rice,, W. Muller-Esterl,, D. Sauder,, and M. J. McGavin. 2002. Identification of a novel maturation mechanism and restricted substrate specificity for the SspB cysteine protease of Staphylococcus aureus. J. Biol. Chem. 277:4177041777.
41. McAleese, F. M.,, E. J. Walsh,, M. Sieprawska,, J. Potempa,, and T. J. Foster. 2001. Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J. Biol. Chem. 276:2996929978.
42. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11:237248.
43. McDevitt, D.,, P. Vaudaux,, and T. J. Foster. 1992. Genetic evidence that bound coagulase of Staphylococcus aureus is not clumping factor. Infect. Immun. 60:15141523.
44. McGavin, M. J.,, C. Zahradka,, R. Kelly,, and J. E. Scott. 1997. Modification of the Staphylococcus aureus fibronectin binding phenotype by V8 protease. Infect. Immun. 65:26212628.
45. Mortensen, J. E.,, T. R. Shryock,, and F. A. Kapral. 1992. Modification of bactericidal fatty acids by an enzyme of Staphylococcus aureus. J. Med. Microbiol. 36:293298.
46. Nikoleit, K.,, R. Rosenstein,, H. M. Verheij,, and F. Gotz. 1995. Comparative biochemical and molecular analysis of the Staphylococcus hyicus, Staphylococcus aureus and a hybrid lipase. Indication for a C-terminal phospholipase domain. Eur. J. Biochem. 228:732738.
47. Phonimdaeng, P.,, M. O’Reilly,, P. W. O’Toole,, and T. J. Foster. 1988. Molecular cloning and expression of the coagulase gene of Staphylococcus aureus 8325-4. J. Gen. Microbiol. 134:7583.
48. Potempa, J.,, A. Dubin,, G. Korzus,, and J. Travis. 1988. Degradation of elastin by a cysteine proteinase from Staphylococcus aureus. J. Biol. Chem. 263:26642667.
49. Potempa, J.,, D. Fedak,, A. Dubin,, A. Mast,, and J. Travis. 1991. Proteolytic inactivation of a1-anti-chymotrysin. Sites of cleavage and generation of chemotactic activity. J. Biol. Chem. 266:2148221487.
50. Potempa, J.,, W. Watorek,, and J. Travis. 1986. The inactivation of human plasma alpha 1-proteinase inhibitor by proteinases from Staphylococcus aureus. J. Biol. Chem. 261:1433014334.
51. Prasad, L.,, Y. Leduc,, K. Hayakawa,, and L. T. Delbaere. 2004. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus. Acta Crystallogr. D Biol. Crystallogr. 60:256259.
52. Rabijns, A.,, H. L. De Bondt,, and C. De Ranter. 1997. Three-dimensional structure of staphylokinase, a plasminogen activator with therapeutic potential. Nat. Struct. Biol. 4:357360.
53. Reed, S. B.,, C. A. Wesson,, L. E. Liou,, W. R. Trumble,, P. M. Schlievert,, G. A. Bohach,, and K. W. Bayles. 2001. Molecular characterization of a novel Staphylococcus aureus serine protease operon. Infect. Immun. 69:15211527.
54. Rice, K.,, R. Peralta,, D. Bast,, J. de Azavedo,, and M. J. McGavin. 2001. Description of staphylococcus serine protease (ssp) operon in Staphylococcus aureus and nonpolar inactivation of sspA-encoded serine protease. Infect. Immun. 69:159169.
55. Rollof, J.,, and S. Normark. 1992. In vivo processing of Staphylococcus aureus lipase. J. Bacteriol. 174:18441847.
56. Rosenstein, R.,, and F. Gotz. 2000. Staphylococcal lipases: biochemical and molecular characterization. Biochimie 82:10051014.
57. Rzychon, M.,, A. Sabat,, K. Kosowska,, J. Potempa,, and A. Dubin. 2003. Staphostatins: an expanding new group of proteinase inhibitors with a unique specificity for the regulation of staphopains, Staphylococcus spp. cysteine proteinases. Mol. Microbiol. 49:10511066.
58. Sabat, A.,, K. Kosowska,, K. Poulsen,, A. Kasprowicz,, A. Sekowska,, B. Van den Burg,, J. Travis,, and J. Potempa. 2000. Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus. Infect. Immun. 68:973976.
59. Sawai, T.,, K. Tomono,, K. Yanagihara,, Y. Yamamoto,, M. Kaku,, Y. Hirakata,, H. Koga,, T. Tashiro,, and S. Kohno. 1997. Role of coagulase in a murine model of hematogenous pulmonary infection induced by intravenous injection of Staphylococcus aureus enmeshed in agar beads. Infect. Immun. 65:466471.
60. Shaw, L.,, E. Golonka,, J. Potempa,, and S. J. Foster. 2004. The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150:217228.
61. Shortle, D.,, Y. Wang,, J. R. Gillespie,, and J. O. Wrabl. 1996. Protein folding for realists: a timeless phenomenon. Protein Sci. 5:9911000.
62. Simons, J. W.,, H. Adams,, R. C. Cox,, N. Dekker,, F. Gotz,, A. J. Slotboom,, and H. M. Verheij. 1996. The lipase from Staphylococcus aureus. Expression in Escherichia coli, large-scale purification and comparison of substrate specificity to Staphylococcus hyicus lipase. Eur. J. Biochem. 242:760769.
63. Simons, J. W.,, M. D. van Kampen,, S. Riel,, F. Gotz,, M. R. Egmond,, and H. M. Verheij. 1998. Cloning, purification and characterisation of the lipase from Staphylococcus epidermidis—comparison of the substrate selectivity with those of other microbial lipases. Eur. J. Biochem. 253:675683.
64. Steiner, B.,, S. Romero-Steiner,, D. Cruce,, and R. George. 1997. Cloning and sequencing of the hyaluronate lyase gene from Propionibacterium acnes. Can. J. Microbiol. 43:315321.
65. Suciu, D.,, and M. Inouye. 1996. The 19-residue pro-peptide of staphylococcal nuclease has a profound secretion-enhancing ability in Escherichia coli. Mol. Microbiol. 21:181195.
66. Vandenesch, F.,, C. Lebeau,, M. Bes,, D. McDevitt,, T. Greenland,, R. P. Novick,, and J. Etienne. 1994. Coagulase deficiency in clinical isolates of Staphylococcus aureus involves both transcriptional and post-transcriptional defects. J. Med. Microbiol. 40:344349.
67. Weber, D. J.,, A. G. Gittis,, G. P. Mullen,, C. Abeygunawardana,, E. E. Lattman,, and A. S. Mildvan. 1992. NMR docking of a substrate into the X-ray structure of staphylococcal nuclease. Proteins 13:275287.

Tables

Generic image for table
TABLE 1

Extracellular enzymes and enzyme activators from

SA numbers are open reading frame numbers in S. strain N315.

Citation: Arvidson S. 2006. Extracellular Enzymes, p 478-485. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch39

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error