Chapter 45 : Cellular and Extracellular Defenses against Staphylococcal Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in

Cellular and Extracellular Defenses against Staphylococcal Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap45-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap45-2.gif


Breaches of the skin and mucosal barriers greatly increase the likelihood of invasive staphylococcal infections, affirming the importance of these peripheral barriers in maintaining a normally asymptomatic host-bacterial relationship. Deficiencies in the mobilization or function of polymorphonuclear leukocytes (PMN) are associated with increased susceptibility to infection by many extracellular bacterial pathogens, including staphylococci. However, more recent studies have revived interest in secretion-based extracellular defenses against staphylococci and other gram-positive bacteria. Secreted antistaphylococcal agents may act alone, providing host defense against bacteria that resist or exceed phagocyte-based defenses, and may also act in concert with resident and mobilized phagocytes to increase antibacterial cytotoxicity of host defenses. In general, the action of PMN at extravascular sites of infection requires a highly regulated series of PMN responses resulting in the directed migration of PMN from blood to sites of infection, sequestration of bacterial prey, and intracellular cytotoxic action. Staphylococcal infections in chronic granulomatous disease (CGD) are overwhelmingly of extravascular nature. This is consistent with the retention of normal clearance function of phagocytes in this disease but also raises the possibility that other mechanisms of host defense against intravascular infections are operative. The acute inflammatory response mobilizes both PMN and extracellular antistaphylococcal activity at the site of bacterial invasion. The chapter focuses on the agents whose mechanism of action against has been most extensively studied. These agents are group IIA phospholipase A2 (PLA2), platelet microbicidal proteins (PMPs) and platelet kinocidins, defensins, and cathelicidins.

Citation: Weiss J, Bayer A, Yeaman M. 2006. Cellular and Extracellular Defenses against Staphylococcal Infections, p 544-559. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch45

Key Concept Ranking

Bacterial Proteins
Tumor Necrosis Factor alpha
Antibacterial Agents
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic representation of PMN engaged in phagocytosis: attachment and internalization of bacterial prey into the phagocytic vacuole, fusion of cytoplasmic granules with the phagosome to deliver antibacterial peptides and proteins, and mobilization of assembled NADPH oxidase within the phagolysosome. Also indicated are K and H fluxes induced by electrogenic effects of oxidase activation. See text for additional details.

Citation: Weiss J, Bayer A, Yeaman M. 2006. Cellular and Extracellular Defenses against Staphylococcal Infections, p 544-559. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic representation of platelets before and after activation. Note changes upon cell activation in cell architecture and surface receptors that facilitate platelet adherence and degranulation. Also note the presence of antimicrobial peptides and proteins (e.g., platelet microbicidal proteins [PMPs], thrombin-induced PMPs [tPMPs], and group IIA PLA2) believed to be stored in the alpha granule. (B) Cross-talk between vascular endothelium, platelets (PLT), and PMN in response to localized infection. Infected endothelium expresses products that either directly (e.g., platelet activating factor [PAF] and interleukin-8 [IL-8]) or indirectly (tissue factor) trigger platelet and PMN recruitment and activation and up-regulate surface receptors for (activated) platelets and PMN. (C) Recruitment, adherence, and activation of platelets and PMN (and endothelium) in juxtaposition to adherent bacteria. Degranulation and activation of respiratory burst in PMN and NO production by endothelium (not shown) lead to localized extracellular mobilization of antimicrobial peptides and proteins and toxic oxygen and nitrogen metabolites. Note that products of platelet degranulation include proteins known (e.g., platelet factor IV) or believed (e.g., tPMPs, PMPs, PLA2) to recruit and/or potentiate antimicrobial functions of PMN. Thus, secreted products may provide mechanisms for extracellular killing of (adherent) bacteria that are refractory to phagocytosis and for enhanced uptake and intracellular destruction of bacteria still susceptible to phagocytosis.

Citation: Weiss J, Bayer A, Yeaman M. 2006. Cellular and Extracellular Defenses against Staphylococcal Infections, p 544-559. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Synergy between PMN and extracellular group IIA PLA2 in digestion of phospholipids of during phagocytosis by human PMN. Shown are profiles of metabolically labeled bacterial lipids ( ), resolved by thin-layer chromatography, after incubation for 2 h as indicated. Note that appreciable bacterial phospholipid degradation, at concentration of PLA2 tested, occurs only in combined presence of PLA2 and PMN. Note also substantial conversion of bacterial PG→CL, indicative of a stress response induced shortly after phagocytosis. See text and reference for more details.

Citation: Weiss J, Bayer A, Yeaman M. 2006. Cellular and Extracellular Defenses against Staphylococcal Infections, p 544-559. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Babior, B. 1999. Review: NADPH oxidase: an update. Blood 93:14641476.
