Chapter 50 : Listeria monocytogenes Infection of Mice: an Elegant Probe To Dissect Innate and T-Cell Immune Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Listeria monocytogenes Infection of Mice: an Elegant Probe To Dissect Innate and T-Cell Immune Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap50-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap50-2.gif


Although infection with the intracellular bacterium can result in severe illnesses such as sepsis and meningitis in immunocompromised people, a much more common outcome is control and clearance of the organism without serious malady. is able to infect common laboratory animals such as the mouse, immunologists have been able to dissect this host-pathogen interplay and elucidate the immune functions required to contain and eliminate infection. Importantly, the mouse model of infection has yielded discoveries that are not only specific to this host-pathogen interaction but also help define fundamental concepts of innate and adaptive immunity. The natural route of infection in humans is via the gut after consumption of contaminated food products. However, infection of mice in this manner requires an extremely large inoculum and often results in asynchronous systemic infections, which complicate experimental design. Once taken up into a cell, is contained within a phagosome. Several components of the innate immune system are critical in controlling infection; however, they are not enough to accomplish clearance of virulent bacteria. T cells are required to achieve sterilizing immunity to . Gamma interferon (IFN-γ) is essential in orchestrating innate defenses against ; however, its role in regulating T-cell homeostasis was not predicted. Both the innate and T-cell components of the mammalian immune system work in concert to rid the body of bacteria before the development of serious pathology.

Citation: Haring J, Harty J. 2006. Listeria monocytogenes Infection of Mice: an Elegant Probe To Dissect Innate and T-Cell Immune Responses, p 609-619. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch50

Key Concept Ranking

Major Histocompatibility Complex Class I
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Angelakopoulos, H.,, K. Loock,, D. M. Sisul,, E. R. Jensen,, J. F. Miller,, and E. L. Hohmann. 2002. Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect. Immun. 70:35923601.
2. Auerbuch, V.,, D. Brockstedt,, N. Meyer-Morse,, M. O’Riordan,, and D. A. Portnoy. 2004. Mice lacking type I interferon receptor are resistance to Listeria monocytogenes. J. Exp. Med. 200:527533.
3. Badovinac, V. P.,, G. A. Corbin,, and J. T. Harty. 2000. Cutting edge: OFF cycling of TNF production by antigenspecific CD8+ T cells is antigen independent. J. Immunol. 165:53875391.
4. Badovinac, V. P.,, and J. T. Harty. 2000. Adaptive immunity and enhanced CD8+ T cell response to Listeria monocytogenes in the absence of perforin and IFN-γ. J. Immunol. 164:64446452.
5. Badovinac, V. P.,, and J. T. Harty. 2001. Detection and analysis of antigen-specific CD8+ T cells. Immunol. Res. 24:325332.
6. Badovinac, V. P.,, K. A. Messingham,, S. E. Hamilton,, and J. T. Harty. 2003. Regulation of CD8+ T cells undergoing primary and secondary responses to infection in the same host. J. Immunol. 170:49334942.
7. Badovinac, V. P.,, B. B. Porter,, and J. T. Harty. 2004. CD8+ T cell contraction is controlled by early inflammation. Nat. Immunol. 5:809817.
8. Badovinac, V. P.,, B. B. Porter,, and J. T. Harty. 2002. Programmed contraction of CD8+ T cells after infection. Nat. Immunol. 3:619626.
9. Badovinac, V. P.,, A. R. Tvinnereim,, and J. T. Harty. 2000. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290:13541358.
10. Bancroft, G. J.,, R. D. Schreiber,, and E. R. Unanue. 1991. Natural immunity: a T-cell-independent pathway of macrophage activation, defined in the SCID mouse. Immunol. Rev. 124:524.
11. Barry, R. A.,, H. Archie Bouwer,, T. Clark,, K. Cornell,, and D. Hinrichs. 2003. Protection of IFN-γ knockout mice against Listeria monocytogenes challenge following intramuscular immunization with DNA vaccines encoding listeriolysin O. Vaccine 21:21222132.
