1887

Chapter 48 : Antibiotic Resistance in the Staphylococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Antibiotic Resistance in the Staphylococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap48-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap48-2.gif

Abstract:

This chapter summarizes specific resistance mechanisms found in the staphylococci. When discussing resistance among the staphylococci, it is important to draw a distinction between community-acquired versus hospital-acquired (nosocomial) infections. Strains resistant to arsenicals and mercury were identified well before what is now known as the antibiotic era. From the genetic point of view, resistance falls into one of two classes: mutation of a bacterial gene or acquisition of a dedicated resistance gene from some other organism by some form of genetic exchange (transduction, conjugation, or transformation). In the history of antimicrobial chemotherapy, the most useful of antistaphylococcal agents have been the beta-lactam antibiotics, the prototype of which is penicillin. These agents, which include several structural classes, all contain one common structural feature: the beta-lactam ring. Rifampin, a member of the rifamycin class of antibiotics, inhibits transcription by attacking the beta-subunit of RNA polymerase. The fluoroquinolone antimicrobials are one of the few classes of antibacterial agents that are not based on a natural product. Sulfonamide resistance in the staphylococci, which arose soon after the introduction of the sulfa drugs, is chromosomally encoded (by the sulA gene) and is attributed to the overproduction of -aminobenzoate. Mupirocin (formulated with the trade name Bactroban) has come into wide use as a topical agent for the treatment of gram-positive infections and more recently has been employed successfully to treat nasal carriers of methicillin-resistant (MRSA), especially those in chronic care settings (e.g., nursing homes) and hospital staff.

Citation: Projan S, Ruzin A. 2006. Antibiotic Resistance in the Staphylococci, p 587-598. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch48

Key Concept Ranking

Antibacterial Agents
0.60842174
Mobile Genetic Elements
0.59398293
Major Facilitator Superfamily
0.5167596
Cell Wall Biosynthesis
0.4419284
0.60842174
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816513.chap48
1. Adhikari, R. P.,, G. C. Scales,, K. Kobayashi,, J. M. B. Smith,, B. Berger-Bachi,, and G. M. Cook. 2004. Vancomycin- induced deletion of the methicillin resistance gene mecA in Staphylococcus aureus. J. Antimicrob. Chemother. 54:360363.
2. Allignet, J.,, V. Loncle,, P. Mazodier,, and N. el Solh. 1988. Nucleotide sequence of a staphylococcal plasmid gene, vgb, encoding a hydrolase inactivating the B components of virginiamycin-like antibiotics. Plasmid 20:271275.
3. Allignet, J.,, and N. el Solh. 1995. Diversity among the gram-positive acetyltransferases inactivating streptogramin A and structurally related compounds and characterization of a new staphylococcal determinant, vatB. Antimicrob. Agents Chemother. 39:20272036.
4. Allignet, J.,, and N. El Solh. 1997. Characterization of a new staphylococcal gene, vgaB, encoding a putative ABC transporter conferring resistance to streptogramin A and related compounds. Gene 202:133138.
5. Allignet, J.,, N. Liassine,, and N. El Solh. 1998. Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. Antimicrob. Agents Chemother. 42:17941798.
6. Archer, G. L.,, J. P. Coughter,, and J. L. Johnston. 1986. Plasmid-encoded trimethoprim resistance in staphylococci. Antimicrob. Agents Chemother. 29:733740.
7. Archer, G. L.,, J. A. Thanassi,, D. M. Niemeyer,, and M. J. Pucci. 1996. Characterization of IS1272, an insertion sequence-like element from Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 40:924929.
8. Aubry-Damon, H.,, C. J. Soussy,, and P. Courvalin. 1998. Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 42:25902594.
9. Berger-Bachi, B.,, and S. Rohrer. 2002. Factors influencing methicillin resistance in staphylococci. Arch. Microbiol. 178:165171.
10. Berger-Bachi, B.,, A. Strassle,, J. E. Gustafson,, and F. H. Kayser. 1992. Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 36:13671373.
11. Billot-Klein, D.,, D. Shlaes,, D. Bryant,, D. Bell,, R. Legrand,, L. Gutmann,, and J. van Heijenoort. 1997. Presence of UDP-N-acetylmuramyl-hexapeptides and -heptapeptides in enterococci and staphylococci after treatment with ramoplanin, tunicamycin, or vancomycin. J. Bacteriol. 179:46844688.
