Chapter 53 : Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in

Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap53-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap53-2.gif


It is recognized that grows in a broad variety of cell types in animal models and in cell culture systems. This chapter reviews the molecular mechanisms involved in host-cell invasion, intracellular growth, and cell-to-cell spread. The process of entry of into nonphagocytic cells has been examined by scanning and transmission electron microscopy. In the genome, 41 genes encoding LPXTG proteins are detected. Several lines of evidence indicate that internalin is sufficient for entry in cells expressing its receptor. Indeed, expression of , the gene encoding internalin, in and also in the more distantly related grampositive bacterium , confers invasiveness to these noninvasive species. Externally added InlB is also able to associate with and several other gram-positive bacteria. Several autolysins have been shown to contribute to infection, and it has been hypothesized that they could have functioned as primitive colonizing factors, allowing bacteria to interact with surfaces that express molecules analogous to their natural receptors. FbpA was identified through a signature-tagged mutagenesis screening designed to identify new virulence factors. A fusion molecule of the E-cadherin ecto-domain and of the a-catenin actin-binding site restores invasion, suggesting that exploits the same molecular scaffold as the one involved in adherens junctions function to induce its entry into target cells. Intracellular pathogens can be divided into those that reside within a host vacuole and those, like , that escape and grow directly in the host cytosol.

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53

Key Concept Ranking

Major Histocompatibility Complex Class I
Bacterial Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Model of the intracellular life cycle. Bacteria induce their internalization in a phagosome that is subsequently lysed; once in the host cell cytoplasm, proliferates and polymerizes the host cell actin (stippled regions) to propulse itself, invading neighboring cells and starting a new infectious cycle ( ). The main bacterial products implicated in each step are indicated.

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Scanning (A) and transmission (B and C) electron microscopy of different steps of the intracellular life cycle in the human epithelial Caco-2 cell line. (A and B) is internalized in host cells by a zipper phagocytosis mechanism, without triggering dramatic actin cytoskeleton rearrangements ( ). (C) Bacteria are internalized in a phagosome ( ) that is lysed after entry; cytoplasmic bacteria proliferate ( ) and polymerize host cell actin ( ) to move in the host cell cytoplasm; reaching the host cell plasma membrane induces the formation of protrusions ( ) that can invade neighboring cells ( ); bacteria are then located in a double membrane secondary vacuole ( ) that is lysed ( ), and the bacteria start a new infectious cycle ( ).

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Members of the internalin family. A total of 24 proteins have been recognized in the genome that possess LRRs and belong to the internalin family: 19 proteins present LPXTG motifs and are covalently linked to the bacterial cell wall (including InlA), 1 protein is loosely attached to the membrane through GW motifs (InlB), and 4 proteins do not present anchor motifs and are released as soluble proteins (including InlC) ( ).

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Model of internalization pathways in host cells. (A) InlA internalization pathway. The bacterial protein InlA binds E-cadherin located in lipid rafts, which in turns interacts with p120-, β-, and α-catenins. α-Catenin would link the whole complex to the actin cytoskeleton and to vezatin, which recruits the unconventional myosin VIIa, generating the contractile force required for internalization. (B) InlB internalization pathway. Soluble InlB can interact with gC1qr, but the signaling cascades triggered by this interaction are unknown; soluble InlB (stabilized by GAGs) or bacterial-associated InlB can interact with Met located in lipid rafts, inducing the recruitment of adaptor proteins (Cbl, Gab1, or Shc) and of class I PI 3-kinase. Conversion of PI( )P (PIP2) into PI( )P (PIP3) leads to translocation to the plasma membrane of an unknown factor that activates Rac; in turn, Rac indirectly activates LIM kinase, controlling a cofilin phosphocycle (that implicates an unknown phosphatase) that regulates actin polymerizationdepolymerization. Rac is also implicated in the activation of the actin nucleating Arp2/3 complex, probably through a signaling cascade that includes Wave.

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Fluorescence microscopy of Vero cells infected with wild-type (A) or ΔActA (B). Wild-type induces the formation of actin comet tails that propulse the bacteria in the host cell cytoplasm (A), while ΔActA proliferates in microcolonies that are unable to spread from the primary infected cell (B). DNA is labeled with DAPI (4′,6′-diamidino-2-phenylindole; blue), the bacterial cell wall is labeled with an anti- antibody (red), and actin is labeled with fluorescent phalloidin (green).