12. Barry, R. A.,, H. G. Bouwer,, D. A. Portnoy,, and D. J. Hinrichs. 1992. Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun. 60:16251632.
13. Berg, R. E.,, E. Crossley,, S. Murray,, and J. Forman. 2003. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198:15831593.
14. Bishop, D. K.,, and D. J. Hinrichs. 1987. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J. Immunol. 139:20052009.
15. Blattman, J.,, R. Antia,, D. Sourdive,, X. Wang,, S. M. Kaech,, K. Murali-Krishna,, J. D. Altman,, and R. Ahmed. 2002. Estimating the precursor frequency of naive antigenspecific CD8 T cells. J. Exp. Med. 195:657664.
16. Boehm, U.,, T. Klamp,, M. Groot,, and J. C. Howard. 1997. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15:749795.
17. Bousso, P.,, A. Casrouge,, J. D. Altman,, M. Haury,, J. Kanellopoulos,, J. P. Abastado,, and P. Kourilsky. 1998. Individual variations in the murine T cell response to a specific peptide reflect variability in naive repertoires. Immunity 9:169178.
18. Brundage, R. A.,, G. A. Smith,, A. Camilli,, J. A. Theriot,, and D. A. Portnoy. 1993. Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells. Proc. Natl. Acad. Sci. USA 90:1189011894.
19. Brunt, L. M.,, D. A. Portnoy,, and E. R. Unanue. 1990. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J. Immunol. 145:35403546.
20. Busch, D. H.,, H. G. Bouwer,, D. Hinrichs,, and E. G. Pamer. 1997. A nonamer peptide derived from Listeria monocytogenes metalloprotease is presented to cytolytic T lymphocytes. Infect. Immun. 65:53265329.
21. Busch, D. H.,, K. Kerksiek,, and E. G. Pamer. 1999. Processing of Listeria monocytogenes antigens and the in vivo T-cell response to bacterial infection. Immunol. Rev. 172:163169.
22. Busch, D. H.,, and E. G. Pamer. 1998. MHC class I/-peptide stability: implications for immunodominance, in vitro proliferation, and diversity of responding CTL. J. Immunol. 160:44414448.
23. Busch, D. H.,, I. Pilip,, and E. G. Pamer. 1998. Evolution of a complex T cell receptor repertoire during primary and recall bacterial infection. J. Exp. Med. 188:6170.
24. Cameron, L. A.,, P. A. Giardini,, F. S. Soo,, and J. A. Theriot. 2000. Secrets of actin-based motility revealed by a bacterial pathogen. Nat. Rev. Mol. Cell Biol. 1:110119.
25. Carding, S. R.,, and P. J. Egan. 2002. γ/δ T cells: functional plasticity and heterogeneity. Nat. Rev. Immunol. 2:336345.
26. Carrero, J.,, B. Calderon,, and E. R. Unanue. 2004. Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. J. Immunol. 172:48664874.
27. Carrero, J.,, B. Calderon,, and E. R. Unanue. 2004. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med. 200:535540.
28. Casrouge, A.,, E. Beaudoing,, S. Dalle,, C. Pannetier,, J. Kanellopoulos,, and P. Kourilsky. 2000. Size estimate of the αβ TCR repertoire of naive mouse splenocytes. J. Immunol. 164:57825787.
29. Chu, C.,, S. Wittmer,, and D. Dalton. 2000. Failure to suppress the expansion of the activated CD4 T cell population in interferon γ-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J. Exp. Med. 192:123128.
30. Conlan, J. W. 1999. Early host-pathogen interactions in the liver and spleen during systemic murine listeriosis: an overview. Immunobiology 201:178187.
31. Conlan, J. W. 1996. Early pathogenesis of Listeria monocytogenes infection in the mouse spleen. J. Med. Microbiol. 44:295302.
32. Conlan, J. W. 1997. Neutrophils and tumour necrosis factor-alpha are important for controlling early gastrointestinal stages of experimental murine listeriosis. J. Med. Microbiol. 46:239250.