12. Bischoff, M.,, and B. Berger-Bachi. 2001. Teicoplanin stress-selected mutations increasing ?B activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 45:17141720.
13. Bouanchaud, D. H. 1997. In-vitro and in-vivo antibacterial activity of quinupristin/dalfopristin. J. Antimicrob. Chemother. 39(Suppl. A):1521.
14. Boyce, J. M.,, and A. A. Medeiros. 1987. Role of betalactamase in expression of resistance by methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 31:14261428.
15. Boyle-Vavra, S.,, B. L. de Jonge,, C. C. Ebert,, and R. S. Daum. 1997. Cloning of the Staphylococcus aureus ddh gene encoding NAD+-dependent D-lactate dehydrogenase and insertional inactivation in a glycopeptide-resistant isolate. J. Bacteriol. 179:67566763.
16. Bozdogan, B.,, D. Esel,, C. Whitener,, F. A. Browne,, and P. C. Appelbaum. 2003. Antibacterial susceptibility of a vancomycin-resistant Staphylococcus aureus strain isolated at the Hershey Medical Center. J. Antimicrob. Chemother. 52:864868.
17. Brandenberger, M.,, M. Tschierske,, P. Giachino,, A. Wada,, and B. Berger-Bachi. 2000. Inactivation of a novel three-cistronic operon tcaR-tcaA-tcaB increases teicoplanin resistance in Staphylococcus aureus. Biochim. Biophys. Acta 1523:135139.
18. Canepari, P.,, and M. Boaretti. 1996. Lipoteichoic acid as a target for antimicrobial action. Microb. Drug Resist. 2:8589.
19.Centers for Disease Control and Prevention. 2002. Staphylococcus aureus resistant to vancomycin—United States, 2002. Morb. Mortal. Wkly. Rep. 51:565567.
20.Centers for Disease Control and Prevention. 2004. Vancomycin-resistant Staphylococcus aureus—New York, 2004. Morb. Mortal. Wkly. Rep. 53:322323.
21.Centers for Disease Control and Prevention. 2002. Vancomycin-resistant Staphylococcus aureus—Pennsylvania, 2002. Morb. Mortal. Wkly. Rep. 51:902.
22. Chang, S.,, D. M. Sievert,, J. C. Hageman,, M. L. Boulton,, F. C. Tenover,, F. P. Downes,, S. Shah,, J. T. Rudrik,, G. R. Pupp,, W. J. Brown,, D. Cardo,, S. K. Fridkin, and the Vancomycin-Resistant Staphylococcus aureus Investigative Team. 2003. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348:13421347.
23. Chopra, I. 1976. Mechanisms of resistance to fusidic acid in Staphylococcus aureus. J. Gen. Microbiol. 96:229238.
24. Clewell, D. B.,, S. E. Flannagan,, and D. D. Jaworski. 1995. Unconstrained bacterial promiscuity: the Tn916- Tn1545 family of conjugative transposons. Trends Microbiol. 3:229236.
25. Climo, M. W.,, R. L. Patron,, B. P. Goldstein,, and G. L. Archer. 1998. Lysostaphin treatment of experimental methicillin- resistant Staphylococcus aureus aortic valve endocarditis. Antimicrob. Agents Chemother. 42:13551360.
26. Cohen, S.,, and H. M. Sweeney. 1973. Effect of the prophage and penicillinase plasmid of the recipient strain upon the transduction and the scility of methicillin resistance in Staphylococcus aureus. J. Bacteriol. 116:803811.
27. Cui, L.,, X. Ma,, K. Sato,, K. Okuma,, F. C. Tenover,, E. M. Mamizuka,, C. G. Gemmell,, M. N. Kim,, M. C. Ploy,, N. El Solh,, V. Ferraz,, and K. Hiramatsu. 2003. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol. 41:514.
28. Cui, L.,, H. Murakami,, K. Kuwahara-Arai,, H. Hanaki,, and K. Hiramatsu. 2000. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother. 44:22762285.
