1887

Chapter 51 : Genetic Tools for Use with Listeria monocytogenes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetic Tools for Use with Listeria monocytogenes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap51-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap51-2.gif

Abstract:

The number and sophistication of genetic tools that have become available in recent years for the molecular characterization of have continued to increase. Plasmid vectors, reporter genes, systems designed for transposon mutagenesis, heterologous expression systems, integration vectors, and transducing phage have all greatly advanced the experimental capacity to generate, characterize, and complement mutations within and to define functional roles of gene products. This chapter provides a brief description of the genetic tools currently available for use with . Key references are given throughout this description to provide sources for expanded details on plasmid constructions, assay conditions, and other technical aspects. The variety of genetic tools described is meant to be representative of the resources available to those interested in genetics. More widely used tools for studying expression profiles of bacteria are whole-genome DNA macro- and microarrays, which provide a comprehensive transcriptional analysis enabling researchers to view the organism as a system. Several reporter genes developed for use in other systems have proven useful for monitoring transcriptional gene regulation. Transcriptional fusions to reporter genes such as , , , , and have all been constructed in and have been used successfully to monitor patterns of bacterial gene expression in culture and within infected cells and animals. The advantages and/or disadvantages of some of these reporter systems are discussed briefly.

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51

Key Concept Ranking

Bacterial Pathogenesis
0.7716931
Genetic Elements
0.7604847
Bacterial Genetics
0.59310526
Chromosomal DNA
0.5466066
0.7716931
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Plasmid vectors for gene expression-complementation in . (A) pAM401 (88) contains the p15A origin of replication, chloramphenicol (), and tetracycline () resistance genes for selection in . A chloramphenicol resistance gene () and origin of replication ( ori) gene allow selection in . Unique cloning sites present within the gram-negative replicon portion are indicated. (B) pMK4 (79) contains a ColE1 origin of replication, β-lactamase gene (), and /− resistance gene for selection in . The and /− resistance genes provide selection in . pMK4 harbors a fragment of the gene () that is capable of α-complementation and contains five unique restriction sites for cloning.

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Inducible expression-integration vectors for . (A) pLIV1 (20) contains the following sequences: a temperature-sensitive origin of replication (ts ori) and a chloramphenicol resistance gene () for plasmid selection in , the ColE1 origin of replication and β-lactamase gene () for cloning and selection in , an origin of transfer (oriT) to allow conjugal mating of plasmid derivatives from to , a unique XbaI restriction site for cloning genes under the transcriptional control of the SPAC/Oid IPTG-inducible promoter (20), tandem copies of the T1 transcription terminator (T1 terminators) upstream of the SPAC/Oid region to ensure that transcription of cloned genes initiates only from the SPAC promoter, the p60 gene () promoter to allow constitutive expression of the repressor gene (), and an erythromycin resistance determinant within the expression cassette ( ) for selection of inducible constructs on the chromosome. The inducible expression cassette can be integrated into the chromosome within the gene (Z′) via allelic exchange. (B) pLIV2 ( Table 1 ) is a new inducible expression vector derived from pLIV1 and the site-specific phage integration vector pPL2 ( Fig. 4 ) (52). pLIV2 contains the inducible expression cassette region from pLIV1 with eight unique restriction sites available for cloning. pLIV2 contains the p15A origin of replication and a chloramphenicol resistance gene ( ) for selection in . The PSA bacteriophage integrase gene () and attachment site () allow site-specific integration of the vector within an tRNAArg gene, following conjugal transfer from facilitated by the region. The resistance gene allows selection of integrated plasmids in .

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic diagram for construction of chromosomal mutations in . The method depicted and described in the text is suitable for the introduction of insertions, deletions, or single- or multiple-nucleotide substitutions within the chromosome. (A) Chromosomal integration of the temperature sensitive plasmid vector by homologous recombination between plasmid encoded genes A or B and the chromosomal alleles. The designated crossover points are arbitrary and can occur on either side of gene X. (B) Growth of bacterial cultures in the presence of drug selection at temperatures nonpermissive for plasmid replication selects for the merodiploid intermediates that result from plasmid integration into the chromosome. (C) Merodiploid intermediate strains are then passed for several generations without selective pressure at temperatures permissive for plasmid replication. Spontaneous excision of the integrated plasmid from the chromosome occurs. (D) Excised plasmids are cured at temperatures nonpermissive for plasmid replication in the absence of drug selection.