33. Cousens, L. P.,, and E. J. Wing. 2000. Innate defenses in the liver during Listeria infection. Immunol. Rev. 174:150159.
34. Czuprynski, C. J.,, and J. F. Brown. 1987. Dual regulation of anti-bacterial resistance and inflammatory neutrophil and macrophage accumulation by L3T4+ and Lyt 2+ Listeriaimmune T cells. Immunology 60:287293.
35. Czuprynski, C. J.,, P. Henson,, and P. Campbell. 1984. Killing of Listeria monocytogenes by inflammatory neutrophils and mononuclear phagocytes from immune and nonimmune mice. J. Leukoc. Biol. 35:193208.
36. Dalrymple, S. A.,, L. A. Lucian,, R. Slattery,, T. McNeil,, D. M. Aud,, S. Fuchino,, F. Lee,, and R. Murray. 1995. Interleukin-6-deficient mice are highly susceptible to Listeria monocytogenes infection: correlation with inefficient neutrophilia. Infect. Immun. 63:22622268.
37. Dalton, D.,, L. Haynes,, C. Chu,, S. Swain,, and S. Wittmer. 2000. Interferon-γ eliminates responding CD4 T cells during mycobacterial infection by inducing apoptosis of activated CD4 T cells. J. Exp. Med. 192:117122.
38. Darji, A.,, D. Bruder,, S. zur Lage,, B. Gerstel,, T. Chakraborty,, J. Wehland,, and S. Weiss. 1998. The role of the bacterial membrane protein ActA in immunity and protection against Listeria monocytogenes. J. Immunol. 161:24142420.
39. Dunn, P. L.,, and R. J. North. 1991. Early gamma interferon production by natural killer cells is important in defense against murine listeriosis. Infect. Immun. 59:28922900.
40. Edelson, B. T.,, and E. R. Unanue. 2000. Immunity to Listeria infection. Curr. Opin. Immunol. 12:425431.
41. Ehlers, S.,, M. E. Mielke,, T. Blankenstein,, and H. Hahn. 1992. Kinetic analysis of cytokine gene expression in the livers of naive and immune mice infected with Listeria monocytogenes. The immediate early phase in innate resistance and acquired immunity. J. Immunol. 149:30163022.
42. Fu, Y.,, C. Roark,, K. Kelly,, D. Drevets,, P. Campbell,, R. O’Brien,, and W. Born. 1994. Immune protection and control of inflammatory tissue necrosis by γ/δ T cells. J. Immunol. 153:31013115.
43. Geginat, G.,, M. Lalic,, M. Kretschmar,, W. Goebel,, H. Hof,, D. Palm,, and A. Bubert. 1998. Th1 cells specific for a secreted protein of Listeria monocytogenes are protective in vivo. J. Immunol. 160:60466055.
44. Geginat, G.,, S. Schenk,, M. Skoberne,, W. Goebel,, and H. Hof. 2001. A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes. J. Immunol. 166:18771884.
45. Glomski, I. J.,, M. M. Gedde,, A. W. Tsang,, J. A. Swanson,, and D. A. Portnoy. 2002. The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J. Cell. Biol. 156:10291038.
46. Grayson, J.,, L. Harrington,, J. Lanier,, E. J. Wherry,, and R. Ahmed. 2002. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J. Immunol. 169:37603770.
47. Gregory, S. H.,, A. J. Sagnimeni,, and E. J. Wing. 1996. Bacteria in the bloodstream are trapped in the liver and killed by immigrating neutrophils. J. Immunol. 157:25142520.
48. Gregory, S. H.,, E. J. Wing,, K. L. Danowski,, N. van Rooijen,, K. F. Dyer,, and D. J. Tweardy. 1998. IL-6 produced by Kupffer cells induces STAT protein activation in hepatocytes early during the course of systemic listerial infections. J. Immunol. 160:60566061.
49. Gregory, S. H.,, E. J. Wing,, R. A. Hoffman,, and R. L. Simmons. 1993. Reactive nitrogen intermediates suppress the primary immunologic response to Listeria. J. Immunol. 150:29012909.