29. Cundliffe, E. 1972. The mode of action of fusidic acid. Biochem. Biophys. Res. Commun. 46:17941801.
30. De Lencastre, H.,, and A. Tomasz. 1994. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 38:25902598.
31. De Lencastre, H.,, S. W. Wu,, M. G. Pinho,, A. M. Ludovice,, S. Filipe,, S. Gardete,, R. Sobral,, S. Gill,, M. Chung,, and A. Tomasz. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. 5:163175.
32. Denoya, C. D.,, D. H. Bechhofer,, and D. Dubnau. 1986. Translational autoregulation of ermC 23S rRNA methyltransferase expression in Bacillus subtilis. J. Bacteriol. 168:11331141.
33. Dick, T.,, and H. Matzura. 1990. Chloramphenicolinduced translational activation of cat messenger RNA in vitro. J. Mol. Biol. 212:661668.
34. Doyle, D.,, K. J. McDowall,, M. J. Butler,, and I. S. Hunter. 1991. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol. Microbiol. 5:29232933.
35. Finan, J. E.,, G. L. Archer,, M. J. Pucci,, and M. W. Climo. 2001. Role of penicillin-binding protein 4 in expression of vancomycin resistance among clinical isolates of oxacillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 45:30703075.
36. Fleming, A. 1942. In vitro tests of penicillin potency. Lancet i:732.
37. Garcia-Castellanos, R.,, G. Mallorqui-Fernandez,, A. Marrero,, J. Potempa,, M. Coll,, and F. X. Gomis-Ruth. 2004. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 279:1788817896.
38. Gardete, S.,, A. M. Ludovice,, R. G. Sobral,, S. R. Filipe,, H. de Lencastre,, and A. Tomasz. 2004. Role of murE in the expression of beta-lactam antibiotic resistance in Staphylococcus aureus. J. Bacteriol. 186:17051713.
39. Gilbart, J.,, C. R. Perry,, and B. Slocombe. 1993. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob. Agents Chemother. 37:3238.
40. Gillespie, M. T.,, B. R. Lyon,, L. J. Messerotti,, and R. A. Skurray. 1987. Chromosome- and plasmid-mediated gentamicin resistance in Staphylococcus aureus encoded by Tn4001. J. Med. Microbiol. 24:139144.
41. Gregory, P. D.,, R. A. Lewis,, S. P. Curnock,, and K. G. Dyke. 1997. Studies of the repressor (BlaI) of beta-lactamase synthesis in Staphylococcus aureus. Mol. Microbiol. 24:10251037.
42. Guay, G. G.,, S. A. Khan,, and D. M. Rothstein. 1993. The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices. Plasmid 30:163166.
43. He, H.,, R. T. Williamson,, B. Shen,, E. I. Graziani,, H. Y. Yang,, S. M. Sakya,, P. J. Petersen,, and G. T. Carter. 2002. Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus, LL-AC98. J. Am. Chem. Soc. 124:97299736.
44. Henze, U.,, T. Sidow,, J. Wecke,, H. Labischinski,, and B. Berger-Baechi. 1993. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J. Bacteriol. 175:16121620.
45. Hiramatsu, K.,, E. Suzuki,, H. Takayama,, Y. Katayama,, and T. Yokota. 1990. Role of penicillinase plasmids in the stability of the mecA gene in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 34:600604.
46. Hitchings, G. H. 1973. Mechanism of action of trimethoprim- sulfamethoxazole I. J. Infect. Dis. 128: S433.
47. Hodgson, J. E.,, S. P. Curnock,, K. G. Dyke,, R. Morris,, D. R. Sylvester,, and M. S. Gross. 1994. Molecular characterization of the gene encoding high-level mupirocin resistance in Staphylococcus aureus J2870. Antimicrob. Agents Chemother. 38:12051208.
48. Hooper, D. C. 1995. Quinolone mode of action. Drugs 49(Suppl. 2):1015.
49. Horinouchi, S.,, and B. Weisblum. 1982. Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibodies. J. Bacteriol. 150:804814 .
50. Hughes, J.,, and G. Mellows. 1978. Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem. J. 176:305318.
51. Ito, T.,, Y. Katayama,, and K. Hiramatsu. 1999. Cloning and nucleotide sequence determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus aureus N315. Antimicrob. Agents Chemother. 43:14491458.
