1887

Chapter 41 : Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap41-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap41-2.gif

Abstract:

Several gene products have been implicated in internalization, and the function and regulation of these and other pathogenicity factors in the intracellular environment are discussed in this chapter. Traditionally, bacterial pathogenicity or virulence factors are products whose role in the disease process is either clearly demonstrable, e.g., toxins, or more or less obvious on the basis of biological properties, e.g., enzymes that degrade tissue components. The chapter outlines current understanding of genetics and regulation of staphylococcal virulon. Staphylococcal pathogenesis is multifactorial, involving three classes of factors: secreted proteins, including superantigens (SAgs), cytotoxins, and tissue-degrading enzymes; cell surface-bound proteins, including fibrinogen-binding protein, fibronectin-binding protein, collagen-binding protein, other adhesins, and antiopsonins; and cell surface components, including the polysaccharide capsule and components of the cell wall peptidoglycan. Considering first the genetics of staphylococcal virulence factors, there would appear to be two classes—those encoded by constant chromosomal genes, present in most or all strains, and those encoded by variable genes, present in a minority of strains, and usually belonging to accessory genetic elements, including plasmids, transposons, prophages, and pathogenicity islands (SaPIs), some of which are mobile. The first evidence for virulence gene regulation was the isolation of pleiotropic staphylococcal mutants defective in the production of hemolysins and other virulence factors. A table in the chapter gives a summary of the known genes and environmental conditions that affect the expression of pathogenicity factors by .

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41

Key Concept Ranking

Type IV Secretion Systems
0.42259854
Gene Expression and Regulation
0.40776858
0.42259854
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

() Staphylococcal abscesses. A) Cutaneous furuncle (Nadir Goksugur, M.D., Dermatlas; http://www.dermatlas.org). (B) Stained section of pulmonary abscess. Kindly provided by Martin Nachbar.

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Temporal program of virulon expression in vitro.

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

() , and TCS modules known to affect the virulon. (A) The system. The pro-AIP peptide is processed and secreted by AgrB, binds to an extracellular loop in the receptor-HPK, AgrC, activating autophosphorylation (or dephosphorylation), followed by phosphorylation or dephosphorylation of the response regulator, AgrA. AgrA, in conjunction with SarA, activates the two promoters, P2 and P3, leading to the production of RNAIII. RNAIII controls transcription of the target genes via one or more intracellular regulatory mediators, including a second two-component module, . (B) The locus encodes a receptor-HPK () and a response regulator (), driven by a single promoter and followed by a terminator stem-loop. (C) . The locus encodes a receptor-HPK () and a response regulator (), driven by a single promoter that generates two transcripts whose relative significance is unknown. (Reprinted from reference 94 with the kind permission of Blackwell Publishing, Ltd.)

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

peptides from various staphylococcal species. Sequences were aligned visually. Predicted AIPs are in bold and are set between spaces. Saur, ; Sarl, ; Sarc, ; Scap, ; Scapr, ; Scarn, ; Sconc, ; Sconu, ; Sepi, ; Sint, ; Slug, ; Ssim, ; Sgal, ; Sxyl, Swar, . Sequence confirmed by in vitro synthesis or mass spectroscopy. Peptide sequence predicted from nucleotide sequence. (Reprinted from reference with the kind permission of Blackwell Publishing, Ltd.)

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The system. (A) The locus, about 3.5 kb, contains four open reading frames, P, Q, R, and S R and S form a classical TCS module. The functions of P and Q are unknown. is transcribed from two or three promoters, one of which is active in an -null strain and the other(s) is activated by RNAIII. All three major transcripts, A, B, and C, end at ter. D may be independently transcribed or derived from C by processing. PCR probes used to map the transcripts are shown. (B) Transcription pattern (see text). (Reprinted from reference .)

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Sar homologs. Amino acid sequence alignment of Sar homologs, including TcaR and MgaA, against MarR from and other homologous protein sequences identified from the N315 genome by BLASTP analysis. The sequences of SarS (SarH1) and SarH2, which both contain two domains with homology to SarA, were truncated so that only the N-terminal domain of each was included in the alignment. The region containing the predicted helix-turn-helix motif of TcaR (Network Protein Sequence analysis [ ]) and several of the other homologs is highlighted in gray. Strongly conserved residues are indicated in the consensus line and universally conserved residues are in bold type. The arrowhead represents the position (amino acid 79) at which the TcaR protein in NCTC8325-4 is truncated. (Reprinted from reference .)

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Regulatory interactions involving SarA and its homologs. Arrows represent up-regulation, bars represent down-regulation. The two outermost curved lines represent translation; the other lines represent interactions that are probably, but not always certainly, transcriptional. The interactions illustrated are based on reviews by Arvidson and Tegmark ( ) and Cheung and Zhang ( ) and on recent papers by Manna and Cheung ( ) and Said-Salim et al. ( ). Although the abbreviations are mostly in italics, on the assumption that the interactions are likely to be at the transcriptional level, there is actually very little evidence to indicate whether they are direct or indirect or at what level they occur. Question marks represent the most speculative. σ is shown entering the system via and , which have σ-dependent promoters and are likely to represent important intermediates in the pathways by which environmental signals are handled. (Reprinted from reference .)