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Site-specific phage integration vectors for . (A) pPL1 (52) contains the following features: a p15A origin of replication and chloramphenicol resistance gene () for selection in , an origin of transfer () for conjugal mating from to , the U153 bacteriophage integrase gene ( ) and attachment site () to allow site-specific integration of the vector within the gene, and a chloramphenicol resistance gene ( ) for selection of plasmid maintenance in . A multiple cloning site region (MCS) contains 12 unique restriction sites for cloning. (B) Features of pPL2 (52) are as described for pPL1 with the exception that pPL2 contains the PSA bacteriophage integrase gene () and attachment site () for site-specific integration of pPL2 within an tRNA gene. pPL2 contains 13 unique restriction sites within the MCS region.

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Tn delivery plasmids pLTV1 and pLTV3. ColE1, replication functions derived from pBR322 (10); pE194Ts, temperature-sensitive gram-positive origin of replication (83); , neomycinphosphotransferase II; , bleomycin resistance gene; , Tn ribosomal methyltransferase gene; , tetracycline resistance gene from pAMα1Δ1 (65); , pC194-derived chloramphenicol acetyltransferase gene (45); , pBR322 β-lactamase gene; , promoterless gene from with translation initiation signals derived from gene .

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

A method for isolating a transposon insertion linked to a particular mutant locus in (transposon tagging, as described by D. Kaiser) (49). As an example, a mutant strain is depicted with a single base pair change within the bacterial chromosome that confers a mutant phenotype (mutation indicated by X). A library of random transposon insertions (Tn) is generated within the mutant strain, and a U153 bacteriophage lysate is prepared from the mutant strain transposon insertion library. Wild-type is incubated with the phage lysate, and transductants are selected based on the presence of the antibiotic resistance marker provided by Tn and the mutant phenoytpe conferred by mutation X. The Tn transposon is now genetically linked to mutation X, and the distance between the two can be determined based on the cotransduction frequency of Tn and X (see reference 59 for an experimental example and additional details). This approach can theoretically be used to map any unmarked mutation that confers a phenotype within the chromosome.