52. Jones, R. N.,, C. H. Ballow,, D. J. Biedenbach,, J. A. Deinhart,, and J. J. Schentag. 1998. Antimicrobial activity of quinupristin-dalfopristin (RP 59500, Synercid) tested against over 28,000 recent clinical isolates from 200 medical centers in the United States and Canada. Diagn. Microbiol. Infect. Dis. 31:437451.
53. Katayama, Y.,, H. Z. Zhang,, D. Hong,, and H. F. Chambers. 2003. Jumping the barrier to beta-lactam resistance in Staphylococcus aureus. J. Bacteriol. 185:54655472.
54. Koehl, J. L.,, A. Muthaiyan,, R. K. Jayaswal,, K. Ehlert,, H. Labischinski,, and B. J. Wilkinson. 2004. Cell wall composition and decreased autolytic activity and lysostaphin susceptibility of glycopeptide-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 37493757.
55. Komatsuzawa, H.,, K. Ohta,, S. Yamada,, K. Ehlert,, H. Labischinski,, J. Kajimura,, T. Fujiwara,, and M. Sugai. 2002. Increased glycan chain length distribution and decreased susceptibility to moenomycin in a vancomycinresistant Staphylococcus aureus mutant. Antimicrob. Agents Chemother. 46:7581.
56. Kuroda, M.,, K. Kuwahara-Arai,, and K. Hiramatsu. 2000. Identification of the up- and down-regulated genes in vancomycin-resistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem. Biophys. Res. Commun. 269:485490.
57. Landy, M.,, N. W. Larkum,, E. J. Oswald,, and P. Streighoff. 1943. Increased synthesis of p-aminobenzoic acid associated with the development of sulfonamide resistance in Staphylococcus aureus. Science 97:265.
58. Levy, S. B. 1998. Multidrug resistance—a sign of the times. N. Engl. J. Med. 338:13761378.
59. Lewis, R. A.,, and K. G. Dyke. 2000. MecI represses synthesis from the beta-lactamase operon of Staphylococcus aureus. J. Antimicrob. Chemother. 45:139144.
60. Lovett, P. S. 1996. Translation attenuation regulation of chloramphenicol resistance in bacteria—a review. Gene 179:157162.
61. Ludovice, A. M.,, S. W. Wu,, and H. de Lencastre. 1998. Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP-N-acetylmuramyl tripeptide synthetase (murE) gene, essential for the optimal expression of methicillin resistance. Microb. Drug Resist. 4:8590.
62. Mainardi, J. L.,, D. M. Shlaes,, R. V. Goering,, J. H. Shlaes,, J. F. Acar,, and F. W. Goldstein. 1995. Decreased teicoplanin susceptibility of methicillin-resistant strains of Staphylococcus aureus. J. Infect. Dis. 171:16461650.
63. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger-Bachi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:19531959.
64. McKinney, T. K.,, V. K. Sharma,, W. A. Craig,, and G. L. Archer. 2001. Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and betalactamase regulators. J. Bacteriol. 183:68626868.
65. Miller, G. H.,, F. J. Sabatelli,, L. Naples,, R. S. Hare,, K. J. Shaw, et al. 1995. The most frequently occurring aminoglycoside resistance mechanisms—combined results of surveys in eight regions of the world. J. Chemother. 7(Suppl. 2):1730.
66. Mongkolrattanothai, K.,, S. Boyle,, M. D. Kahana,, and R. S. Daum. 2003. Severe Staphylococcus aureus infections caused by clonally related community-acquired methicillin- susceptible and methicillin-resistant isolates. Clin. Infect. Dis. 37:10501058.
67. Mongodin, E.,, J. Finan,, M. W. Climo,, A. Rosato,, S. Gill,, and G. L. Archer. 2003. Microarray transcription analysis of clinical Staphylococcus aureus isolates resistant to vancomycin. J. Bacteriol. 185:46384643.
68. Nesin, M.,, P. Svec,, J. R. Lupski,, G. N. Godson,, B. Kreiswirth,, J. Kornblum,, and S. J. Projan. 1990. Cloning and nucleotide sequence of a chromosomally encoded tetracycline resistance determinant, tetA(M), from a pathogenic, methicillin-resistant strain of Staphylococcus aureus. Antimicrob. Agents Chemother. 34:22732276.