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Temporal expression of in vivo. Agr bacteria with plasmid-carried -P3:: fusion. 1.5 × 10 organisms in early exponential phase injected subcutaneously with cytodex beads at time T1, three mice. Imaged with IVIS (Xenogen) system at times indicated. Images are in false color with increasing intensity from dark gray to light gray to white to medium gray (grayscale representations of blue to green to yellow to red). Signal intensity is plotted below (■) along with bacterial counts obtained by sacrificing infected mice, excising and homogenizing the lesion, and plating for viable bacteria.

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap41
1. Abdelinour, A.,, S. Arvidson,, T. Bremell,, C. Ryden,, and A. Tarkowski. 1993. The accessory gene regulator ( agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect. Immun. 61: 3879 3885.
2. Arvidson, S.,, and K. Tegmark. 2001. Regulation of virulence determinants in Staphylococcus aureus. Int. J. Med. Microbiol. 291: 159 170.
3. Arvidson, S. O. 1983. Extracellular enzymes from Staphylococcus aureus, p. 745 808. In Staphylococci and Staphyloccocal Infections, vol. 2. Academic Press, London, United Kingdom.
4. Axelsson, L.,, and A. Holck. 1995. The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J. Bacteriol. 177: 2125 2137.
5. Ba-Thein, W.,, M. Lyristis,, K. Ohtani,, I. T. Nisbet,, H. Hayashi,, J. I. Rood,, and T. Shimizu. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J. Bacteriol. 178: 2514 20.
6. Balaban, N.,, T. Goldkorn,, Y. Gov,, M. Hirshberg,, N. Koyfman,, H. R. Matthews,, R. T. Nhan,, B. Singh,, and O. Uziel. 2001. Regulation of Staphylococcus aureus pathogenesis via target of RNAIII-activating protein (TRAP). J. Biol. Chem. 276: 2658 2667.
7. Balaban, N.,, and R. P. Novick. 1995. Translation of RNAIII, the Staphylococcus aureus agr regulatory RNA molecule, can be activated by a 3′-end deletion. FEMS Microbiol. Lett. 133: 155 161.
8. Barg, N.,, C. Bunce,, L. Wheeler,, G. Reed,, and J. Musser. 1992. Murine model of cutaneous infection with grampositive cocci. Infect. Immun. 60: 2636 2640.
9. Bayer, A. S.,, A. L. Cheung,, L. I. Kupferwasser,, and M. R. Yeaman. 2000. The nonsteroidal anti-inflammatory drugs (NSAIDs), salicylic acid and diclofenac, downmodulate both sar- and agr- dependent genes in Staphylococcus aureus (SA). Abstr. 100 th Annu. Meet. Am. Soc. Microbiol. 2000. American Society for Microbiology, Washington, D.C.
10. Bayer, M. G.,, J. H. Heinrichs,, and A. L. Cheung. 1996. The molecular architecture of the sar locus in Staphylococcus aureus. J. Bacteriol. 178: 4563 4570.
11. Bayles, K. W.,, and J. J. Iandolo. 1989. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J. Bacteriol. 171: 4799 4806.
12. Beenken, K. E.,, P. M. Dunman,, F. McAleese,, D. Macapagal,, E. Murphy,, S. J. Projan,, J. S. Blevins,, and M. S. Smeltzer. 2004. Global gene expression in Staphylococcus aureus biofilms. J. Bacteriol. 186: 4665 4684.
13. Benito, Y.,, F. A. Kolb,, P. Romby,, G. Lina,, J. Etienne,, and F. Vandenesch. 2000. Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA 6: 668 679.
14. Benito, Y.,, G. Lina,, T. Greenland,, J. Etienne,, and F. Vandenesch. 1998. trans-complementation of a Staphylococcus aureus agr mutant by Staphylococcus lugdunensis agr RNAIII. J. Bacteriol. 180: 5780 5783.
15. Betley, M. J.,, and J. J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229: 185 187.
16. Birkey, S. M.,, W. Liu,, X. Zhang,, M. F. Duggan,, and F. M. Hulett. 1998. Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol. Microbiol. 30: 943 953.
17. Bischoff, M.,, P. Dunman,, J. Kormanec,, D. Macapagal,, E. Murphy,, W. Mounts,, B. Berger-Bachi,, and S. Projan. 2004. Microarray-based analysis of the Staphylococcus aureus sigmaB regulon. J. Bacteriol. 186: 4085 4099.
18. Bjorklind, A.,, and S. Arvidson. 1980. Mutants of Staphylococcus aureus affected in the regulation of exoprotein synthesis. FEMS Microbiol. Lett. 7: 203 206.
19. Blevins, J. S.,, K. E. Beenken,, M. O. Elasri,, B. K. Hurlburt,, and M. S. Smeltzer. 2002. Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus. Infect. Immun. 70: 470 480.
20. Blevins, J. S.,, A. F. Gillaspy,, T. M. Rechtin,, B. K. Hurlburt,, and M. S. Smeltzer. 1999. The staphylococcal accessory regulator (sar) represses transcription of the Staphylococcus aureus collagen adhesin gene (cna) in an agr-independent manner. Mol. Microbiol. 33: 317 326.
21. Bronner, S.,, P. Stoessel,, A. Gravet,, H. Monteil,, and G. Prevost. 2000. Variable expressions of Staphylococcus aureus bicomponent leucotoxins semiquantified by competitive reverse transcription-PCR. Appl. Environ. Microbiol. 66: 3931 3938.