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap51
1. Alberti-Segui, C.,, and D. Higgins. Unpublished data.
2. Annous, B. A.,, L. A. Becker,, D. O. Bayles,, D. P. Labeda,, and B. J. Wilkinson. 1997. Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl. Environ. Microbiol. 63: 3887 3894.
3. Arnaud, M.,, A. Chastanet,, and M. Debarbouille. 2004. New vector for efficient replacement in naturally non-transformable, low GC-content, gram-positive bacteria. Appl. Environ. Microbiol. 70: 6887 6891.
4. Arous, S.,, C. Buchrieser,, P. Folio,, P. Glaser,, A. Namane,, M. Hebraud,, and Y. Hechard. 2004. Global analysis of gene expression in an rpoN mutant of Listeria monocytogenes. Microbiology 150: 1581 1590.
5. Autret, N.,, I. Dubail,, P. Trieu-Cuot,, P. Berche,, and A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69: 2054 2065.
6. Baldwin, D. N.,, V. Vanchinathan,, P. O. Brown,, and J. A. Theriot. 2003. A gene-expression program reflecting the innate immune response of cultured intestinal epithelial cells to infection by Listeria monocytogenes. Genome Biol. 4: R2.
7. Begley, M.,, C. Hill,, and C. G. Gahan. 2003. Identification and disruption of btlA, a locus involved in bile tolerance and general stress resistance in Listeria monocytogenes. FEMS Microbiol. Lett. 218: 31 38.
8. Behari, J.,, and P. Youngman. 1998. Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect. Immun. 66: 3635 3642.
9. Bielecki, J.,, P. Youngman,, P. Connelly,, and D. A. Portnoy. 1990. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammlian cells. Nature 345: 175 176.
10. Bolivar, F.,, P. J. Rodriquez,, P. J. Greene,, M. C. Betlach,, H. L. Heyneker,, H. W. Boyer,, J. H. Crosa,, and S. Falkow. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2: 95 113.
11. Buchrieser, C. Unpublished data.
12. Buchrieser, C.,, C. Rusniok,, F. Kunst,, P. Cossart,, and P. Glaser. 2003. Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35: 207 213.
13. Calendar, R. Personal communication.
14. Camilli, A.,, H. Goldfine,, and D. A. Portnoy. 1991. Listeria monocytogenes mutants lacking phosphatidylinositolspecific phospholipase C are avirulent. J. Exp. Med. 173: 751 754.
15. Camilli, A.,, D. A. Portnoy,, and P. Youngman. 1990. Insertional mutagenesis of Listeria monocytogenes with a novel Tn 917 derivative that allows direct cloning of DNA flanking transposon insertions. J. Bacteriol. 172: 3738 3744.
16. Camilli, A.,, L. G. Tilney,, and D. A. Portnoy. 1993. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8: 143 157.
17. Chalfie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward,, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802 805.
18. Clewell, D. B.,, S. E. Flannagan,, Y. Ike,, J. M. Jones,, and C. Gawron-Burke. 1988. Sequence analysis of termini of conjugative transposon Tn 916. J. Bacteriol. 170: 3046 3052.
19. Cvitkovitch, D. G.,, J. A. Gutierrez,, J. Behari,, P. J. Youngman,, J. E. Wetz,, P. J. Crowley,, J. D. Hillman,, L. J. Brady,, and A. S. Bleiweis. 2000. Tn 917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182: 149 154.
20. Dancz, C. E.,, A. Haraga,, D. A. Portnoy,, and D. E. Higgins. 2002. Inducible control of virulence gene expression in Listeria monocytogenes: temporal requirement of listeriolysin O during intracellular infection. J. Bacteriol. 184: 5935 5945.
21. Denoya, C. D.,, D. H. Bechhofer,, and D. Dubnau. 1986. Translational autoregulation of ermC 23S rRNA methyltransferase expression in Bacillus subtilis. J. Bacteriol. 168: 1133 1141.
22. Dietrich, G.,, A. Bubert,, I. Gentschev,, Z. Sokolovic,, A. Simm,, A. Catic,, S. H. E. Kaufmann,, J. Hess,, A. A. Szalay,, and W. Goebel. 1998. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat. Biotechnol. 16: 181 185.
23. Doumith, M.,, C. Cazalet,, N. Simoes,, L. Frangeul,, C. Jacquet,, F. Kunst,, P. Martin,, P. Cossart,, P. Glaser,, and C. Buchrieser. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072 1083.
24. Drevets, D. A.,, T. A. Jelinek,, and N. E. Freitag. 2001. Listeria monocytogenes-infected phagocytes can initiate central nervous system infection in mice. Infect. Immun. 69: 1344 1350.
25. Evans, M. R.,, B. Swaminathan,, L. M. Graves,, E. Altermann,, T. R. Klaenhammer,, R. C. Fink,, S. Kernodle,, and S. Kathariou. 2004. Genetic markers unique to Listeria monocytogenes serotype 4b differentiate epidemic clone II (hot dog outbreak strains) from other lineages. Appl. Environ. Microbiol. 70: 2383 2390.