69. Niemeyer, D. M.,, M. J. Pucci,, J. A. Thanassi,, V. K. Sharma,, and G. L. Archer. 1996. Role of mecA transcriptional regulation in the phenotypic expression of methicillin resistance in Staphylococcus aureus. J. Bacteriol. 178:54645471.
70. Nikaido, H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382388.
71. Noble, W. C.,, Z. Virani,, and R. G. Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 72:195198.
72. O’Kane, G. M.,, T. Gottlieb,, and R. Bradbury. 1998. Staphylococcal bacteraemia: the hospital or the home? A review of Staphylococcus aureus bacteraemia at Concord Hospital in 1993. Aust. N. Z. J. Med. 28:2327.
73. Pao, S. S.,, I. T. Paulsen,, and M. H. Saier, Jr. 1998. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:134.
74. Paradise, M. R.,, G. Cook,, R. K. Poole,, and P. N. Rather. 1998. Mutations in aarE, the ubiA homolog of Providencia stuartii, result in high-level aminoglycoside resistance and reduced expression of the chromosomal aminoglycoside 2′-N-acetyltransferase. Antimicrob. Agents Chemother. 42:959962.
75. Peschel, A.,, C. Vuong,, M. Otto,, and F. Gotz. 2000. The D-alanine residues of Staphylococcus aureusteichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob. Agents Chemother. 44:28452847
76. Pestka, S. 1971. Inhibitors of ribosome functions. Annu. Rev. Microbiol. 25:487562.
77. Petersen, P. J.,, T. Z. Wang,, R. G. Dushin,, and P. A. Bradford. 2004. Comparative in vitro activities of AC98- 6446, a novel semisynthetic glycopeptide derivative of the natural product mannopeptimycin alpha, and other antimicrobial agents against gram-positive clinical isolates. Antimicrob. Agents Chemother. 48:739746.
78. Pinho, M. G.,, H. de Lencastre,, and A. Tomasz. 2001. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc. Natl. Acad. Sci. USA 98:1088610891.
79. Pinho, M. G.,, S. R. Filipe,, H. de Lencastre,, and A. Tomasz. 2001. Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance protein PBP2A in Staphylococcus aureus. J. Bacteriol. 183:65256531.
80. Postier, R. G.,, S. L. Green,, S. R. Klein,, E. J. Ellis- Grosse,, E. Loh, and Tigecycline 200 Study Group. 2004. Results of a multicenter, randomized, open-label efficacy and safety study of two doses of tigecycline for complicated skin and skin-structure infections in hospitalized patients. Clin. Ther. 26:704714.
81. Projan, S. J. 2003. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6:427430.
82. Projan, S. J.,, M. Monod,, C. S. Narayanan,, and D. Dubnau. 1987. Replication properties of pIM13, a naturally occurring plasmid found in Bacillus subtilis, and of its close relative pE5, a plasmid native to Staphylococcus aureus. J. Bacteriol. 169:51315139.
83. Projan, S. J.,, S. Moghazeh,, and R. P. Novick. 1988. Nucleotide sequence of pS194, a streptomycin-resistance plasmid from Staphylococcus aureus. Nucleic Acids Res. 16:21792187.
84. Rao, G. G. 1998. Risk factors for the spread of antibioticresistant bacteria. Drugs 55:323330.
85. Raz, R.,, D. Miron,, R. Colodner,, Z. Staler,, Z. Samara,, and Y. Keness. 1996. A 1-year trial of nasal mupirocin in the prevention of recurrent staphylococcal nasal colonization and skin infection. Arch. Intern. Med. 156:11091112.
86. Ross, J. I.,, E. A. Eady,, J. H. Cove,, and S. Baumberg. 1996. Minimal functional system required for expression of erythromycin resistance by msrA in Staphylococcus aureus RN4220. Gene 183:143148.
87. Ross, J. I.,, E. A. Eady,, J. H. Cove,, W. J. Cunliffe,, S. Baumberg,, and J. C. Wootton. 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol. Microbiol. 4:12071214.
88. Rouch, D. A.,, L. J. Messerotti,, L. S. Loo,, C. A. Jackson,, and R. A. Skurray. 1989. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol. Microbiol. 3:161175.
89. Rowland, S. J.,, and K. G. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4:961975.
90. Rubin, R. J.,, C. A. Harrington,, A. Poon,, K. Dietrich,, J. A. Greene,, and A. Moiduddin. 1999. The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerging Infect. Dis. 5:917.