22. Brunskill, E. W.,, and K. W. Bayles. 1996. Identification of LytSR-regulated genes from Staphylococcus aureus. J. Bacteriol. 178: 5810 5812.
23. Cao, J. G.,, Z. Y. Wei,, and E. A. Meighen. 1995. The lux autoinducer-receptor interaction in Vibrio harveyi: binding. Biochem. J. 312: 439 444.
24. Chamberlain, N. R.,, and B. Imanoel. 1996. Genetic regulation of fatty acid modifying enzyme from Staphylococcus aureus. J. Med. Microbiol. 44: 125 129.
25. Chan, P. F.,, and S. J. Foster. 1998. The role of environmental factors in the regulation of virulence-determinant expression in Staphylococcus aureus 8325-4. Microbiology 144: 2469 2479.
26. Chan, P. F.,, S. J. Foster,, E. Ingham,, and M. O. Clements. 1998. The Staphylococcus aureus alternative sigma factor sigmaB controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J. Bacteriol. 180: 6082 6089.
27. Cheung, A. L.,, K. J. Eberhardt,, E. Chung,, M. R. Yeaman,, P. M. Sullam,, M. Ramos,, and A. S. Bayer. 1994. Diminished virulence of sar-/agr- mutant of Staphylococcus aureus in the rabbit model of endocarditis. J. Clin. Investig. 94: 1815 1822.
28. Cheung, A. L.,, J. H. Heinrichs,, and M. G. Bayer. 1996. Characterization of the sar locus and its interaction with agr in Staphylococcus aureus. J. Bacteriol. 178: 418 423.
29. Cheung, A. L.,, and G. Zhang. 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7: 1825 1842.
30. Chien, Y.,, A. C. Manna,, S. J. Projan,, and A. L. Cheung. 1999. SarA, a global regulator of virulence determinants in Staphylococcus aureus, binds to a conserved motif essential for sar-dependent gene regulation. J. Biol. Chem. 274: 37169 37176.
31. Clecner, B.,, and S. Sonea. 1966. Acquisition of the delta type of hemolytic property by lysogenic conversion in Staphylococcus aureus. Rev. Can. Biol. 25: 145 148.
32. Coleman, D. C.,, J. P. Arbuthnott,, H. M. Pomeroy,, and T. H. Birkbeck. 1986. Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin determinant from Staphylococcus aureus: evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant. Microb. Pathog. 1: 549 564.
33. Coleman, D. C.,, D. J. Sullivan,, R. J. Russell,, J. P. Arbuthnott,, B. F. Carey,, and H. M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of b-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135: 1679 1697.
34. de Haas, C. J.,, K. E. Veldkamp,, A. Peschel,, F. Weerkamp,, W. J. Van Wamel,, E. C. Heezius,, M. J. Poppelier,, K. P. Van Kessel,, and J. A. van Strijp. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199: 687 695.
35. Deora, R.,, T. Tseng,, and T. K. Misra. 1997. Alternative transcription factor sigmaSB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar. J. Bacteriol. 179: 6355 6359.
36. Diep, D. B.,, L. S. Havarstein,, J. Nissen-Mayer,, and I. F. Nes. 1994. The gene encoding plantarcin A, a bacteriocin from Lactobacillus plantarum C11, is located on the same transcription unit as an agr-like regulatory system. Appl. Environ. Microbiol. 60: 160.
37. Dobardzic, R.,, and S. Sonea. 1971. Hemolysin production and lysogenic conversion in Staphylococcus aureus. Ann. Inst. Pasteur (Paris) 120: 42 49.
38. Dufour, P.,, S. Jarraud,, F. Vandenesch,, T. Greenland,, R. P. Novick,, M. Bes,, J. Etienne,, and G. Lina. 2002. High genetic variability of the agr locus in Staphylococcus species. J. Bacteriol. 184: 1180 1186.
39. Dunman, P. M.,, E. Murphy,, S. Haney,, D. Palacios,, G. Tucker-Kellogg,, S. Wu,, E. L. Brown,, R. J. Zagursky,, D. Shlaes,, and S. J. Projan. 2001. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol. 183: 7341 7353.
40. Dziewanowska, K.,, A. R. Carson,, J. M. Patti,, C. F. Deobald,, K. W. Bayles,, and G. A. Bohach. 2000. Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect. Immun. 68: 6321 6328.
41. Foster, T. J.,, M. O’Reilly,, P. Phonimdaeng,, J. Cooney,, A. H. Patel,, and A. J. Bramley,. 1990. Genetic studies of virulence factors of Staphylococcus aureus. Properties of coagulase and gamma-toxin, alpha-toxin, beta-toxin and protein A in the pathogenesis of S. aureus infections, p. 403 420. In R. P. Novick (ed.), Molecular Biology of the Staphylococci. VCH Publishers, New York, N.Y.
42. Fournier, B.,, and D. C. Hooper. 2000. A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J. Bacteriol. 182: 3955 3964.
43. Fournier, B.,, and A. Klier. 2004. Protein A gene expression is regulated by DNA supercoiling which is modified by the ArlS-ArlR two-component system of Staphylococcus aureus. Microbiology 150: 3807 3819.
44. Fournier, B.,, A. Klier,, and G. Rapoport. 2001. The two-component system ArlS-ArlR is a regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 41: 247 261.