50. Guo, Y.,, D. W. Niesel,, H. K. Ziegler,, and G. R. Klimpel. 1992. Listeria monocytogenes activation of human peripheral blood lymphocytes: induction of non-major histocompatibility complex-restricted cytotoxic activity and cytokine production. Infect. Immun. 60:18131819.
51. Hamilton, S. E.,, and J. T. Harty. 2002. Quantitation of CD8+ T cell expansion, memory, and protective immunity after immunization with peptide-coated dendritic cells. J. Immunol. 169:49364944.
52. Hamilton, S. E.,, B. B. Porter,, K. A. Messingham,, V. P. Badovinac,, and J. T. Harty. 2004. MHC class Ia-restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2-M3)-restricted memory response. Nat. Immunol. 5:159168.
53. Han, Y.,, and J. Cutler. 1997. Assessment of a mouse model of neutropenia and the effect of an anti-candidiasis monoclonal antibody in these animals. J. Infect. Dis. 175:11691175.
54. Harty, J. T.,, and M. J. Bevan. 1996. CD8 T-cell recognition of macrophages and hepatocytes results in immunity to Listeria monocytogenes. Infect. Immun. 64:36323640.
55. Harty, J. T.,, and M. J. Bevan. 1992. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J. Exp. Med. 175:15311538.
56. Harty, J. T.,, and M. J. Bevan. 1999. Responses of CD8(+) T cells to intracellular bacteria. Curr. Opin. Immunol. 11:8993.
57. Harty, J. T.,, and M. J. Bevan. 1995. Specific immunity to Listeria monocytogenes in the absence of IFNγ. Immunity 3:109117.
58. Harty, J. T.,, R. D. Schreiber,, and M. J. Bevan. 1992. CD8 T cells can protect against an intracellular bacterium in an interferon γ-independent fashion. Proc. Natl. Acad. Sci. USA 89:1161211616.
59. Harty, J. T.,, A. R. Tvinnereim,, and D. W. White. 2000. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18:275308.
60. Heath, W.,, and F. Carbone. 2001. Cross-presentation, dendritic cells, tolerance, and immunity. Annu. Rev. Immunol. 19:4764.
61. Hertz, C.,, S. Kiertscher,, P. Godowski,, D. Bouis,, M. Norgand,, M. Roth,, and R. Modlin. 2001. Microbial lipopeptides stimulate dendritic cell maturation via Tolllike receptor 2. J. Immunol. 166:24442450.
62. Hiromatsu, K.,, Y. Yoshikai,, G. Matsuzaki,, S. Ohga,, K. Muramori,, K. Matsumoto,, J. Bluestone,, and K. Nomoto. 1992. A protective role of γ/δ T cells in primary infection with Listeria monocytogenes in mice. J. Exp. Med. 175:4956.
63. Huang, S.,, W. Hendriks,, A. Althage,, S. Hemmi,, H. Bluethmann,, R. Kamijo,, J. Vilcek,, R. M. Zinkernagel,, and M. Aguet. 1993. Immune response in mice that lack the IFN-γ receptor. Science 259:17421745.
64. Huster, K.,, V. Busch,, M. Scheimann,, K. Linkermann,, K. Kerksiek,, H. Wagner,, and D. H. Busch. 2004. Selective expression of the IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc. Natl. Acad. Sci. USA 101:56105615.
65. Jameson, J.,, D. Witherden,, and W. L. Havran. 2003. T-cell effector mechanisms: γ/δ and CD1d-restricted subsets. Curr. Opin. Immunol. 15:349353.
66. Jensen, E. R.,, A. A. Glass,, W. R. Clark,, E. J. Wing,, J. F. Miller,, and S. H. Gregory. 1998. Fas (CD95)-dependent cell-mediated immunity to Listeria monocytogenes. Infect. Immun. 66:41434150.
67. Jensen, J.,, T. Warner,, and E. Balish. 1993. Resistance of SCID mice to Candida albicans administered intravenously or colonizing the gut: role of polymorphonuclear leukocytes and macrophages. J. Infect. Dis. 167:912919.