91. Ruzin, A.,, A. Severin,, S. L. Moghazeh,, J. Etienne,, P. A. Bradford,, S. J. Projan,, and D. M. Shlaes. 2003. Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochim. Biophys. Acta 1621:117121.
92. Ruzin, A.,, G. Singh,, A. Severin,, Y. Yang,, R. G. Dushin,, A. G. Sutherland,, A. Minnick,, M. Greenstein,, M. K. May,, D. M. Shlaes,, and P. A. Bradford. 2004. Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant gram-positive bacteria. Antimicrob. Agents Chemother. 48:728738.
93. Ryffel, C.,, F. H. Kayser,, and B. Berger-Bachi. 1992. Correlation between regulation of mecA transcription and expression of methicillin resistance in staphylococci. Antimicrob. Agents Chemother. 36:2531.
94. Said-Salim, B.,, B. Mathema,, and B. N. Kreiswirth. 2003. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen. Infect. Control Hosp. Epidemiol. 24:451455.
95. Sakoulas, G.,, G. M. Eliopoulos,, R. C. Moellering, Jr.,, R. P. Novick,, L. Venkataraman,, C. Wennersten,, P. C. DeGirolami,, M. J. Schwaber,, and H. S. Gold. 2003. Staphylococcus aureus accessory gene regulator (agr) group II: is there a relationship to the development of intermediatelevel glycopeptide resistance? J. Infect. Dis. 187:929938.
96. Sakoulas, G.,, G. M. Eliopoulos,, R. C. Moellering, Jr.,, C. Wennersten,, L. Venkataraman,, R. P. Novick,, and H. S. Gold. 2002. Accessory gene regulator (agr) locus in geographically diverse Staphylococcus aureus isolates with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother. 46:14921502.
97. Schlessinger, D.,, and G. Medoff,. 1975. Streptomycin, dehidrostreptomycin amd the gentamicins, p. 535. In J. W. Corcoran, and F. E. Hahn (ed.), Antibiotics, vol. 3. Springer-Verlag, New York, N.Y.
98. Schwarz, S.,, P. D. Gregory,, C. Werckenthin,, S. Curnock,, and K. G. Dyke. 1996. A novel plasmid from Staphylococcus epidermidis specifying resistance to kanamycin, neomycin and tetracycline. J. Med. Microbiol. 45:5763.
99. Shaw, K. J.,, P. N. Rather,, R. S. Hare,, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 57:138163.
100. Shlaes, D. M.,, and J. H. Shlaes. 1995. Teicoplanin selects for Staphylococcus aureus that is resistant to vancomycin. Clin. Infect. Dis. 20:10711073.
101. Sieradzki, K.,, M. G. Pinho,, and A. Tomasz. 1999. Inactivated pbp4 in highly glycopeptide-resistant laboratory mutants of Staphylococcus aureus. J. Biol. Chem. 274:1894218946.
102. Sieradzki, K.,, and A. Tomasz. 1997. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus. J. Bacteriol. 179:25572566.
103. Silverman, J. A.,, N. G. Perlmutter,, and H. M. Shapiro. 2003 Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob. Agents Chemother. 47:25382544.
104. Smith, I. M.,, and A. B. Vickers. 1960. Natural history of 338 treated and untreated patients with staphylococcal septicaemia. Lancet i:1318.
105. Stewart, G. C.,, and E. D. Rosenblum. 1980. Transduction of methicillin resistance in Staphylococcus aureus: recipient effectiveness and beta-lactamase production. Antimicrob. Agents Chemother. 18:424432.
106. Stone, M. J.,, and D. H. Williams. 1992. On the evolution of functional secondary metabolites (natural products). Mol. Microbiol. 6:2934.
107. Streit, J. M.,, R. N. Jones,, H. S. Sader,, and T. R. Fritsche. 2001. Assessment of pathogen occurrences and resistance profiles among infected patients in the intensive care unit: report from the SENTRY Antimicrobial Surveillance Program (North America, 2001). Int. J. Antimicrob. Agents 24:111118.
108. Su, Y. A.,, P. He,, and D. B. Clewell. 1992. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36:769778.
109. Swaney, S. M.,, H. Aoki,, M. C. Ganoza,, and D. L. Shinabarger. 1998. The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob. Agents Chemother. 42:32513255.