2. Bayer, A. S.,, D. Cheng,, M. R. Yeaman,, G. R. Corey,, R. S. McClelland,, L. J. Harrel,, and V. G. Fowler, Jr. 1998. In vitro resistance to thrombin-induced microbicidal protein among clinical bacteremic isolates of Staphylococcus aureus correlates with an endovascular infectious source. Antimicrob. Agents Chemother. 42:31693172.
3. Bayer, A. S.,, M. D. Ramos,, B. E. Menzies,, M. R. Yeaman,, A. Shen,, and A. L. Cheung. 1997. Hyperproduction of alpha-toxin by Staphylococcus aureus results in paradoxically reduced virulence in experimental endocarditis—host defense role for platelet microbicidal proteins. Infect. Immun. 65:46524660.
4. Beekhuizen, H.,, J. S. van de Gevel,, B. Olsson,, I. J. van Benten,, and R. van Furth. 1997. Infection of human vascular endothelial cells with Staphylococcus aureus induces hyperadhesiveness for human monocytes and granulocytes. J. Immunol. 158:774782.
5. Beers, S. A.,, A. G. Buckland,, R. S. Koduri,, W. Cho,, M. H. Gelb,, and D. C. Wilton. 2002. The antibacterial properties of secreted phospholipases A2: a major physiological role for the group IIA enzyme that depends on the very high pI of the enzyme to allow penetration of the bacterial cell wall. J. Biol. Chem. 277:17881793.
6. Belaaouaj, A.,, R. McCarthy,, M. Baumann,, Z. Gao,, T. Ley,, S. Abraham,, and S. Shapiro. 1998. Mice lacking neutrophil elastase reveal impaired host defense against gram-negative bacterial sepsis. Nat. Med. 4:615618.
7. Bera, A.,, S. Herbert,, A. Jakob,, W. Vollmer,, and F. Götz. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol. Microbiol. 55:778787.
8. Brinkmann, V.,, U. Reichard,, C. Goosmann,, B. Fauler,, Y. Uhlemann,, D. S. Weiss,, Y. Weinrauch,, and A. Zychlinsky. 2004. Neutrophil extracellular traps kill bacteria. Science 303:15321535.
9. Buckland, A. G.,, and D. C. Wilton. 2000. The antibacterial properties of secreted phospholipases A(2). Biochim. Biophys. Acta 14880:7182.
10. Chapman, A. L.,, M. B. Hampton,, R. Senthilmohan,, C. C. Winterbourn,, and A. J. Kettle. 2002. Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J. Biol. Chem. 277:97579762.
11. Chertov, O.,, D. F. Michiel,, L. Xu,, J. M. Wang,, K. Tani,, W. J. Murphy,, D. L. Longo,, D. D. Taub,, and J. J. Oppenheim. 1996. Identification of defensin-1, defensin-2 and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271:29352940.
12. Chevakis, T.,, M. Hussain,, S. M. Kanse,, G. Peters,, R. G. Bretzel,, J. L. Flock,, M. Herrmann,, and K. T. Preissner. 2002. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat. Med. 8:687693.
13. Clarke, A. J.,, and C. Dupont. 1991. O-acetylated peptidoglycan: its occurrence, pathobiologic significance, and biosynthesis. Can. J. Microbiol. 38:8591.
14. Clements, M. O.,, and S. J. Foster. 1999. Stress resistance in Staphylococcus aureus. Trends Microbiol. 7:458462.
15. Cole, A. M.,, S. Tahk,, A. Oren,, D. Yoshioka,, Y. H. Kim,, A. Park,, and T. Ganz. 2001. Determinants of Staphylococcus aureus nasal carriage. Clin. Diagn. Lab. Immunol. 8:10641069.
16. Cole, A. M.,, T. Ganz,, A. M. Liese,, M. D. Burdick,, L. Liu,, and R. M. Strieter. 2001. IFN-inducible ELRCXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167:623627.
17. Collins, L. V.,, S. A. Kristian,, C. Weidenmaier,, M. Faigle,, K. P. M. van Kessel,, J. A. G. van Strijp,, F. Götz,, B. Neumeister,, and A. Peschel. 2002. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis. 186:214219.
18. Cunnion, K. M.,, J. C. Lee,, and M. M. Frank. 2001. Capsule production and growth phase influence binding of complement to Staphylococcus aureus. Infect. Immun. 69:67966803.
19. Cunnion, K. M.,, H. M. Zhang,, and M. M. Frank. 2003. Availability of complement bound to Staphylococcus aureus to interact with membrane complement receptors influences efficiency of phagocytosis. Infect. Immun. 71:656662.
20. Dankert, J. 1988. Role of platelets in early pathogenesis of viridans group streptococcal endocarditis: a study of thrombodefensins. Ph.D. thesis. University of Groningen, Groningen, The Netherlands.