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Model of actin polymerization by in host cells. The bacterial protein ActA recruits the host cell molecule VASP, which in turn recruits profilin to the bacterial tail; actin monomers are captured by profilin and are transferred to the Arp2/3 complex, which nucleates the polymerization of host actin, leading to the formation of actin comet tails. A capping protein inhibits the polymerization of actin on barbed ends, cofilin promotes the depolymerization of actin from pointed ends, and α-actinin stabilizes actin polymers.

Citation: Pizarro-Cerdá J, Cossart P. 2006. Cell Biology of Invasion and Intracellular Growth by Listeria monocytogenes, p 646-656. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch53
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alvarez-Dominguez, C.,, J. A. Vazquez-Boland,, E. Carrasco- Marin,, P. Lopez-Mato,, and F. Leyva-Cobian. 1997. Host-cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65:7888.
2. Autret, N.,, I. Dubail,, P. Trieu-Cuot,, P. Berche,, and A. Charbit. 2001. Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect. Immun. 69:20542065.
3. Beauregard, K. E.,, K. Lee,, R. J. Collier,, and J. A. Swanson. 1997. pH-dependent perforation of macrophage phagosomes by listeriolysin O from L. monocytogenes . J. Exp. Med. 186:11591163.
4. Bergmann, B.,, D. Raffelsbauer,, M. Kuhn,, M. Goetz,, S. Hom,, and W. Goebel. 2002. InlA- but not InlB-mediated internalization of Listeria monocytogenes by nonphagocytic mammalian cells needs the support of other internalins. Mol. Microbiol. 43:557570.
5. Bierne, H.,, E. Gouin,, P. Roux,, P. Caroni,, H. L. Yin,, and P. Cossart. 2001. A role for cofilin and LIM kinase in Listeria- induced phagocytosis. J. Cell Biol. 155:101112.
6. Braun, L.,, S. Dramsi,, P. Dehoux,, H. Bierne,, G. Lindahl,, and P. Cossart. 1997. InlB: an invasion protein of L. monocytogenes with a novel type of surface association. Mol. Microbiol. 25:285294.
7. Braun, L.,, B. Ghebrehiwet,, and P. Cossart. 2000. gC1q- R/p32, a C1q-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes. EMBO J. 19:14581466.
8. Braun, L.,, H. Ohayon,, and P. Cossart. 1998. The InlB protein of L. monocytogenes is sufficient to promote entry into mammalian cells. Mol. Microbiol. 27:10771087.
9. Brundage, R. A.,, G. A. Smith,, A. Camilli,, J. A. Theriot,, and D. A. Portnoy. 1993. Expression and phosphorylation of the L. monocytogenes ActA protein in mammalian cells. Proc. Natl. Acad. Sci. USA 90:1189011894.
10. Bubert, A.,, M. Kuhn,, W. Goebel,, and S. Kohler. 1992. Structural and functional properties of the p60 proteins from different Listeria species. J. Bacteriol. 174:81668171.
11. Busch, D. H.,, I. M. Pilip,, S. Vijh,, and E. G. Pamer. 1998. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8:353362.
12. Cabanes, D.,, P. Dehoux,, O. Dussurget,, L. Frangeul,, and P. Cossart. 2002. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol. 10:238245.
13. Cabanes, D.,, O. Dussurget,, P. Dehoux,, and P. Cossart. 2004. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mol. Microbiol. 51:16011614.
14. Chico-Calero, I.,, M. Suárez,, B. González-Zorn,, M. Scortti,, J. Slaghuis,, W. Goebel,, and J. A. Vázquez-Boland. 2002. Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc. Natl. Acad. Sci. USA 99:431436.
15. Decatur, A. L.,, and D. A. Portnoy. 2000. A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992995.
16. de Chastellier, C.,, and P. Berche. 1994. Fate of Listeria monocytogenes in murine macrophages: evidence for simultaneous killing and survival of intracellular bacteria. Infect. Immun. 62:543553.
17. Domann, E.,, S. Zechel,, A. Lingnau,, T. Hain,, A. Darji,, T. Nichterlein,, J. Wehland,, and T. Chakraborty. 1997. Identification and characterization of a novel PrfA-regulated gene in Listeria monocytogenes whose product, IrpA, is highly homologous to internalin proteins, which contain leucine-rich repeats. Infect. Immun. 65:101109.