110. Thakker-Varia, S.,, W. D. Jenssen,, L. Moon-McDermott,, W. P. Weinstein,, and D. T. Dubin. 1987. Molecular epidemiology of macrolides-lincosamides-streptogramin B resistance in Staphylococcus aureus and coagulase-negative staphylococci. Antimicrob. Agents Chemother. 31:735743.
111. Thomas, W. D., Jr.,, and G. L. Archer. 1989. Mobility of gentamicin resistance genes from staphylococci isolated in the United States: identification of Tn4031, a gentamicin resistance transposon from Staphylococcus epidermidis. Antimicrob. Agents Chemother. 33:13351341.
112. Tomasz, A. 1994. Multiple-antibiotic-resistant pathogenic bacteria. A report on the Rockefeller University Workshop. N. Engl. J. Med. 330:12471251.
113. Tomasz, A.,, S. Nachman,, and H. Leaf. 1991. Stable classes of phenotypic expression in methicillin-resistant clinical isolates of staphylococci. Antimicrob. Agents Chemother. 35:124129.
114. Van Bambeke, F.,, Y. Van Laethem,, P. Courvalin,, and P. M. Tulkens. 2004 Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs 64:913936.
115. Vandenesch, F.,, T. Naimi,, M. C. Enright,, G. Lina,, G. R. Nimmo,, H. Heffernan,, N. Liassine,, M. Bes,, T. Greenland,, M. E. Reverdy,, and J. Etienne. 2003. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerging Infect. Dis. 9:978984.
116. Vazquez, D., 1975. The streptogramin family of antibiotics, p. 521. In J. W. Corcorran, and F. E. Hahn (ed.), Antibiotics, vol. 3. Springer-Verlag, New York, N.Y.
117. Voladri, R. K.,, M. K. Tummuru,, and D. S. Kernodle. 1996. Structure-function relationships among wild-type variants of Staphylococcus aureus beta-lactamase: importance of amino acids 128 and 216. J. Bacteriol. 178:72487253.
118. Wehrli, W.,, and M. Staehelin. 1971. Actions of the rifamycins. Bacteriol. Rev. 35:290309.
119. Wennersten, C.,, L. Venkataraman,, P. C. DeGirolami,, G. M. Eliopoulos,, R. C. Moellering, Jr.,., and H. S. Gold. 2004. Linezolid resistance in sequential Staphylococcus aureus isolates associated with a T2500A mutation in the 23S rRNA gene and loss of a single copy of rRNA. J. Infect. Dis. 190:311317.
120. Wondrack, L.,, M. Massa,, B. V. Yang,, and J. Sutcliffe. 1996. Clinical strain of Staphylococcus aureus inactivates and causes efflux of macrolides. Antimicrob. Agents Chemother. 40:992998.
121. Wu, S. W.,, H. De Lencastre,, and A. Tomasz. 2001. Recruitment of the mecA gene homologue of Staphylococcus sciuri into a resistance determinant and expression of the resistant phenotype in Staphylococcus aureus. J. Bacteriol. 183:24172424.
122. Yu, V. L.,, G. D. Fang,, T. F. Keys,, A. A. Harris,, L. O. Gentry,, P. C. Fuchs,, N. M. Wagener,, and E. S. Wong. 1994. Prosthetic valve endocarditis: superiority of surgical valve replacement versus medical therapy only. Ann. Thorac. Surg. 58:10731077.
123. Zhang, H. Z.,, C. J. Hackbarth,, K. M. Chansky,, and H. F. Chambers. 2001. A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci. Science 291:19621965.
124. Zhao, X.,, C. Xu,, J. Domagala,, and K. Drlica. 1997. DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc. Natl. Acad. Sci. USA 94:1399113996.
125. Zurenko, G. E.,, J. K. Gibson,, D. L. Shinabarger,, P. A. Aristoff,, C. W. Ford,, and W. G. Tarpley. 2001 Oxazolidinones: a new class of antibacterials. Curr. Opin. Pharmacol. 1:470476.

Tables

Generic image for table
Table 1

Agents used to treat staphylococcal infections

Citation: Projan S, Ruzin A. 2006. Antibiotic Resistance in the Staphylococci, p 587-598. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch48

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error