21. Dankert, J.,, J. van der Werff,, S. A. J. Zaat,, W. Joldersma,, D. Klein,, and J. Hess. 1995. Involvement of bactericidal factors from thrombin-stimulated platelets in clearance of adherent viridans streptococci in experimental infective endocarditis in rabbits. Infect. Immun. 63:663671.
22. de Haas, C. J. C.,, K. E. Veldkamp,, A. Peshel,, F. Weerkamp,, W. J. B. van Wamel,, E. C. J. M. Heezius,, M. J. J. G. Poppelier,, K. P. M. van Kessel,, and J. A. G. van Strijp. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial anti-inflammatory agent. J. Exp. Med. 199:687695.
23. De Kimpe, S. J.,, M. Kengatharan,, C. Thiemermann,, and J. R. Vane. 1995. The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc. Natl. Acad. Sci. USA 92:1035910363.
24. Dhawan, V. G.,, A. S. Bayer,, and M. R. Yeaman. 1998. Influence of in vitro susceptibility to thrombin-induced platelet microbicidal protein on the progression of experimental Staphylococcus aureus endocarditis. Infect. Immun. 66:34763479.
25. Diamond, G.,, J. P. Russell,, and C. L. Bevins. 1996. Inducible expression of an antibiotic peptide gene in lipopolysaccharide-challenged tracheal epithelial cells. Proc. Natl. Acad. Sci. USA 93:51565160.
26. Dinauer, M. C.,, W. M. Nauseef,, and P. E. Newburger,. 2001. Inherited disorders of phagocyte killing, p. 48574887. In C. R. Scriver,, A. L. Beaudet,, W. S. Sly,, D. Valle,, B. Childs,, K. W. Kinzler,, and >B. Vogelstein (ed.), The Metabolic and Molecular Bases of Inherited Diseases. McGraw-Hill, New York, N.Y.
27. Dominiecki, M. E.,, and J. Weiss. 1999. Antibacterial action of extracellular mammalian group IIA phospholipase A2 against grossly clumped Staphylococcus aureus. Infect. Immun. 67:22992305.
28. Donaldson, D. M.,, and J. G. Tew. 1977. Beta-lysin of platelet origin. Bacteriol. Rev. 41:501513.
29. Eisenhauer, P. B.,, and R. I. Lehrer. 1992. Mouse neutrophils lack defensins. Infect. Immun. 60:34463447.
30. Elsbach, P.,, J. Weiss,, and O. Levy,. 1999. Oxygen-independent antimicrobial systems of phagocytes, p. 801817. In J. I. Gallin,, R. Snyderman,, and C. Nathan (ed.), Inflammation. Basic Principles and Clinical Correlates, 3rd ed. Lippincott-Raven, New York, N.Y.
31. Fang, F. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat. Rev. Microbiol. 2:820832.
32. Faurschou, M., and Borregaard, N. 2003. Neutrophil granules and secretory vesicles in inflammation. Microbes Infect. 5:13171328.
33. Femling, J. K.,, W. M. Nauseef,, and J. P. Weiss. 2005. Synergy between extracellular group IIA phospholipase A2 and phagocyte NADPH oxidase in digestion of phospholipids of Staphylococcus aureus ingested by human neutrophils. J. Immunol. 175:46534661.
34. Ferrante, A.,, A. J. Martin,, E. J. Bates,, D. H. B. Goh,, D. P. Harvey,, D. Parsons,, D. A. Rathjen,, G. Russ,, and J.-M. Dayer. 1993. Killing of Staphylococcus aureus by tumor necrosis factor-α-activated neutrophils. J. Immunol. 151:48214828.
35. Foreman-Wykert, A. K. 1999. Determinants of the bactericidal action of mammalian 14 kDa group IIA phospholipase A2 against gram-positive bacteria, p. 113. In Microbiology. New York University, New York, N.Y.
36. Foreman-Wykert, A. K.,, Y. Weinrauch,, P. Elsbach,, and J. Weiss. 1999. Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteria. J. Clin. Investig. 103:715721.
37. Fowler, V. G., Jr.,, G. Sakoulas,, L. M. McIntyre,, V. G. Meka,, R. D. Arbeit,, C. H. Cabell,, M. E. Stryjewski,, G. M. Eliopoulos,, L. B. Reller,, G. R. Corey,, T. Jones,, N. Lucindo,, M. R. Yeaman,, and A. S. Bayer. 2004. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 190:11401149.
38. Frohm, M.,, H. Gunne,, A. C. Bergman,, B. Agerberth,, T. Bergman,, A. Boman,, S. Liden,, H. Jornvall,, and H. G. Boman. 1996. Biochemical and antibacterial analysis of human wound and blister fluid. Eur. J. Biochem. 237:8692.