18. Domann, E.,, J. Wehland,, M. Rohde,, S. Pistor,, M. Hartl,, W. Goebel,, M. Leimeister-Wächter,, M. Wuenscher,, and T. Chakraborty. 1992. A novel bacterial virulence gene in L. monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11:19811990.
19. Dramsi, S.,, I. Biswas,, E. Maguin,, L. Braun,, P. Mastroeni,, and P. Cossart. 1995. Entry of L. monocytogenes into hepatocytes requires expression of InlB, a surface protein of the internalin multigene family. Mol. Microbiol. 16:251261.
20. Dramsi, S.,, F. Bourdichon,, D. Cabanes,, M. Lecuit,, H. Fsihi,, and P. Cossart. 2004. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol. Microbiol.53:639649.
21. Dramsi, S.,, and P. Cossart. 2003. Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect. Immun. 71:36143618.
22. Dramsi, S.,, P. Dehoux,, M. Lebrun,, P. Goossens,, and P. Cossart. 1997. Identification of four new members of the internalin multigene family in Listeria monocytogenes EGD. Infect. Immun. 65:16151625.
23. Dramsi, S.,, C. Kocks,, C. Forestier,, and P. Cossart. 1993. Internalin-mediated invasion of epithelial cells by L. monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator, prfA. Mol. Microbiol. 9:931941.
24. Engelbrecht, F.,, S.-K. Chun,, C. Ochs,, J. Hess,, F. Lottspeich,, W. Goebel,, and Z. Sokolovic. 1996. A new PrfAregulated gene of L. monocytogenes encoding a small, secreted protein which belongs to the family of internalins. Mol. Microbiol. 21:823837.
25. Gaillard, J. L.,, P. Berche,, C. Frehel,, E. Gouin,, and P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:11271141.
26. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K. D. Entian,, H. Fsihi,, F. Garcia-del Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L. M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J. C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J. A. Vazquez-Boland,, H. Voss,, J. Wehland,, and P. Cossart P. 2001. Comparative genomics of Listeria species. Science 294:849852.
27. Glomski, I. J.,, A. L. Decatur,, and D. A. Portnoy. 2003. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect. Immun. 71:67546765.
28. Goldfine, H.,, and S. J. Wadsworth. 2002. Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes Infect. 4:13351343.
29. Ireton, K.,, B. Payrastre,, H. Chap,, W. Ogawa,, H. Sakaue,, M. Kasuga,, and P. Cossart. 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780782.
30. Ireton, K.,, B. Payrastre,, and P. Cossart. 1999. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274:1702517032.
31. Isberg, R. R.,, and G. Tran Van Nhieu. 1994. Two mammalian cell internalization strategies used by pathogenic bacteria. Annu. Rev. Genet. 27:395422.
32. Jacquet, C.,, M. Doumith,, J. I. Gordon,, P. M. Martin,, P. Cossart,, and M. Lecuit. 2004. A molecular marker for evaluating the pathogenic potential of foodborne Listeria monocytogenes. J. Infect. Dis. 189:20942100.
33. Jonquieres, R.,, H. Bierne,, J. Mengaud,, and P. Cossart. 1998. The inlA of Listeria monocytogenes LO28 harbors a nonsense mutation resulting in release of internalin. Infect. Immun. 66:34203422.
34. Jonquieres, R.,, H. Bierne,, F. Fiedler,, P. Gounon,, and P. Cossart. 1999. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol. Microbiol. 34:902914.
35. Jonquieres, R.,, J. Pizarro-Cerda,, and P. Cossart. 2001. Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol. Microbiol. 42:955965.
36. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon,, and P. Cossart. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521531.
37. Kuhn, M.,, and W. Goebel. 1989. Identification of an extracellular protein of L. monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect. Immun. 57:5561.