45. Fujimoto, D. F.,, and K. W. Bayles. 1998. Opposing roles of the Staphylococcus aureus virulence regulators, Agr and Sar, in Triton X-100- and penicillin-induced autolysis. J. Bacteriol. 180: 3724 3726.
46. Gaskill, M. E.,, and S. A. Khan. 1988. Regulation of the enterotoxin B gene in Staphylococcus aureus. J. Biol. Chem. 263: 6276 6280.
47. Gemmel, C. G.,, and A. M. A. Shibl,. 1976. The control of toxin and enzyme biosynthesis in staphylococci by antibiotics, p. 657 664. In J. Jeljaszewicz (ed.), Staphylococci and Staphylococal Diseases. Gustav Fischer Verlag, Stuttgart, Germany.
48. Gertz, S.,, S. Engelmann,, R. Schmid,, A. K. Ziebandt,, K. Tischer,, C. Scharf,, J. Hacker,, and M. Hecker. 2000. Characterization of the sigma(B) regulon in Staphylococcus aureus. J. Bacteriol. 182: 6983 6991.
49. Gillet, Y.,, B. Issartel,, P. Vanhems,, J. C. Fournet,, G. Lina,, M. Bes,, F. Vandenesch,, Y. Piemont,, N. Brousse,, D. Floret,, and J. Etienne. 2002. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359: 753 759.
50. Giraudo, A.,, G. Martinez,, A. Calzolari,, and R. Nagel. 1994. Characterization of a transpositional mutant of Staphylococcus aureus underproducing exoproteins. Rev. Latinoam. Microbiol. 36: 171 176.
51. Giraudo, A.,, C. Raspanti,, A. Calzolari,, and R. Nagel. 1994. Characterization of a Tn551-mutant of Staphylococcus aureus defective in the production of several exoproteins. Can. J. Microbiol. 40: 677 681.
52. Giraudo, A. T.,, A. Calzolari,, A. A. Cataldi,, C. Bogni,, and R. Nagel. 1999. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol. Lett. 177: 15 22.
53. Giraudo, A. T.,, A. L. Cheung,, and R. Nagel. 1997. The sae locus of Staphylococcus aureus controls exoprotein synthesis at the transcriptional level. Arch. Microbiol. 168: 53 58.
54. Goerke, C.,, S. Campana,, M. G. Bayer,, G. Doring,, K. Botzenhart,, and C. Wolz. 2000. Direct quantitative transcript analysis of the agr regulon of Staphylococcus aureus during human infection in comparison to the expression profile in vitro. Infect. Immun. 68: 1304 1311.
55. Goerke, C.,, U. Fluckiger,, A. Steinhuber,, W. Zimmerli,, and C. Wolz. 2001. Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of alphatoxin during device-related infection resolved by direct quantitative transcript analysis. Mol. Microbiol. 40: 1439 1447.
56. Havarstein, L. S.,, P. Gaustad,, I. F. Nes,, and D. A. Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol. Microbiol. 21: 863 869.
57. Herbert, S.,, D. Worlitzsch,, B. Dassy,, A. Boutonnier,, J. M. Fournier,, G. Bellon,, A. Dalhoff,, and G. Doring. 1997. Regulation of Staphylococcus aureus capsular polysaccharide type 5: CO 2 inhibition in vitro and in vivo. J. Infect. Dis. 176: 431 438.
58. Huh, Y. J.,, and A. A. Weiss. 1991. A 23-kilodalton protein, distinct from BvgA, expressed by virulent Bordetella pertussis binds to the promoter region of vir-regulated toxin genes. Infect. Immun. 59: 2389 2395.
59. Huhne, K.,, L. Axelsson,, A. Holck,, and L. Krockel. 1996. Analysis of the sakacin P gene cluster from Lacto bacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142: 1437 1448.
60. Janzon, L.,, and S. Arvidson. 1990. The role of the delta-lysin gene ( hld) in the regulation of virulence genes by the accessory gene regulator ( agr) in Staphylococcus aureus. EMBO J. 9: 1391 1399.
61. Jarraud, S.,, G. J. Lyon,, A. M. Figueiredo,, L. Gerard,, F. Vandenesch,, J. Etienne,, T. W. Muir,, and R. P. Novick. 2000. Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J. Bacteriol. 182: 6517 6522.
62. Ji, G.,, R. Beavis,, and R. P. Novick. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276: 2027 2030.
63. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 12055 12059.
64. Jonsson, I. M.,, S. Arvidson,, S. Foster,, and A. Tarkowski. 2004. Sigma factor B and RsbU are required for virulence in Staphylococcus aureus-induced arthritis and sepsis. Infect. Immun. 72: 6106 6111.
65. Kernodle, D. S.,, P. A. McGraw,, N. L. Barg,, B. E. Menzies,, R. K. Voladri,, and S. Harshman. 1995. Growth of Staphylococcus aureus with nafcillin in vitro induces alpha-toxin production and increases the lethal activity of sterile broth filtrates in a murine model. J. Infect. Dis. 172: 410 409.
66. Koenig, R. L.,, J. L. Ray,, S. J. Maleki,, M. S. Smeltzer,, and B. K. Hurlburt. 2004. Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J. Bacteriol. 186: 7549 7555.
67. Korem, M.,, A. S. Sheoran,, Y. Gov,, S. Tzipori,, I. Borovok,, and N. Balaban. 2003. Characterization of RAP, a quorum sensing activator of Staphylococcus aureus(1). FEMS Microbiol. Lett. 223: 167 175.
68. Kullik, I.,, and P. Giachino. 1997. The alternative sigma factor sB in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiology 167: 151 159.