39. Ganz, T. 1994. Biosynthesis of defensins and other antimicrobial peptides. Ciba Found. Symp. 186:6271.
40. Ginsburg, I.,, and M. Lahav. 1983. How are bacterial cells degraded by leukocytes in vivo? An enigma. Clin. Immunol. Newsl. 4:147153.
41. Ginsburg, I. 2002. The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae. APMIS 110:753770.
42. Goldman, M. J.,, G. M. Anderson,, E. D. Stolzenberg,, U. P. Kari,, M. Zasloff,, and J. M. Wilson. 1997. Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553560.
43. Gresham, H. D.,, J. H. Lowrance,, T. E. Caver,, B. S. Wilson,, A. L. Cheung,, and F. P. Lindberg. 2000. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J. Immunol. 164:37133722.
44. Hampton, M. B.,, A. J. Kettle,, and C. C. Winterbourn. 1996. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils. Infect. Immun. 64:35123517.
45. Hampton, M. B.,, A. J. Kettle,, and C. C. Winterbourn. 1998. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:30073017.
46. Harwig, S. S.,, T. Ganz,, and R. I. Lehrer. 1994. Neutrophil defensins. Purification, characterization and antimicrobial testing. Methods Enzymol. 236:160176.
47. Harwig, S. S.,, L. Tan,, X. D. Qu,, Y. Cho,, P. B. Eisenhauer,, and R. I. Lehrer. 1995. Bactericidal properties of a murine intestinal phospholipase A2. J. Clin. Investig. 95:603610.
48. Heumann, D.,, C. Barras,, A. Severin,, M. P. Glauser,, and A. Tomasz. 1994. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62:27152721.
49. Hristova, K.,, M. E. Selsted,, and S. H. White. 1996. Interactions of monomeric rabbit neutrophil defensin with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry 35:1188811894.
50. Hubbard, R. C.,, F. Ogushi,, G. A. Fells,, A. M. Cantin,, S. Jallat,, M. Courtney,, and R. G. Crystal. 1987. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inactivate the active site of alpha 1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J. Clin. Investig. 80:12891295.
51. Hultgren, O.,, H.-P. Eugster,, J. D. Sedgwick,, H. Körner,, and A. Tarkowski. 1998. TNF/lymphotoxin-α double mutant mice resist septic arthritis but display increased mortality in response to Staphylococcus aureus. J. Immunol. 161:59375942.
52. Ing, M. B.,, L. Baddour,, and A. S. Bayer,. 1997. Staphylococcal bacteremia and infective endocarditis—pathogenesis, diagnosis and complications. In G. Archer, and K. Crossley (ed.), Staphylococci and Staphylococcal Diseases. Churchill-Livingstone Publishers, New York, N.Y.
53. Jackson, S. H.,, J. I. Gallin,, and S. M. Holland. 1995. The p47phox mouse knock-out model of chronic granulomatous disease. J. Exp. Med. 182:751758.
54. Kallajoki, M.,, and T. J. Nevalainen,. 1997. Expression of Group II phospholipase A2 in human tissues, p. 816. In W. Uhl,, T. J. Nevalainen,, and M. W. Buchler (ed.), Phospholipase A2: Basic and Clinical Aspects in Inflammatory Diseases, vol. 24. S. Karger, Basel, Switzerland.
55. Kapral, F. A. 1966. Clumping of Staphylococcus aureus in the peritoneal cavity of mice. J. Bacteriol. 92:11881195.
56. Karakawa, W. W.,, A. Sutton,, R. Schneerson,, A. Karpas,, and W. F. Vann. 1988. Capsular antibodies induce typespecific phagocytosis of capsulated Staphylococcus aureus by human polymorphonuclear leukocytes. Infect. Immun. 56:10901095.
57. Katz, S. S.,, Y. Weinrauch,, R. S. Munford,, P. Elsbach,, and J. Weiss. 1999. Lipopolysaccharide deacylation following extracellular or intracellular killing of Escherichia coli by rabbit inflammatory peritoneal exudates. J. Biol. Chem. 274:3657936584.
58. Koo, S.-P.,, A. S. Bayer,, R. A. Proctor,, H.-G. Sahl,, and M. R. Yeaman. 1996. Staphylocidal action of platelet microbicidal protein is not solely dependent on intact transmembrane potential. Infect. Immun. 60:10701074.
59. Koo, S.-P.,, M. R. Yeaman,, and A. S. Bayer. 1996. Staphylocidal action of platelet microbicidal protein is modified by microenvironment and target cell growth phase. Infect. Immun. 64:37583764.
60. Koo, S.-P.,, M. R. Yeaman,, C. C. Nast,, and A. S. Bayer. 1997. The bacterial cell membrane is a principal target for the staphylocidal action of thrombin-induced platelet microbicidal protein. Infect. Immun. 65:47954800.