26. Fortinea, N.,, P. Trieu-Cuot,, O. Gaillot,, E. Pellegrini,, P. Berche,, and J. L. Gaillard. 2000. Optimization of green fluorescent protein expression vectors for in vitro and in vivo detection of Listeria monocytogenes. Res. Microbiol. 151: 353 360.
27. Frangeul, L.,, P. Glaser,, C. Rusniok,, C. Buchrieser,, E. Duchaud,, P. Dehoux,, and F. Kunst. 2004. CAAT-Box, Contigs-Assembly and Annotation Tool-Box for genome sequencing projects. Bioinformatics 20: 790 797.
28. Fraser, K. R.,, D. Sue,, M. Wiedmann,, K. Boor,, and C. P. O’Byrne. 2003. Role of σ B in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is σ B dependent. Appl. Environ. Microbiol. 69: 2015 2022.
29. Freitag, N. E., 2000. Genetic tools for use with Listeria monocytogenes, p. 488 498. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens, 1st ed. ASM Press, Washington, D.C..
30. Freitag, N. E.,, and K. E. Jacobs. 1999. Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea victoria. Infect. Immun. 67: 1844 1852.
31. Freitag, N. E.,, and D. A. Portnoy. 1994. Dual promoters of the Listeria monocytogenes prfA transcriptional activator appear essential in vitro but are redundant in vivo. Mol. Microbiol. 12: 845 853.
32. Freitag, N. E.,, P. Youngman,, and D. A. Portnoy. 1992. Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J. Bacteriol. 174: 1293 1298.
33. Gahan, C. G.,, J. O’Mahony,, and C. Hill. 2001. Characterization of the groESL operon in Listeria monocytogenes: utilization of two reporter systems ( gfp and hly) for evaluating in vivo expression. Infect. Immun. 69: 3924 3932.
34. Gardan, R.,, P. Cossart,, and J. Labadie. 2003. Identification of Listeria monocytogenes genes involved in salt and alkaline-pH tolerance. Appl. Environ. Microbiol. 69: 3137 3143.
35. Gawron-Burke, C.,, and D. B. Clewell. 1984. Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn 916 in Escherichia coli: strategy for targeting and cloning of genes from gram-positive bacteria. J. Bacteriol. 159: 214 221.
36. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. G. Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vazquez-Boland,, H. Voss,, J. Wehland,, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294: 849 852.
37. Gründling, A.,, L. S. Burrack,, H. G. A. Bouwer,, and D. E. Higgins. 2004. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl. Acad. Sci. USA 101: 12318 12323.
38. Gründling, A.,, M. D. Gonzalez,, and D. E. Higgins. 2003. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J. Bacteriol. 185: 6295 6307.
39. Gryczan, T. J.,, J. Hahn,, S. Contente,, and D. Dubnau. 1982. Replication and incompatibility properties of plasmid pE194 in Bacillus subtilis. J. Bacteriol. 152: 722 735.
40. Haas, S. A.,, M. Hild,, A. P. Wright,, T. Hain,, D. Talibi,, and M. Vingron. 2003. Genome-scale design of PCR primers and long oligomers for DNA microarrays. Nucleic Acids Res. 31: 5576 5581.
41. Hardy, J.,, K. P. Francis,, M. DeBoer,, P. Chu,, K. Gibbs,, and C. H. Contag. 2004. Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303: 851 853.
42. Herd, M.,, and C. Kocks. 2001. Gene fragments distinguishing an epidemic-associated strain from a virulent prototype strain of Listeria monocytogenes belong to a distinct functional subset of genes and partially cross-hybridize with other Listeria species. Infect. Immun. 69: 3972 3979.
43. Hodgson, D. Personal communication.
44. Hodgson, D. A. 2000. Generalized transduction of serotype 1/2 and serotype 4b strains of Listeria monocytogenes. Mol. Microbiol. 35: 312 323.
45. Horinouchi, S.,, and B. Weisblum. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150: 815 825.
46. Jefferson, R. A. 1989. The GUS reporter gene system. Nature 342: 837 838.
47. Jensen, E. R.,, R. Selvakumar,, H. Shen,, R. Ahmed,, F. O. Wettstein,, and J. F. Miller. 1997. Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J. Virol. 71: 8467 8474.
48. Jones, S.,, and D. A. Portnoy. 1994. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect. Immun. 62: 5608 5613.
49. Kaiser, A. D., 1984. Genetics of myxobacteria, p. 163 184. In E. Rosenberg (ed.), Myxobacteria: Development and Cell Interactions. Springer, New York, N.Y..
50. Kazmierczak, M. J.,, S. C. Mithoe,, K. J. Boor,, and M. Wiedmann. 2003. Listeria monocytogenes σ B regulates stress response and virulence functions. J. Bacteriol. 185: 5722 5734.
51. Klarsfeld, A.,, P. L. Goossens,, and P. Cossart. 1994. Five Listeria monocytogenes genes preferentially expressed in infected mammalian cells: plcA, purH, purD, pyrE and an arginine ABC transporter gene, arpJ. Mol. Microbiol. 13: 585 597.