68. Jiang, J.,, L. Lau,, and H. Shen. 2003. Selective depletion of nonspecific T cell during the early stage of immune responses to infection. J. Immunol. 171:43524358.
69. Jung, S.,, D. Unutmaz,, P. Wong,, G. Sano,, K. De los Santos,, T. Sparwasser,, S. Wu,, S. Vuthoori,, K. Ko,, F. Zavala,, E. G. Pamer,, D. R. Littman,, and R. A. Lang. 2002. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17:211220.
70. Kaech, S. M.,, and R. Ahmed. 2001. Memory CD8+T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2:415422.
71. Kagi, D.,, B. Ledermann,, K. Burki,, H. Hengartner,, and R. Zinkernagel. 1994. CD8(+) T cell-mediated protection against an intracellular bacterium by perforindependent cytotoxicity. Eur. J. Immunol. 24:30683072.
72. Kaufmann, S.,, and C. Ladel. 1994. Role of T cell subsets in immunity against intracellular bacteria: experimental infections of knock-out mice with Listeria monocytogenes and Mycobacterium bovis BCG. Immunobiology 191:509519.
73. Kerksiek, K.,, A. Ploss,, I. Leiner,, D. H. Busch,, and E. G. Pamer. 2003. H2-M3-restricted memory T cells: persistence and activation without expansion. J. Immunol. 170:18621869.
74. Kerksiek, K. M.,, D. H. Busch,, I. M. Pilip,, S. E. Allen,, and E. G. Pamer. 1999. H2-M3-restricted T cells in bacterial infection: rapid primary but diminished memory responses. J. Exp. Med. 190:195204.
75. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon,, and P. Cossart. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521531.
76. Kolb-Maurer, A.,, U. Kammerer,, M. Maurer,, I. Gentschev,, E. Brocker,, P. Rieckmann,, and E. Kampgen. 2003. Production of IL-12 and IL-18 in human dendritic cells upon infection with Listeria monocytogenes. FEMS Immunol. Med. Microbiol. 35:255262.
77. Krueger, A.,, S. Fas,, S. Baumann,, and P. Krammer. 2003. The role of CD95 in the regulation of peripheral T-cell apoptosis. Immunol. Rev. 193:5869.
78. Kurihara, T.,, G. Warr,, J. Loy,, and R. Bravo. 1997. Defects in macrophage recruitment and host defense in mice lacking CCR2 chemokine receptor. J. Exp. Med. 186:17571762.
79. Ladel, C.,, C. Blum,, and S. Kaufman. 1996. Control of natural killer cell-mediated innate resistance against the intracellular pathogen Listeria monocytogenes by γ/δ T lymphocytes. Infect. Immun. 64:17441749.
80. Lenz, L.,, B. Dere,, and M. J. Bevan. 1996. Identification of an H2-M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5:6372.
81. Lertmemongkolchai, G.,, G. Cai,, C. A. Hunter,, and G. J. Bancroft. 2001. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J. Immunol. 166:10971105.
82. Lieberman, J.,, and F. R. Frankel. 2002. Engineered Listeria monocytogenes as an AIDS vaccine. Vaccine 20:20072010.
83. Lindahl, K.,, D. Byers,, V. Dabhi,, R. Hovik,, E. Jones,, G. Smith,, C. Wang,, H. Xiao,, and M. Yoshino. 1997. H2-M3, a full-service class Ib histocompatibility antigen. Annu. Rev. Immunol. 15:851879.
84. Lu, B.,, C. Ebensperger,, Z. Dembic,, Y. Wang,, M. Kvatyuk,, T. Lu,, R. L. Coffman,, S. Pestka,, and P. B. Rothman. 1998. Targeted disruption of the interferon-γ receptor 2 gene results in severe immune defects in mice. Proc. Natl. Acad. Sci. USA 95:82338238.
85. Lukacs, K.,, and R. Kurlander. 1989. Lyt-2+ T cell-mediated protection against listeriosis. Protection correlates with phagocyte depletion but not with IFN-γ production. J. Immunol. 142:28792886.