61. Koprivnjak, T.,, A. Peschel,, M. H. Gelb,, N. S. Liang,, and J. P. Weiss. 2002. Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus. J. Biol. Chem. 277:4763647644.
62. Kristian, S. A.,, M. Dürr,, J. A. G. Van Strijp,, B. Neumeister,, and A. Peschel. 2003. MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect. Immun. 71:546549.
63.. Kudo, I.,, and M. Murakami. 2002. Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat. 68-69:358.
64. Kusonoki, T.,, E. Hailman,, T. S. C. Juan,, H. S. Lichenstein,, and S. D. Wright. 1995. Molecules from Staphylococcus aureus that bind CD14 and stimulate innate immune responses. J. Exp. Med. 182:16731682.
65. Laine, V. J.,, D. S. Grass,, and T. J. Nevalainen. 1999. Protection by group II phospholipase A2 against Staphylococcus aureus. J. Immunol. 162:74027408.
66. Lee, J. C. 1996. The prospects for developing a vaccine against Staphylococcus aureus. Trends Microbiol. 4:162166.
67. Lee, J. C.,, J.-S. Park,, S. E. Shepherd,, V. Carey,, and A. Fattom. 1997. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immun. 65:41464151.
68. Lehrer, R. I. 2004. Primate defensins. Nat. Rev. Microbiol. 2:727738.
69. Levy, O.,, C. E. Ooi,, J. Weiss,, R. I. Lehrer,, and P. Elsbach. 1994. Individual and synergistic effects of rabbit granulocyte proteins on Escherichia coli. J. Clin. Investig. 94:672682.
70. Lowy, F. D. 1998. Medical progress: Staphylococcus aureus infections. N. Engl. J. Med. 339:520532.
71. Madsen, L. M.,, M. Inada,, and J. Weiss. 1996. Determinants of activation by complement of group II phospholipase A2 acting against Escherichia coli. Infect. Immun. 64:24252430.
72. Mandell, G. L. 1975. Catalase, superoxide dismutase, and virulence of Staphylococcus aureus. In vitro and in vivo studies with emphasis on staphylococcal—leukocyte interaction. J. Clin. Investig. 55:561566.
73. McInnes, I. B.,, B. Leung,, X. Q. Wei,, C. C. Gemmell,, and F. Y. Liew. 1998. Septic arthritis following Staphylococcus aureus infection in mice lacking inducible nitric oxide synthase. J. Immunol. 160:308315.
74. Melly, M. A.,, J. B. Thomison,, and D. E. Rogers. 1960. Fate of staphylococci within human leukocytes. J. Exp. Med. 112:11211130.
75. Menzies, B. E.,, and I. Kourteva. 1998. Internalization of Staphylococcus aureus by endothelial cells induces apoptosis. Infect. Immun. 66:59945998.
76. Messina, C. G. M.,, E. P. Reeves,, J. Roes,, and A. W. Segal. 2002. Catalase negative Staphylococcus aureus retain virulence in mouse model of chronic granulomatous disease. FEBS Lett. 518:107110.
77. Midorikawa, K.,, K. Ouhara,, H. Komatsuzawa,, T. Kawai,, S. Yamada,, T. Fujiwara,, K. Yamazaki,, K. Sayama,, M. A. Taubman,, H. Kurihara,, K. Hashimoto,, and M. Sugai. 2003. Staphylococcus aureus susceptibility to innate antimicrobial peptides, β-defensins and CAP18, expressed by human keratinocytes. Infect. Immun. 71:37303739.
78. Morath, S.,, A. Geyer,, and T. Hartung. 2001. Structure-activity relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J. Exp. Med. 193:393397.
79. Murakami, M.,, Y. Nakatani,, and I. Kudo. 1996. Type II secretory phospholipase A2 associated with cell surfaces via C-terminal heparin-binding lysine residues augments stimulus-initiated delayed prostaglandin generation. J. Biol. Chem. 271:3004130051.
80. Murdoch, C.,, and A. Finn. 2000. Chemokine receptors and their role in inflammation and infectious diseases. Blood 95:30323043.
81. Nathan, C.,, and M. U. Shiloh. 2000. Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97:88418848.
82. Nauseef, W. M. 2004. Assembly of the phagocyte NADPH oxidase. Histochem. Cell Biol. 122:277291.
83. Neth, O.,, D. L. Jack,, M. Johnson,, N. J. Klein,, and M. W. Turner. 2002. Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J. Immunol. 169:44304436.
84. Nilsdotter-Augustinsson, A.,, A. Wilsson,, J. Larsson,, O. Stendahl,, L. Öhman,, and H. Lundqvist-Gustafsson. 2004. Staphylococcus aureus, but not Staphylococcus epidermidis, modulates the oxidative response and induces apoptosis in human neutrophils. APMIS 112:109118.