52. Lauer, P.,, M. Y. Chow,, M. J. Loessner,, D. A. Portnoy,, and R. Calendar. 2002. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184: 4177 4186.
53. Li, G.,, and S. Kathariou. 2003. An improved cloning vector for construction of gene replacements in Listeria monocytogenes. Appl. Environ. Microbiol. 69: 3020 3023.
54. McCaffrey, R. L.,, P. Fawcett,, M. O’Riordan,, K. D. Lee,, E. A. Havell,, P. O. Brown,, and D. A. Portnoy. 2004. A specific gene expression program triggered by gram-positive bacteria in the cytosol. Proc. Natl. Acad. Sci. USA 101: 11386 11391.
55. Mengaud, J.,, S. Dramsi,, E. Gouin,, J. A. Vazquez-Boland,, G. Milon,, and P. Cossart. 1991. Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol. Microbiol. 5: 2273 2283.
56. Merino, D.,, H. Reglier-Poupet,, P. Berche,, and A. Charbit. 2002. A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Mol. Microbiol. 44: 877 887.
57. Michel, E.,, K. A. Reich,, R. Favier,, P. Berche,, and P. Cossart. 1990. Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol. Microbiol. 4: 2167 2178.
58. Milenbachs, A. A.,, D. P. Brown,, M. Moors,, and P. Youngman. 1997. Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol. Microbiol. 23: 1075 1085.
59. Milenbachs Lukowiak, A.,, K. J. Mueller,, N. E. Freitag,, and P. Youngman. 2004. Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways. Microbiology 150: 321 333.
60. Milohanic, E.,, P. Glaser,, J. Y. Coppee,, L. Frangeul,, Y. Vega,, J. A. Vazquez-Boland,, F. Kunst,, P. Cossart,, and C. Buchrieser. 2003. Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47: 1613 1625.
61. Moors, M. A.,, B. Levitt,, P. Youngman,, and D. A. Portnoy. 1999. Expression of listeriolysin O and ActA by intracellular and extracellular Listeria monocytogenes. Infect. Immun. 67: 131 139.
62. Nelson, K. E.,, D. E. Fouts,, E. F. Mongodin,, J. Ravel,, R. T. DeBoy,, J. F. Kolonay,, D. A. Rasko,, S. V. Angiuoli,, S. R. Gill,, I. T. Paulsen,, J. Peterson,, O. White,, W. C. Nelson,, W. Nierman,, M. J. Beanan,, L. M. Brinkac,, S. C. Daugherty,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, D. H. Haft,, J. Selengut,, S. Van Aken,, H. Khouri,, N. Fedorova,, H. Forberger,, B. Tran,, S. Kathariou,, L. D. Wonderling,, G. A. Uhlich,, D. O. Bayles,, J. B. Luchansky,, and C. M. Fraser. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32: 2386 2395.
63. Park, S. F.,, and G. S. A. B. Stewart. 1990. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94: 129 132.
64. Park, S. F.,, G. S. A. B. Stewart,, and R. G. Kroll. 1992. The use of bacterial luciferase for monitoring the environmental regulation of expression of genes encoding virulence factors in Listeria monocytogenes. J. Gen. Microbiol. 138: 2619 2627.
65. Perkins, J. B.,, and P. Youngman. 1983. Streptococcus plasmid pAMα1 is a composite of two separate replicons, one of which is closely related to Bacillus plasmid pBC16. J. Bacteriol. 155: 607 615.
66. Petit, M.-A.,, C. Bruand,, L. Janniere,, and S. D. Ehrlich. 1990. Tn 10-derived transposons active in Bacillus subtilis. J. Bacteriol. 172: 6736 6740.
67. Poyart, C.,, and P. Trieu-Cuot. 1997. A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to beta-galactosidase in gram-positive bacteria. FEMS Microbiol. Lett. 156: 193 198.
68. Quisel, J. D.,, W. F. Burkholder,, and A. D. Grossman. 2001. In vivo effects of sporulation kinases on mutant Spo0A proteins in Bacillus subtilis. J. Bacteriol. 183: 6573 6578.
69. Schaferkordt, S.,, and T. Chakraborty. 1995. Vector plasmid for insertional mutagenesis and directional cloning in Listeria spp. Biotechniques 19: 720 722, 724 725.
70. Scott, J. R.,, P. A. Kirchman,, and M. E. Caparon. 1988. An intermediate in transposition of the conjugative transposon Tn 916. Proc. Natl. Acad. Sci. USA 85: 4809 4813.
71. Sheehan, B.,, A. Klarsfeld,, T. Msadek,, and P. Cossart. 1995. Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J. Bacteriol. 177: 6469 6476.
72. Shen, A.,, and D. E. Higgins. Unpublished data.
73. Shen, H.,, J. F. Miller,, X. Fan,, D. Kolwyck,, R. Ahmed,, and J. T. Harty. 1998. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell 92: 535 545.
74. Shen, H.,, M. K. Slifka,, M. Matloubian,, E. R. Jensen,, R. Ahmed,, and J. F. Miller. 1995. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl. Acad. Sci. USA 92: 3987 3991.