86. Mackaness, G. B. 1962. Cellular resistance to infection. J. Exp. Med. 116:381406.
87. Matsuzaki, G.,, H. Yamada,, K. Kishihara,, Y. Yoshikai,, and K. Nomoto. 2002. Mechanism of murine Vg1 + γ/δ T cell-mediated innate immune response against Listeria monocytogenes infection. Eur. J. Immunol. 32:928935.
88. Meraz, M.,, J. White,, K. Sheehan,, E. Bach,, S. Rodig,, A. Dighe,, D. Kaplan,, J. Riley,, A. Greenlund,, D. Campbell,, K. Carver-Moore,, R. DuBois,, R. Clark,, M. Aguet,, and R. D. Schreiber. 1996. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the Jak-STAT signaling pathway. Cell 84:431442.
89. Mercado, R.,, S. Vijh,, S. E. Allen,, K. Kerksiek,, I. Pilip,, and E. G. Pamer. 2000. Early programming of T cell populations responding to bacterial infection. J. Immunol. 165:68336839.
90. Messingham, K. A.,, V. P. Badovinac,, and J. T. Harty. 2003. Deficient anti-listerial immunity in the absence of perforin can be restored by increasing memory CD8+ T cell numbers. J. Immunol. 171:42544262.
91. Milon, G. 1997. Listeria monocytogenes in laboratory mice: a model of short-term infectious and pathogenic processes controllable by regulated protective immune responses. Immunol. Rev. 158:3746.
92. Mocci, S.,, S. A. Dalrymple,, R. Nishinakamura,, and R. Murray. 1997. The cytokine stew and innate resistance to L. monocytogenes. Immunol. Rev. 158:107114.
93. Moulder, J. W. 1985. Comparative biology of intracellular parasitism. Microbiol. Rev. 49:298337.
94. O’Connell, R.,, S. Saha,, S. Vaidya,, K. W. Bruhn,, G. Miranda,, B. Zarnegar,, A. Perry,, B. Nguyen,, T. Lane,, T. Taniguchi,, J. F. Miller,, and G. Cheng. 2004. Type I interferon enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 200:437445.
95. Ohteki, T.,, T. Fukao,, K. Suzue,, C. Maki,, M. Ito,, M. Nakamura,, and S. Koyasu. 1999. Interleukin 12-dependent interferon gamma production by CD8a+ lymphoid dendritic cells. J. Exp. Med. 189:19811986.
96. Pamer, E. G. 1994. Direct sequence identification and kinetic analysis of an MHC class I-restricted Listeria monocytogenes CTL epitope. J. Immunol. 152:686694.
97. Pamer, E. G.,, J. T. Harty,, and M. J. Bevan. 1991. Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353:852855.
98. Pasparakis, M.,, L. Alexopoulou,, V. Episkopou,, and G. Kollias. 1996. Immune and inflammatory responses in TNFα-deficient mice: a critical requirement for TNFα in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184: 13971411.
99. Portnoy, D. A.,, V. Auerbuch,, and I. J. Glomski. 2002. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158:409414.
100. Portnoy, D. A.,, P. S. Jacks,, and D. J. Hinrichs. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167:14591471.
101. Rayevskaya, M.,, N. Kushnir,, and F. R. Frankel. 2002. Safety and immunogenicity in neonatal mice of a hyper-attenuated Listeria vaccine directed against human immune-deficiency virus. J. Virol. 76:918922.
102. Refaeli, Y.,, L. Van Parijs,, S. I. Alexander,, and A. K. Abbas. 2002. Interferon γ is required for activation-induced death of T lymphocytes. J. Exp. Med. 196:9991005.
103. Rock, K. L.,, C. Gramm,, L. Rothstein,, K. Clark,, R. Stein,, L. Dick,, D. Hwang,, and A. L. Goldberg. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761771.
104. Rogers, H. W.,, M. P. Callery,, B. Deck,, and E. R. Unanue. 1996. Listeria monocytogenes induces apoptosis of infected hepatocytes. J. Immunol. 156:679684.