85. Ong, P. Y.,, T. Ohtake,, C. Brandt,, I. Strickland,, M. Boguniewicz,, T. Ganz,, R. L. Gallo,, and D. Y. M. Leung. 2002. Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N. Engl. J. Med. 347:11511160.
86. O’Riordan, K.,, and J. C. Lee. 2004. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17:218234.
87. Patti, J. M. 2004. A humanized monoclonal antibody targeting Staphylococcus aureus. Vaccine 22S:S39S43.
88. Peschel, A. 2002. How do bacteria resist human antimicrobial peptides? Trends Microbiol. 10:179186.
89. Peterson, P. K.,, B. J. Wilkinson,, Y. Kim,, D. Schmeling,, S. D. Douglas,, P. G. Quie,, and J. Verhoef. 1978. The key role of peptidoglycan in the opsonization of Staphylococcus aureus. J. Clin. Investig. 61:597609.
90. Pollock, J. D.,, D. A. Williams,, M. A. Gifford,, L. L. Li,, X. Du,, J. Fisherman,, S. H. Orkin,, C. M. Doerschuk,, and M. C. Dinauer. 1995. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat. Genet. 9:202209.
91. Proctor, R. A.,, J. M. Balwit,, and O. Vesga. 1994. Variant subpopulations of Staphylococcus aureus as a cause of persistent infections. Infect. Agents Dis. 3:302312.
92. Qu, X. D.,, and R. I. Lehrer. 1998. Secretory phospholipase A2 is the principal bactericide for staphylococci and other gram-positive bacteria in human tears. Infect. Immun. 66:27912797.
93. Quie, P. G.,, J. G. White,, B. Holmes,, and R. A. Good. 1967. In vitro bactericidal capacity of human polymorphonuclear leukocytes: diminished activity in chronic granulomatous disease of childhood. J. Clin. Investig. 46:668679.
94. Reeves, E. P.,, H. Lu,, H. L. Jacobs,, C. G. Messina,, S. Bolsover,, G. Gabella,, E. O. Potma,, A. Warley,, J. Roes,, and A. W. Segal. 2002. Killing activity of neutrophils is mediated through activation of proteases by K + flux. Nature 416:291297.
95. Reeves, E. P.,, M. Nagl,, J. Godovac-Zimmermann,, and A. W. Segal. 2003. Reassessment of the microbicidal activity of reactive oxygen species and hypochlorous acid with reference to the phagocytic vacuole of the neutrophil granulocyte. J. Med. Microbiol. 52:643651.
96. Rennermalm, A.,, M. Nilsson,, and J. I. Flock. 2004. The fibrinogen binding protein of Staphylococcus epidermidis is target for opsonic antibodies. Infect. Immun. 72:30813083.
97. Schonwetter, B. S.,, E. D. Stolzenberg,, and M. A. Zasloff. 1995. Epithelial antibiotics induced at sites of inflammation. Science 267:16451648.
98. Segal, A. W.,, A. M. Harper,, R. C. Garcia,, and D. Merzbach. 1982. The action of cells from patients with chronic granulomatous disease on Staphylococcus aureus. J. Med. Microbiol. 15:441449.
99. Shafer, W. M.,, and V. C. Onunka. 1989. Mechanism of staphylococcal resistance to non-oxidative antimicrobial action of neutrophils: importance of pH and ionic strength in determining the bactericidal action of cathepsin G. J. Gen. Microbiol. 135:825830.
100. Shi, L.,, K. Takahashi,, J. Dundee,, S. Shahroor-Karni,, S. Thie,, C. Jensenius,, F. Gad,, M. R. Hamblin,, K. N. Sastry,, and R. A. B. Ezekowitz. 2004. Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. 199:13791390.
101. Shimoda, M.,, K. Ohki,, Y. Shimamota,, and O. Kohashi. 1995. Morphology of defensin-treated Staphylococcus aureus. Infect. Immun. 63:28862891.
102. Singh, P. K.,, B. F. Tack,, P. B. McCray, Jr.,, and M. J. Welsh. 2000. Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am. J. Physiol. Lung Cell Mol. Physiol. 279:L799L805.
103. Six, D. A.,, and E. A. Dennis. 2000. The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim. Biophys. Acta 1488:119.
104. Sorensen, O. E.,, P. Follin,, A. H. Jonhsen,, J. Calafat,, G. S. Tjabringa,, P. S. Hiemstra,, and N. Borregaard. 2001. Human cathelicidin, hCAP18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97:39513959.
105. Staudinger, B. J.,, M. A. Oberdoerster,, P. J. Lewis,, and H. Rosen. 2002. mRNA expression profiles for Escherichia coli ingested by normal and phagocyte-oxidase-deficient human neutrophils. J. Clin. Investig. 110:11511163.