69. Kullik, I.,, P. Giachino,, and T. Fuchs. 1998. Deletion of the alternative sigma factor sB in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 4814 4820.
70. Kuroda, M.,, H. Kuroda,, T. Oshima,, F. Takeuchi,, H. Mori,, and K. Hiramatsu. 2003. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol. Microbiol. 49: 807 821.
71. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225 1240.
72. Lebeau, C.,, F. Vandenesch,, T. Greeland,, R. P. Novick,, and J. Etienne. 1994. Coagulase expression in Staphylococcus aureus is positively and negatively modulated by an agr-dependent mechanism. J. Bacteriol. 176: 5534 5536.
73. Leboeuf-Trudeau, T.,, J. de Repentigny,, R. M. Frenette,, and S. Sonea. 1969. Tryptophan metabolism and toxin formation in S. aureus Wood 46 strain. Can. J. Microbiol. 15: 1 7.
74. Lee, C. Y.,, and J. J. Iandolo. 1986. Lysogenic conversion of staphylococcal lipase caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166: 385 391.
75. Lina, G.,, S. Jarraud,, G. Ji,, T. Greenland,, A. Pedraza,, J. Etienne,, R. P. Novick,, and F. Vandenesch. 1998. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol. Microbiol. 28: 655 662.
76. Lindsay, J. A.,, and S. J. Foster. 1999. Interactive regulatory pathways control virulence determinant production and stability in response to environmental conditions in Staphylococcus aureus. Mol. Gen. Genet. 262: 323 331.
77. Luong, T.,, S. Sau,, M. Gomez,, J. C. Lee,, and C. Y. Lee. 2002. Regulation of Staphylococcus aureus capsular polysaccharide expression by agr and sarA. Infect. Immun. 70: 444 450.
78. Luong, T. T.,, S. W. Newell,, and C. Y. Lee. 2003. Mgr, a novel global regulator in Staphylococcus aureus. J. Bacteriol. 185: 3703 3710.
79. Lyon, G. J.,, J. S. Wright,, T. W. Muir,, and R. P. Novick. 2002. Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus. Biochemistry 41: 10095 10104.
80. Makris, G.,, J. D. Wright,, E. Ingham,, and K. T. Holland. 2004. The hyaluronate lyase of Staphylococcus aureus—a virulence factor? Microbiology 150: 2005 2013.
81. Manna, A.,, and A. L. Cheung. 2001. Characterization of sarR, a modulator of sar expression in Staphylococcus aureus. Infect. Immun. 69: 885 896.
82. Manna, A. C.,, and A. L. Cheung. 2003. sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect. Immun. 71: 343 353.
83. Manna, A. C.,, S. S. Ingavale,, M. Maloney,, W. van Wamel,, and A. L. Cheung. 2004. Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus. J. Bacteriol. 186: 5267 5280.
84. Martin, P. K.,, T. Li,, D. Sun,, D. P. Biek,, and M. B. Schmid. 1999. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J. Bacteriol. 181: 3666 3673.
85. Mayville, P.,, G. Ji,, R. Beavis,, H.-M. Yang,, M. Goger,, R. P. Novick,, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 1218 1223.
86. McAleese, F. M.,, E. J. Walsh,, M. Sieprawska,, J. Potempa,, and T. J. Foster. 2001. Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. J. Biol. Chem. 276: 29969 29978.
87. McCallum, N.,, M. Bischoff,, H. Maki,, A. Wada,, and B. Berger-Bachi. 2004. TcaR, a putative MarR-like regulator of sarS expression. J. Bacteriol. 186: 2966 2972.
88.. McNamara, P. J.,, K. C. Milligan-Monroe,, S. Khalili,, and R. A. Proctor. 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182: 3197 3203.
89. Morfeldt, E.,, L. Janzon,, S. Arvidson,, and S. Lofdahl. 1988. Cloning of a chromosomal locus (exp) which regulates the expression of several exoprotein genes in Staphylococcus aureus. Mol. Gen. Genet. 211: 435 440.
90. Morfeldt, E.,, K. Tegmark,, and S. Arvidson. 1996. Transcriptional control of the agr-dependent virulence gene regulator, RNAIII, in Staphylococcus aureus. Mol. Microbiol. 21: 1227 1237.
91. Morikawa, K.,, Y. Inose,, H. Okamura,, A. Maruyama,, H. Hayashi,, K. Takeyasu,, and T. Ohta. 2003. A new staphylococcal sigma factor in the conserved gene cassette: functional significance and implication for the evolutionary processes. Genes Cells 8: 699 712.
91a.. Naidu, A. S.,, M. Andersson,, and A. Forsgren. 1992. Identification of a human lactoferrin-binding protein in Staphylococcus aureus. J. Med. Microbiol. 36: 177 183.
92. Nair, S. P.,, M. Bischoff,, M. M. Senn,, and B. Berger-Bachi. 2003. The sigma B regulon influences internalization of Staphylococcus aureus by osteoblasts. Infect. Immun. 71: 4167 4170.
93. Nicholas, R. O.,, T. Li,, D. McDevitt,, A. Marra,, S. Sucoloski,, P. L. Demarsh,, and D. R. Gentry. 1999. Isolation and characterization of a sigB deletion mutant of Staphylococcus aureus. Infect. Immun. 67: 3667 3669.
94. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48: 1429 1449.
95. Novick, R. P. 2003. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid 49: 93 105.