105. Rogers, H. W.,, C. S. Tripp,, R. D. Schreiber,, and E. R. Unanue. 1994. Endogenous IL-1 is required for neutrophil recruitment and macrophage activation during murine listeriosis. J. Immunol. 153:2093-–2101.
106. Seki, E.,, H. Tsutsui,, N. Tsuji,, N. Hayashi,, K. Adachi,, H. Nakano,, S. Futatsugi-Yumikura,, O. Takeuchi,, K. Hoshino,, and S. Akira. 2002. Critical roles of myeloid differentiation factor-88-dependent proinflammatory cytokine release in early phase clearance of Listeria monocytogenes in mice. J. Immunol. 169:38633868.
107. Serbina, N.,, T. Salazar-Mather,, C. Biron,, W. Kuziel,, and E. G. Pamer. 2003. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19:5970.
108. Shen, H.,, J. F. Miller,, X. Fan,, D. Kolwyck,, R. Ahmed,, and J. T. Harty. 1998. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92:535545.
109. Shen, H.,, C. Tato,, and X. Fan. 1998. Listeria monocytogenes as a probe to study cell-mediated immunity. Curr. Opin. Immunol. 10:450458.
110. Shresta, S.,, C. Pham,, D. Thomas,, T. Graubert,, and T. Ley. 1998. How do cytotoxic lymphocytes kill their targets? Curr. Opin. Immunol. 10:581587.
111. Sijts, A. J.,, A. Neisig,, J. Neefjes,, and E. G. Pamer. 1996. Two Listeria monocytogenes CTL epitopes are processed from the same antigen with different efficiencies. J. Immunol. 156:683692.
112. Sijts, A. J.,, and E. G. Pamer. 1997. Enhanced intracellular dissociation of major histocompatibility complex class I-associated peptides: a mechanism for optimizing the spectrum of cell surface-presented cytotoxic T lymphocyte epitopes. J. Exp. Med. 185:14031411.
113. Skoberne, M.,, R. Holtappels,, H. Hof,, and G. Geginat. 2001. Dynamic antigen presentation patterns of Listeria monocytogenes-derived CD8 T cell epitopes in vivo. J. Immunol. 167:22092218.
114. Skoberne, M.,, S. Schenk,, H. Hof,, and G. Geginat. 2002. Cross-presentation of Listeria monocytogenes derived CD4 T cell epitopes. J. Immunol. 169:14101418.
115. Slifka, M. K.,, F. Rodriguez,, and J. L. Whitton. 1999. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401:7679.
116. Starks, H.,, K. W. Bruhn,, H. Shen,, R. A. Barry,, T. W. Dubensky,, D. Brockstedt,, D. J. Hinrichs,, D. E. Higgins,, J. F. Miller,, M. Giedlin,, and H. G. Bouwer. 2004. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol. 173:420427.
117. Sunderkotter, C.,, T. Nikolic,, M. Dillion,, N. van Rooijen,, M. Stehling,, D. Drevets,, and P. Leenen. 2004. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172:44104417.
118. Takada, H.,, G. Matsuzaki,, K. Hiromatsu,, and K. Nomoto. 1994. Analysis of the role of natural killer cells in Listeria monocytogenes infection: relation between natural killer cells and T-cell receptor γ/δ T cells in the host defense mechanism at the early stage of infection. Immunology 82:106112.
119. Takeda, K.,, T. Kaisho,, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335376.
120. Takeya, K.,, S. Shimotori,, T. Taniguchi,, and K. Nomoto. 1977. Cellular mechanisms in the protection against infection by Listeria monocytogenes in mice. J. Gen. Microbiol. 100:373379.
121. Teixeira, H.,, and S. Kaufmann. 1994. Role of NK1.1+ cells in experimental listeriosis. NK1+ cells are early IFN-γ producers but impair resistance to Listeria monocytogenes infection. J. Immunol. 152:18731882.