75. Shetron-Rama, L. M.,, H. Marquis,, H. G. A. Bouwer,, and N. E. Freitag. 2002. Intracellular induction of Listeria monocytogenes actA expression. Infect. Immun. 70: 1087 1096.
76. Shetron-Rama, L. M.,, K. Mueller,, J. M. Bravo,, H. G. Bouwer,, S. S. Way,, and N. E. Freitag. 2003. Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol. Microbiol. 48: 1537 1551.
77. Smith, K.,, and P. Youngman. 1992. Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74: 705 711.
78. Sue, D.,, K. J. Boor,, and M. Wiedmann. 2003. σ B -dependent expression patterns of compatible solute transporter genes opuCA and lmo1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology 149: 3247 3256.
79. Sullivan, M. A.,, R. E. Yasbin,, and F. E. Young. 1984. New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29: 21 26.
80. Sun, A. N.,, A. Camilli,, and D. A. Portnoy. 1990. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect. Immun. 58: 3770 3778.
81. Trieu-Cuot, P.,, C. Carlier,, C. Poyart-Salmeron,, and P. Courvalin. 1991. Shuttle vectors containing a multiple cloning site and a lacZ alpha gene for conjugal transfer of DNA from Escherichia coli to gram-positive bacteria. Gene 102: 99 104.
82. Trieu-Cuot, P.,, E. Derlot,, and P. Courvalin. 1993. Enhanced conjugative transfer of plasmid DNA from Escherichia coli to Staphylococcus aureus and Listeria monocytogenes. FEMS Microbiol. Lett. 109: 19 24.
83. Villafane, R.,, D. H. Gechhofer,, C. S. Narayanan,, and D. Dubnau. 1987. Replication control genes of plasmid pE194. J. Bacteriol. 169: 4822 4829.
84. Vincente, M. F.,, J. C. Perez-Diaz,, and F. Baquero. 1987. A protoplast transformation system for Listeria sp. Plasmid 18: 89 92.
85. Williams, D. R.,, D. I. Young,, and M. Young. 1990. Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J. Gen. Microbiol. 136: 819 826.
86. Williams, J. R.,, C. Thayyullathil,, and N. E. Freitag. 2000. Sequence variations within PrfA DNA binding sites and effects on Listeria monocytogenes virulence gene expression. J. Bacteriol. 182: 837 841.
87. Wilson, R. L.,, A. R. Tvinnereim,, B. D. Jones,, and J. T. Harty. 2001. Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect. Immun. 69: 5016 5024.
88. Wirth, R.,, F. Y. An,, and D. B. Clewell. 1986. Highly efficient protoplast transformation system for Streptococcus faecalis and a new Escherichia coli-S. faecalis shuttle vector. J. Bacteriol. 165: 831 836.
89. Wonderling, L. D.,, B. J. Wilkinson,, and D. O. Bayles. 2004. The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl. Environ. Microbiol. 70: 1935 1943.
90. Wong, K. K.,, H. G. Bouwer,, and N. E. Freitag. 2004. Evidence implicating the 5′ untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell. Microbiol. 6: 155 166.
91. Wong, K. K. Y.,, and N. E. Freitag. 2004. A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J. Bacteriol. 186: 6265 6276.
92. Wuenscher, M. D.,, S. Kohler,, W. Goebel,, and T. Chakraborty. 1991. Gene disruption by plasmid integration in Listeria monocytogenes: insertional inactivation of the listeriolysin determinant lisA. Mol. Gen. Genet. 228: 177 182.
93. Yanish-Perron, C.,, J. Vierira,, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103 109.
94. Yansura, D. G.,, and D. J. Henner. 1984. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 81: 439 443.
95. Yildirim, S.,, W. Lin,, A. D. Hitchins,, L. A. Jaykus,, E. Altermann,, T. R. Klaenhammer,, and S. Kathariou. 2004. Epidemic clone I-specific genetic markers in strains of Listeria monocytogenes serotype 4b from foods. Appl. Environ. Microbiol. 70: 4158 4164.
96. Youngman, P. 1987. Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram-positive bacteria, p. 79-103. In K. Hardy (ed.), Plasmids: a Practical Approach. IRL Press, Oxford, United Kingdom.

Tables

Generic image for table
TABLE 1

Representative plasmid vectors

Presence of plasmid origin for replication function in gram-negative (gram−) or gram-positive (gram+) bacteria.

Presence or absence of origin of transfer, allowing plasmid conjugation.

Antibiotic resistance markers for drug selection in : Cm, chloramphenicol; Kn, kanamycin; Em, erythromycin; Sp, spectinomycin; Ble, bleomycin; Tet, tetracycline.

ts, temperature-sensitive plasmid origin of replication.

Citation: Higgins D, Buchrieser C, Freitag N. 2006. Genetic Tools for Use with Listeria monocytogenes, p 620-633. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch51

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error