96. Novick, R. P.,, and D. Jiang. 2003. The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149: 2709 2717.
97. Novick, R. P.,, S. J. Projan,, J. Kornblum,, H. F. Ross,, G. Ji,, B. Kreiswirth,, F. Vandenesch,, and S. Moghazeh. 1995. The agr P2 operon: an autocatalytic sensory transduction system in Staphylococcus aureus. Mol. Gen. Genet. 248: 446 458.
98. Novick, R. P.,, H. F. Ross,, S. J. Projan,, J. Kornblum,, B. Kreiswirth,, and S. Moghazeh. 1993. Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J. 12: 3967 3975.
99. Novick, R. P.,, P. Schlievert,, and A. Ruzin. 2001. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3: 585 594.
100. Ohlendorf, D. H.,, C. A. Earhart,, D. T. Mitchell,, G. M. Vath,, M. Roggiani,, J. V. Rago,, M. H. Kim,, G. A. Bohach,, and P. M. Schlievert. 1998. Structural biology of toxins associated with TSS. Int. Congr. Symp. Ser. 229: 89 91.
101. Ohlsen, K.,, W. Ziebuhr,, K. P. Koller,, W. Hell,, T. A. Wichelhaus,, and J. Hacker. 1998. Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 42: 2817 2823.
102. Omoe, K.,, D. L. Hu,, H. Takahashi-Omoe,, A. Nakane,, and K. Shinagawa. 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect. Immun. 71: 6088 6094.
103. Otto, M.,, R. Sussmuth,, G. Jung,, and F. Gotz. 1998. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424: 89 94.
104. Otto, M.,, R. Sussmuth,, C. Vuong,, G. Jung,, and F. Gotz. 1999. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 450: 257 262.
105. Peng, H.-L.,, R. P. Novick,, B. Kreiswirth,, J. Kornblum,, and P. Schlievert. 1988. Cloning, characterization and sequencing of an accessory gene regulator ( agr) in Staphylococcus aureus. J. Bacteriol. 179: 4365 4372.
106. Piriz Duran, S.,, F. H. Kayser,, and B. Berger-Bachi. 1996. Impact of sar and agr on methicillin resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 141: 255 260.
107. Pohlmann-Dietze, P.,, M. Ulrich,, K. B. Kiser,, G. Doring,, J. C. Lee,, J. M. Fournier,, K. Botzenhart,, and C. Wolz. 2000. Adherence of Staphylococcus aureus to endothelial cells: influence of capsular polysaccharide, global regulator agr, and bacterial growth phase. Infect. Immun. 68: 4865 4871.
108. Projan, S.,, and R. Novick,. 1997. The molecular basis of virulence, p. 55 81. In G. Archer, and K. Crossley (ed.), Staphylococci in Human Disease. Churchill Livingstone, New York, N.Y.
109. Projan, S. J.,, S. Brown-Skrobot,, P. Schlievert,, F. Vandenesch,, and R. P. Novick. 1994. Glycerol monolaurate inhibits the production of b-lactamase, toxic shock syndrome toxin-1 and other staphylococcal exoproteins by interfering with signal transduction. J. Bacteriol. 176: 4204 4209.
110. Qazi, S. N.,, E. Counil,, J. Morrissey,, C. E. Rees,, A. Cockayne,, K. Winzer,, W. C. Chan,, P. Williams,, and P. J. Hill. 2001. agr expression precedes escape of internalized Staphylococcus aureus from the host endosome. Infect. Immun. 69: 7074 7082.
111. Quadri, L. E.,, M. Kleerebezem,, O. P. Kuipers,, W. M. de Vos,, K. L. Roy,, J. C. Vederas,, and M. E. Stiles. 1997. Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. J. Bacteriol. 179: 6163 6171.
112. Rampone, H.,, G. L. Martinez,, A. T. Giraudo,, A. Calzolari,, and R. Nagel. 1996. In vivo expression of exoprotein synthesis with a Sae mutant of Staphylococcus aureus. Can. J. Vet. Res. 60: 237 240.
113. Recsei, P.,, B. Kreiswirth,, M. O’Reilly,, P. Schlievert,, A. Gruss,, and R. Novick. 1986. Regulation of exoprotein gene expression by agr. Mol. Gen. Genet. 202: 58 61.
114. Recsei, P.,, B. Kreiswirth,, M. O’Reilly,, P. Schlievert,, A. Gruss,, and R. P. Novick. 1986. Regulation of exoprotein gene expression in Staphylococcus aureus by agar. Mol. Gen. Genet. 202: 58 61.
115. Regassa, L. B.,, J. L. Couch,, and M. J. Betley. 1991. Steady-state staphylococcal enterotoxin type C mRNA is affected by a product of the accessory gene regulator ( agr) and by glucose. Infect. Immun. 59: 955 962.
116. Rosendal, K.,, P. Buelow,, and O. Jessen. 1964. Lyogenic conversion in Staphylococcus aureus, to a change in the production of extracellular “Tween”-splitting enzyme. Nature 204: 1222 1223.
117. Said-Salim, B.,, P. M. Dunman,, F. M. McAleese,, D. Macapagal,, E. Murphy,, P. J. McNamara,, S. Arvidson,, T. J. Foster,, S. J. Projan,, and B. N. Kreisworth. 2003. Global regulation of Staphylococcus aureus genes by rot. J. Bacteriol. 185: 610 619.
118. Sakoulas, G.,, G. M. Eliopoulos,, R. Moellering,, C. Wennersten,, L. Venkataraman,, R. P. Novick,, and H. S. Gold. 2002. Accessory gene regulator ( agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother. 46: 1492 1502.