106. Sullam, P. M.,, U. Frank,, M. G. Tauber,, M. Yeaman,, A. Bayer,, and H. F. Chambers. 1993. Effect of thrombocytopenia on the early course of streptococcal endocarditis. J. Infect. Dis. 168:910914.
107. Tang, Y. Q.,, M. R. Yeaman,, and M. E. Selsted. 2002. Antimicrobial peptides from human platelets. Infect. Immun. 70:65246533.
108. Territo, M. C.,, T. Ganz,, M. E. Selsted,, and R. Lehrer. 1989. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Investig. 84:20172020.
109. Thakker, M.,, J.-S. Park,, V. Carey,, and J. C. Lee. 1998. Staphylococcus aureus serotype 5 capsular polysaccharide is antiphagocytic and enhances bacterial virulence in a murine bacteremia model. Infect. Immun. 66:51835189.
110. Trier, D.,, K. D. Gank,, A. S. Bayer,, and M. R. Yeaman. 2000. Staphylococcus aureus elicits platelet antimicrobial responses via an ADP-dependent pathway. Program Abstr. 40th Intersci. Conf. Antimicrob. Agents Chemother. abstr. 1010. American Society for Microbiology, Washington, D.C.
111. Valore, E. V.,, E. Martin,, S. S. Harwig,, and T. Ganz. 1996. Intramolecular inhibition of human defensin HNP-1 by its propiece. J. Clin. Investig. 97:16241629.
112. Vaudaux, P. E.,, G. Zulian,, E. Huggler,, and F. A. Waldvogel. 1985. Attachment of Staphylococcus aureus to polymethymethacrylate increases its resistance to phagocytosis in foreign body infection. Infect. Immun. 50:472477.
113. Verbrugh, H. A.,, P. K. Peterson,, B. Y. Nguyen,, S. P. Sisson,, and Y. Kim. 1982. Opsonization of encapsulated Staphylococcus aureus: the role of specific antibody and complement. J. Immunol. 129:16811687.
114. Verdrengh, M.,, T. A. Springer,, J.-C. Gutierrez,, and A. Tarkowski. 1996. A role of intercellular adhesion molecule 1 in pathogenesis of staphylococcal arthritis and in host defense against staphylococcal bacteremia. Infect. Immun. 64:28042807.
115. Voyich, J. M.,, K. R. Braughton,, D. E. Sturdevant,, C. Vuong,, S. D. Kobayashi,, S. F. Porcella,, M. Otto,, J. M. Musser,, and F. R. DeLeo. 2004. Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J. Immunol. 173:11941201.
116. Waldvogel, F. A. 1999. New resistance in Staphylococcus aureus. N. Engl. J. Med. 340:556557.
117. Walton, E. 1978. The preparation, properties and action on Staphylococcus aureus of purified fractions from the cationic proteins of rabbit polymorphonuclear leukocytes. Br. J. Exp. Pathol. 59:416431.
118. Weinrauch, Y.,, C. Abad,, N. S. Liang,, S. F. Lowry,, and J. Weiss. 1998. Mobilization of potent plasma bactericidal activity during systemic bacterial challenge: role of group IIA phospholipase A2. J. Clin. Investig. 102:633638.
119. Weinrauch, Y.,, P. Elsbach,, L. M. Madsen,, A. Foreman,, and J. Weiss. 1996. The potent anti-Staphylococcus aureus activity of a sterile rabbit inflammatory fluid is due to a 14-kD phospholipase A2. J. Clin. Investig. 97:250257.
120. Weinrauch, Y.,, S. S. Katz,, R. S. Munford,, P. Elsbach,, and J. Weiss. 1999. Deacylation of purified lipopolysaccharide by cellular and extracellular components of a sterile rabbit peritoneal inflammatory exudate. Infect. Immun. 67:33763382.
121. Weiss, J.,, L. Kao,, M. Victor,, and P. Elsbach. 1987. Respiratory burst facilitates the digestion of Escherichia coli killed by polymorphonuclear leukocytes. Infect. Immun. 55:21422147.
122. Weiss, J.,, M. Inada,, P. Elsbach,, and R. M. Crowl. 1994. Structural determinants of the action against Escherichia coli of a human inflammatory fluid phospholipase A2 in concert with polymorphonuclear leukocytes. J. Biol. Chem. 269:2633126337.
123. Weiss, J.,, M. Victor,, O. Stendahl,, and P. Elsbach. 1982. Killing of Gram-negative bacteria by polymorphonuclear leukocytes: the role of an O2-independent bactericidal system. J. Clin. Investig. 69:959970.
124. Welling, M. M.,, P. S. Hiemstra,, M. T. van den Barselaar,, A. Paulusma-Annema,, P. H. Nibbering,, E. K. J. Pauwels,, and W. Calame. 1998. Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J. Clin. Investig. 102:15831590.
125. White, S. H.,, W. C. Wimley,, and M. E. Selsted. 1995. Structure, function, and membrane integration of defensins. Curr. Opin. Struct. Biol. 5:521527.