38. Lasa, I.,, V. David,, E. Gouin,, J.-B. Marchand,, and P. Cossart. 1995. The amino-terminal part of ActA is critical for the actin-based motility of L. monocytogenes; the central proline-rich region acts as a stimulator. Mol. Microbiol. 18:425436.
39. Lebrun, M.,, J. Mengaud,, H. Ohayon,, F. Nato,, and P. Cossart. 1996. Internalin must be on the bacterial surface to mediate entry of Listeria monocytogenes into epithelial cells. Infect. Immun. 57:5561.
40. Lecuit, M.,, S. Dramsi,, C. Gottardi,, M. Fedor-Chaiken,, B. Gumbiner,, and P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18:39563963.
41. Lecuit, M.,, R. Hurme,, J. Pizarro-Cerdá,, H. Ohayon,, B. Geiger,, and P. Cossart. 2000. A role for alpha- and beta-catenins in bacterial uptake. Proc. Natl. Acad. Sci. USA 97:1000810013.
42. Lecuit, M.,, D. M. Nelson,, S. D. Smith,, H. Khun,, M. Huerre,, M. C. Vacher-Lavenu,, J. I. Gordon,, and P. Cossart. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: role of internalin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA 101:61526157.
43. Lecuit, M.,, H. Ohayon,, L. Braun,, J. Megaud,, and P. Cossart. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65:53095319.
44. Lecuit, M.,, S. Vandormael-Pournin,, J. Lefort,, M. Huerre,, P. Gounon,, C. Dupuis,, C. Babinet,, and P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:17221725.
45. Lenz, L. L.,, S. Mohammadi,, A. Geissler,, and D. A. Portnoy. 2003. SecA2-dependent secretion of autolytic enzymes promotes Listeria monocytogenes pathogenesis. Proc. Natl. Acad. Sci. USA 100:1243212437.
46. Lety, M. A.,, C. Frehel,, I. Dubail,, J. L. Beretti,, S. Kayal,, P. Berche,, and A. Charbit. 2001. Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Mol. Microbiol. 39:11241139.
47. Mackaness, G. B. 1962. Cellular resistance to infection. J. Exp. Med. 116:381406.
48. Marquis, H.,, V. Doshi,, and D. A. Portnoy. 1995. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of L. monocytogenes from a primary vacuole in human epithelial cells. Infect. Immun. 63:45314534.
49. Marino, M.,, M. Banerjee,, R. Jonquieres,, P. Cossart,, and P. Ghosh. 2002. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J. 21:56235634.
50. Marino, M.,, L. Braun,, P. Cossart,, and P. Ghosh. 1999. Structure of the lnlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol. Cell 4:10631072.
51. McLaughlan, A. M.,, and S. J. Foster. 1998. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology 144:13591367.
52. Mengaud, J.,, M. Lecuit,, M. Lebrun,, F. Nato,, J.-C. Mazie,, and P. Cossart. 1996. Antibodies to the leucinerich repeat region of internalin block entry of Listeria monocytogenes into cells expressing E-cadherin. Infect. Immun. 64:54305433.
53. Mengaud, J.,, H. Ohayon,, P. Gounon,, R. M. Mege,, and P. Cossart. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923932.
54. Milohanic, E.,, R. Jonquieres,, P. Cossart,, P. Berche,, J. L. Gaillard. 2001. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol. Microbiol. 39:12121224.
55. Milohanic, E.,, R. Jonquieres,, P. Glaser,, P. Dehoux,, C. Jacquet,, P. Berche,, P. Cossart,, and J. L. Gaillard. 2004. Sequence and binding activity of the autolysinadhesin Ami from epidemic Listeria monocytogenes 4b. Infect. Immun. 72:44014409.
56. Milohanic, E.,, B. Pron,, P. Berche,, J. L. Gaillard, et al. 2000. Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. Microbiology 146:731739.
57. Mounier, J.,, A. Ryter,, M. Coquis-Rondon,, and P. J. Sansonetti. 1990. Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect. Immun. 58:10481058.
58. Müller, S.,, T. Hain,, P. Pashalidis,, A. Lignau,, E. Domann,, T. Chakraborty,, and J. Wehland. 1998. Purification of the inlB gene product of Listeria monocytogenes and demonstration of its biological activity. Infect. Immun. 66:31283133.
59. Niebuhr, K.,, F. Ebel,, R. Frank,, M. Reinhard,, E. Domann,, U. D. Carl,, U. Walter,, F. B. Gertler,, J. Wehland,, and T. Chakraborty. 1997. A novel proline-rich motif present in ActA of L. monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. EMBO J. 16:54335444.