119. Saravia-Otten, P.,, H. P. Muller,, and S. Arvidson. 1997. Transcription of Staphylococcus aureus fibronectin binding protein genes is negatively regulated by agr and an agr-independent mechanism. J. Bacteriol. 179: 5259 5263.
120. Sato, H.,, T. Watanabe,, K. Higuchi,, K. Teruya,, A. Ohtake,, Y. Murata,, H. Saito,, C. Aizawa,, H. Danbara,, and N. Maehara. 2000. Chromosomal and extra-chromosomal synthesis of exfoliative toxin from Staphylococcus hyicus. J. Bacteriol. 182: 4096 4100.
121. Sawicka-Grzelak, A.,, A. Szymanowska,, A. Mlynarczyk,, and G. Mlynarczyk. 1993. Production of staphylokinase and hemolysin by coagulase-negative staphylococcus. Med. Dosw. Mikrobiol. 45: 7 10.
122. Scarlato, V.,, B. Arico,, A. Prugnola,, and R. Rappuoli. 1991. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J. 10: 3971 3975.
123. Schmidt, K. A.,, A. C. Manna,, and A. L. Cheung. 2003. SarT influences sarS expression in Staphylococcus aureus. Infect. Immun. 71: 5139 5148.
124. Schmidt, K. A.,, A. C. Manna,, S. Gill,, and A. L. Cheung. 2001. SarT, a repressor of alpha-hemolysin in Staphylococcus aureus. Infect. Immun. 69: 4749 4758.
125. Scott, J. M.,, N. Smirnova,, and W. G. Haldenwang. 1999. A Bacillus-specific factor is needed to trigger the stress-activated phosphatase/kinase cascade of sigmaB induction. Biochem. Biophys. Res. Commun. 257: 106 110.
126. Sheehan, B. J.,, T. J. Foster,, C. J. Dorman,, S. Park,, and G. S. Stewart. 1992. Osmotic and growth-phase dependent regulation of the eta gene of Staphylococcus aureus: a role for DNA supercoiling. Mol. Gen. Genet. 232: 49 57.
127. Shompole, S.,, K. T. Henon,, L. E. Liou,, K. Dziewanowska,, G. A. Bohach,, and K. W. Bayles. 2003. Biphasic intracellular expression of Staphylococcus aureus virulence factors and evidence for Agr-mediated diffusion sensing. Mol. Microbiol. 49: 919 927.
128. Sinha, B.,, P. P. Francois,, O. Nusse,, M. Foti,, O. M. Hartford,, P. Vaudaux,, T. J. Foster,, D. P. Lew,, M. Herrmann,, and K. H. Krause. 1999. Fibronectin-binding protein acts as Staphylococcus aureus invasin via fibronectin bridging to integrin alpha5beta1. Cell Microbiol. 1: 101 117.
129. Smeltzer, M. S.,, M. E. Hart,, and J. J. Iandolo. 1993. Phenotypic characterization of xpr, a global regulator of extracellular virulence factors in Staphylococcus aureus. Infect. Immun. 61: 919 925.
130. Solomon, J.,, R. Magnuson,, A. Sruvastavam,, and A. Grossman. 1995. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes Dev. 9: 547 558.
131. Somerville, G. A.,, S. B. Beres,, J. R. Fitzgerald,, F. R. DeLeo,, R. L. Cole,, J. S. Hoff,, and J. M. Musser. 2002. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J. Bacteriol. 184: 1430 1437.
132. Somerville, G. A.,, M. S. Chaussee,, C. I. Morgan,, J. R. Fitzgerald,, D. W. Dorward,, L. J. Reitzer,, and J. M. Musser. 2002. Staphylococcus aureus aconitase inactivation unexpectedly inhibits post- exponential-phase growth and enhances stationary-phase survival. Infect. Immun. 70: 6373 6382.
133. Somerville, G. A.,, A. Cockayne,, M. Durr,, A. Peschel,, M. Otto,, and J. M. Musser. 2003. Synthesis and deformylation of Staphylococcus aureus delta-toxin are linked to tricarboxylic acid cycle activity. J. Bacteriol. 185: 6686 6694.
134. Tegmark, K.,, A. Karlsson,, and S. Arvidson. 2000. Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 37: 398 409.
135. Tegmark, K.,, A. Karlsson,, and S. Arvidson. 2000. Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 37: 398 409.
136. Tegmark, K.,, E. Morfeldt,, and S. Arvidson. 1998. Regulation of agr-dependent virulence genes in Staphylococcus aureus by RNAIII from coagulase-negative staphylococci. J. Bacteriol. 180: 3181 3186.
137. Throup, J. P.,, F. Zappacosta,, R. D. Lunsford,, R. S. Annan,, S. A. Carr,, J. T. Lonsdale,, A. P. Bryant,, D. McDevitt,, M. Rosenberg,, and M. K. Burnham. 2001. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry 40: 10392 10401.
138. Tremaine, M. T.,, D. K. Brockman,, and M. J. Betley. 1993. Staphylococcal enterotoxin A gene ( sea) expression is not affected by the accessory gene regulator ( agr). Infect. Immun. 61: 356 359.
139. Valle, J.,, A. Toledo-Arana,, C. Berasain,, J. M. Ghigo,, B. Amorena,, J. R. Penades,, and I. Lasa. 2003. SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol. Microbiol. 48: 1075 1087.
140. van der Vijver, J. C.,, M. van Es-Boon,, and M. F. Michel. 1972. Lysogenic conversion in Staphylococcus aureus to leucocidin production. J. Virol. 10: 318 319.
141. van Wamel, W.,, Y. Q. Xiong,, A. S. Bayer,, M. R. Yeaman,, C. C. Nast,, and A. L. Cheung. 2002. Regulation of Staphylococcus aureus type 5 capsular polysaccharides by agr and sarA in vitro and in an experimental endocarditis model. Microb. Pathog. 33: 73 79.