122. Tilney, L. G.,, P. S. Connelly,, and D. A. Portnoy. 1990. Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J. Cell Biol. 111:29792988.
123. Trautwein, C.,, K. Boker,, and M. P. Manns. 1994. Hepatocyte and immune system: acute phase reaction as a contribution to early defence mechanisms. Gut 35:11631166.
124. Tvinnereim, A. R.,, S. E. Hamilton,, and J. T. Harty. 2004. Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J. Immunol. 173:1994-–2002.
125. Tweten, R. K.,, M. W. Parker,, and A. E. Johnson. 2001. The cholesterol-dependent cytolysins. Curr. Top. Microbiol. Immunol. 257:1533.
126. van den Broek, M.,, U. Muller,, S. Huang,, and R. Zinkernagel. 1995. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol. Rev. 148:518.
127. Varinou, L.,, K. Ramsauer,, M. Karaghiosoff,, T. Kolbe,, K. Pfeffer,, M. Muller,, and T. Decker. 2003. Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-γ-dependent innate immunity. Immunity 19:793802.
128. Villanueva, M. S.,, P. Fischer,, K. Feen,, and E. G. Pamer. 1994. Efficiency of MHC class I antigen processing: a quantitative analysis. Immunity 1:479489.
129. Villanueva, M. S.,, A. J. Sijts,, and E. G. Pamer. 1995. Listeriolysin O is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes-infected cells. J. Immunol. 155:52275233.
130. Way, S.,, T. Kollman,, A. Hajjar,, and C. Wilson. 2003. Protective cell-mediated immunity to Listeria monocytogenes in the absence of myeloid differentiation factor 88. J. Immunol. 171:533537.
131. Wherry, E. J.,, V. Teichgraber,, T. C. Becker,, D. Masopust,, S. M. Kaech,, R. Antia,, U. H. von Andrian,, and R. Ahmed. 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4:225234.
132. White, D. W.,, V. P. Badovinac,, G. Kollias,, and J. T. Harty. 2000. Cutting edge: antilisterial activity of CD8+T cells derived from TNF-deficient and TNF/perforin double-deficient mice. J. Immunol. 165:59.
133. White, D. W.,, and J. T. Harty. 1998. Perforin-deficient CD8+T cells provide immunity to Listeria monocytogenes by a mechanism that is independent of CD95 and IFN-γ but requires TNF-α. J. Immunol. 160:898905.
134. White, D. W.,, A. MacNeil,, D. H. Busch,, I. M. Pilip,, E. G. Pamer,, and J. T. Harty. 1999. Perforin-deficient CD8+ T cells: in vivo priming and antigen-specific immunity against Listeria monocytogenes. J. Immunol. 162:980988.
135. Wing, E. J.,, and S. H. Gregory. 2002. Listeria monocytogenes: clinical and experimental update. J. Infect. Dis. 185(Suppl. 1):S18S24.
136. Wong, P.,, and E. G. Pamer. 2001. Cutting edge: antigen-independent CD8 T cell proliferation. J. Immunol. 166:58645868.
137. Yewdell, J.,, and J. Bennink. 1999. Immuno-dominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17:5188.
138. Yokoyama, W.,, S. Kim,, and A. French. 2004. The dynamic life of natural killer cells. Annu. Rev. Immunol. 22:405429.
139. Zenewicz, L.,, K. Foulds,, J. Jiang,, X. Fan,, and H. Shen. 2002. Nonsecreted bacterial proteins induce recall CD8 T cell responses but do not serve as protective antigens. J. Immunol. 169:58055812.
140. Zimmerman, B.,, B. Canono,, and P. Campbell. 1986. Silica decreases phagocytosis and bactericidal activity of both macrophages and neutrophils in vitro. Immunology 59:521525.


Generic image for table

Relative susceptibility of specific mouse strains to virulent infection

Intravenous infection with virulent .

Citation: Haring J, Harty J. 2006. Listeria monocytogenes Infection of Mice: an Elegant Probe To Dissect Innate and T-Cell Immune Responses, p 609-619. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch50

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error