126. Woodman, R.,, R. Erickson,, J. Rae,, H. Jaffe,, and J. Curnutte. 1992. Prolonged recombinant interferon-γ therapy in chronic granulomatous disease: evidence against enhanced neutrophil oxidase activity. Blood 79:15581562.
127. Wright, G.,, C. E. Ooi,, J. Weiss,, and P. Elsbach. 1990. Purification of a cellular (granulocyte) and an extracellular (serum) phospholipase A2 that participate in the destruction of Escherichia coli in a rabbit inflammatory exudate. J. Biol. Chem. 265:66756681.
128. Wright, G. C.,, J. Weiss,, K.-S. Kim,, H. Verheij,, and P. Elsbach. 1990. Bacterial phospholipid hydrolysis enhances the destruction of Escherichia coli ingested by rabbit neutrophils. Role of cellular and extracellular phospholipases. J. Clin. Investig. 85:19251935.
129. Wu, T.,, M. R. Yeaman,, and A. S. Bayer. 1994. Resistance to platelet microbicidal protein in vitro among bacteremic staphylococcal and viridans streptococcal isolates correlates with an endocarditis source. Antimicrob. Agents Chemother. 38:729732.
130. Xiong, Y. Q.,, M. R. Yeaman,, and A. S. Bayer. 1999. In vitro antibacterial activities of platelet microbicidal protein and neutrophil defensin against Staphylococcus aureus are influenced by antibiotics differing in mechanism of action. Antimicrob Agents Chemother. 43:11111117.
131. Yang, D.,, Q. Chen,, D. M. Hoover,, P. Staley,, K. D. Tucker,, J. Lubkowski,, and J. J. Oppenheim. 2003. Many chemokines including CCL20 / MIP-3 alpha display antimicrobial activity. J. Leukoc. Biol. 74:448455.
132. Yao, L.,, V. Bengualid,, F. D. Lowy,, J. J. Gibbons,, V. B. Hatcher,, and J. W. Berman. 1995. Internalization of Staphylococcus aureus by endothelial cells induces cytokine gene expression. Infect. Immun. 63:18351839.
133. Yeaman, M. R. 1997. The role of platelets in antimicrobial host defense. Clin. Infect. Dis. 25:951970.
134. Yeaman, M. R.,, A. S. Bayer,, S.-P. Koo,, W. Foss,, and P. M. Sullam. 1998. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J. Clin. Investig. 101:178187.
135. Yeaman, M. R.,, A. S. Ibrahim,, J. E. Edwards,, A. S. Bayer,, and M. A. Ghannoum. 1993. Thrombin-induced platelet microbicidal protein is fungicidal in vitro. Antimicrob. Agents Chemother. 37:546553.
136. Yeaman, M. R.,, D. C. Norman,, and A. S. Bayer. 1992. Platelet microbicidal protein enhances the bactericidal and post-antibiotic effects in Staphylococcus aureus. Antimicrob. Agents Chemother. 36:16651660.
137. Yeaman, M. R.,, A. Shen,, Y. Tang,, A. S. Bayer,, and M. A. Selsted. 1997. Isolation and antimicrobial activity of microbicidal proteins from rabbit platelets. Infect. Immun. 65:10231031.
138. Yeaman, M. R.,, P. R. Sullam,, P. F. Dazin,, and A. S. Bayer. 1994. Platelet microbicidal protein alone and in combination with antibiotics reduces adherence of Staphylococcus aureus to platelets in vitro. Infect. Immun. 62:34163423.
139. Yount, N. Y.,, K. D. Gank,, Y. Q. Xiong,, A. S. Bayer,, T. Pender,, W. H. Welch,, and M. R. Yeaman. 2004. Platelet microbicidal protein 1: structural themes of a multifunctional antimicrobial peptide. Antimicrob. Agents Chemother. 48:43954404.
140. Yount, N. Y.,, and M. R. Yeaman. 2004. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. USA 101:73637368.
141. Zanetti, M. 2004. Cathelicidin, multifunctional proteins of the innate immunity. J. Leukoc. Biol. 75:3948.
142. Zarember, K. A.,, S. S. Katz,, B. F. Tack,, L. Doukhan,, J. Weiss,, and P. Elsbach. 2002. Host defense functions of proteolytically processed and parent (unprocessed) cathelicidins of rabbit granulocytes. Infect. Immun. 70:569576.
143. Zhao, C.,, I. Wang,, and R. I. Lehrer. 1996. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 396:319322.
144. Zimmermann, G. R.,, P. Legault,, M. E. Selsted,, and A. Pardi. 1995. Solution structure of bovine neutrophil beta-defensin-12: the peptide fold of the beta-defensin is identical to that of the classical defensins. Biochemistry 34:1366313671.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error