60. Pilgrim, S.,, A. Kolb-Maurer,, I. Gentschev,, W. Goebel,, and M. Kuhn. 2003. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect. Immun. 71:34733484.
61. Pistor, S.,, T. Chakraborty,, K. Niebuhr,, E. Domann,, and J. Wehland. 1994. The ActA protein of L. monocytogenes acts as a nucleator inducing reorganization of the actin cytoskeleton. EMBO J. 13:758763.
62. Portnoy, D. A.,, P. S. Jacks,, and D. J. Hinrichs. 1988. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J. Exp. Med. 167:14591471.
63. Portnoy, D. A.,, R. D. Schreiber,, P. Connelly,, and L. G. Tilney. 1989. Gamma interferon limits access of L. monocytogenes to the macrophage cytoplasm. J. Exp. Med. 170:21412146.
64. Raffelsbauer, D.,, A. Bubert,, F. Engelbrecht,, J. Scheinpflug,, A. Simm,, J. Hess,, S. H. Kaufmann,, and W. Goebel. 1998. The gene cluster inlC2DE of Listeria monocytogenes containsadditional new internalin genes and is important for virulence in mice. Mol. Gen. Genet. 260:144158.
65. Robbins, J. R.,, A. I. Barth,, H. Marquis,, E. L. de Hostos,, W. J. Nelson,, and J. A. Theriot. 1999. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146:13331350.
66. Sanger, J. M.,, J. W. Sanger,, and F. S. Southwick. 1992. Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes. Infect. Immun. 60:36093619.
67. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103106.
68. Schubert, W. D.,, G. Gobel,, M. Diepholz,, A. Darji,, D. Kloer,, T. Hain,, T. Chakraborty,, J. Wehland,, E. Domann,, and D. W. Heinz. 2001. Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. J. Mol. Biol. 312:783794.
69. Schubert, W. D.,, C. Urbanke,, T. Ziehm,, V. Beier,, M. P. Machner,, E. Domann,, J. Wehland,, T. Chakraborty,, and D. W. Heinz. 2002. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111:825836.
70. Seveau, S.,, H. Bierne,, S. Giroux,, M. C. Prevost,, and P. Cossart. 2004. Role of lipid rafts in E-cadherin- and HGF-R/Met-mediated entry of Listeria monocytogenes into host cells. J. Cell Biol. 166:743753.
71. Shen, Y.,, M. Naujokas,, M. Park,, and K. Ireton. 2000. InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501510.
72. Smith, G. A.,, H. Marquis,, S. Jones,, N. C. Johnston,, D. A. Portnoy,, and H. Goldfine. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63:42314237.
73. Smith, G. A.,, J. A. Theriot,, and D. A. Portnoy. 1996. The tandem repeat domain in the L. monocytogenes ActA protein controls the rate of actin-based motility, the percentage of moving bacteria, and the localization of vasodilator- stimulated phosphoprotein and profilin. J. Cell Biol. 135:647660.
74. Sousa, S.,, D. Cabanes,, A. El-Amraoui,, C. Petit,, M. Lecuit,, and P. Cossart. 2004. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells. J. Cell Sci. 117:21212130.
75. Suarez, M.,, B. Gonzalez-Zorn,, Y. Vega,, I. Chico-Calero,, J. A. Vazquez-Boland. 2001. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell. Microbiol. 3:853864.
76. Theriot, J. A.,, T. J. Mitchison,, L. G. Tilney,, and D. A. Portnoy. 1992. The rate of actin-based motility of intracellular L. monocytogenes equals the rate of actin polymerization. Nature 357:257260.
77. Tilney, L. G.,, and D. A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, L. monocytogenes. J. Cell Biol. 109:15971608.
78. Welch, M. D.,, J. Rosenblatt,, J. Skoble,, D. A. Portnoy,, and T. J. Mitchison. 1998. Interaction of human Arp2/3 complex and the L. monocytogenes ActA protein in actin filament nucleation. Science 281:105108.
79. Wuenscher, M.,, S. Kohler,, A. Bubert,, U. Gerike,, and W. Goebel. 1993. The iap gene of Listeria monocytogenes is essential for cell viability and its gene product, p60, has bacteriolytic activity. J. Bacteriol. 175:34913501.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error