142.Reference deleted.
143. Vandenesch, F.,, J. Kornblum,, and R. P. Novick. 1991. A temporal signal, independent of agr, is required for hla but not spa transcription in Staphylococcus aureus. J. Bacteriol. 173: 6313 6320.
144. Vojtov, N.,, H. F. Ross,, and R. P. Novick. 2002. Global repression of exotoxin synthesis by staphylococcal superantigens. Proc. Natl. Acad. Sci. USA 99: 10102 10107.
145. Vuong, C.,, H. L. Saenz,, F. Gotz,, and M. Otto. 2000. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis. 182: 1688 1693.
146. Warren, R. L. 1980. Exfoliative toxin plasmids of bacteriophage group 2 Staphylococcus aureus: sequence homology. Infect. Immun. 30: 601 606.
147. Weinrick, B.,, P. M. Dunman,, F. McAleese,, E. Murphy,, S. J. Projan,, Y. Fang,, and R. P. Novick. 2004. Effect of mild acid on gene expression in Staphylococcus aureus. J. Bacteriol. 186: 8407 8423.
148. Wesson, C. A.,, L. E. Liou,, K. M. Todd,, G. A. Bohach,, W. R. Trumble,, and K. W. Bayles. 1998. Staphylococcus aureus agr and sar global regulators influence internalization and induction of apoptosis. Infect. Immun. 66: 5238 5243.
149. Winkler, K. C.,, J. de Waart,, and C. Grootsen. 1965. Lysogenic conversion of staphylococci to loss of b-toxin. J. Gen. Microbiol. 39: 321 333.
150. Wolz, C.,, D. McDevitt,, T. J. Foster,, and A. L. Cheung. 1996. Influence of agr on fibrinogen binding in Staphylococcus aureus Newman. Infect. Immun. 64: 3142 3147.
151. Wright, J. S.,, R. Jin,, and R. P. Novick. Proc. Natl. Acad. Sci. USA, in press.
152. Wu, S.,, H. de Lencastre,, and A. Tomasz. 1996. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J. Bacteriol. 178: 6036 6042.
153. Xiong, Y. Q.,, A. S. Bayer,, M. R. Yeaman,, W. Van Wamel,, A. C. Manna,, and A. L. Cheung. 2004. Impacts of sarA and agr in Staphylococcus aureus strain Newman on fibronectin-binding protein A gene expression and fibronectin adherence capacity in vitro and in experimental infective endocarditis. Infect. Immun. 72: 1832 1836.
154. Xiong, Y. Q.,, W. Van Wamel,, C. C. Nast,, M. R. Yeaman,, A. L. Cheung,, and A. S. Bayer. 2002. Activation and transcriptional interaction between agr RNAII and RNAIII in Staphylococcus aureus in vitro and in an experimental endocarditis model. J. Infect. Dis. 186: 668 677.
155. Yarwood, J. M.,, D. J. Bartels,, E. M. Volper,, and E. P. Greenberg. 2004. Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol. 186: 1838 1850.
156. Yarwood, J. M.,, J. K. McCormick,, and P. M. Schlievert. 2001. Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. J. Bacteriol. 183: 1113 1123.
157. Yoshizawa, Y.,, J. Sakurada,, S. Sakurai,, K. Machida,, I. Kondo,, and S. Masuda. 2000. An exfoliative toxin A-converting phage isolated from Staphylococcus aureus strain ZM. Microbiol. Immunol. 44: 189 191.
158. Zhang, A.,, S. Rimsky,, M. E. Reaban,, H. Buc,, and M. Belfort. 1996. Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J. 15: 1340 1349.
159. Zhang, L.,, L. Gray,, R. P. Novick,, and G. Ji. 2002. Transmembrane topology of AgrB, the protein i nvolved in the post-translational modification of AgrD in Staphylococcus aureus. J. Biol. Chem. 277: 34736 34742.
160. Zhang, L.,, Lin, J.,, Ji, G. 2004. Membrane anchoring of the AgrD N-terminal amphipathic region is required for its processing to produce a quorum sensing pheromone in Staphylococcus aureus. J. Biol. Chem. 279: 19448 19456.
161. Zhang, S.,, J. J. Iandolo,, and G. C. Stewart. 1998. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol. Lett. 168: 227 233.
162. Zhang, S.,, and G. C. Stewart. 2000. Characterization of the promoter elements for the staphylococcal enterotoxin D gene. J. Bacteriol. 182: 2321 2325.

Tables

Generic image for table
TABLE 1

Staphylococcal extracellular accessory proteins

Designation in n315 genome.

Not identified in n315 sequence or absent from n315.

Xp, throughout exponential phase; exp, early exponential phase only; pxp, postexponential phase.

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Generic image for table
TABLE 2

Regulatory genes and their roles

“None” indicates that the gene is conserved among the seven sequenced genomes.

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41
Generic image for table
TABLE 3

Virulon expression in vivo

Scored by flow cytometry as percent -positive bacteria.

Derivative of NCTC 8325.

Correlated with down-regulation of by CO in vitro ( ).

Enzyme-linked immunosorbent assay.

Citation: Novick R. 2006. Staphylococcal Pathogenesis and Pathogenicity Factors: Genetics and Regulation, p 496-516. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch41

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error