1887

Chapter 55 : Clostridial Genetics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Clostridial Genetics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap55-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap55-2.gif

Abstract:

This chapter focuses on the genetics and genomics of the pathogenic clostridia, dealing exclusively with the major clostridial pathogens , , , and . There are seven distinct toxin types of , the causative agent of both human and animal botulism. These types are distinguished by their ability to produce antigenically distinct botulinum neurotoxins (BoNTs). Phylogenetically, these isolates represent at least three quite distinct strains, which in any other genus would be classified as separate species. The complete genome sequence of strain E88, which is a variant of the vaccine strain Massachusetts, has been determined. The study of erythromycin or macrolide-lincosamide-strep-togramin B (MLS) resistance in has predominantly focused on the Erm(B) determinant. Many different types of plasmids have been found in , including plasmids that encode antibiotic resistance, bacteriocin production and immunity, and virulence factors or toxins. Importantly, the sequenced toxigenic strain 630 has been shown to lack restriction endonucleases, despite the presence of five methylase genes, thereby making feasible the genetic analysis of virulence factors in this strain. Unfortunately, the analysis of this strain is complicated by the fact that it is resistant to both erythromycin and tetracycline, which are commonly used as selectable makers in clostridial genetics.

Citation: Lyras D, Rood J. 2006. Clostridial Genetics, p 672-687. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch55

Key Concept Ranking

Mobile Genetic Elements
0.44454885
Two-Component Signal Transduction Systems
0.40730557
0.44454885
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic relationships of the pathogenic clostridia. The scale bar indicates 10 base changes per 100 nucleotides. (Reproduced from Stackebrandt and Rainey [ ] with the kind permission of the authors and Academic Press.)

Citation: Lyras D, Rood J. 2006. Clostridial Genetics, p 672-687. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch55
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Comparison of the genetic organization of the (B) gene regions. Regions of nucleotide sequence similarity are indicated by the same shading. The deletions in the pAMβ1 DR1-like sequences are indicated by the designation ΔDR. The filled arrows indicate the individual ORFs and their direction of transcription. The approximate locations of the palindromic sequences ( and ) but not their sizes are indicated by the boldface lines below the filled boxes. Leader peptide sequences are indicated by filled triangles. Modified from Lyras and Rood ( ). (B) Genetic organization of Tn. The ORFs and their direction of transcription are represented by blocked arrows. The region encompassed by Tn is represented by the cross-hatched box and is further indicated by the scale below the diagram. Regions encompassing DR sequences are indicated by black boxes. The target site in the recipient is also shown, as is the location of each of the ends of the element and the target sequence. (Adapted from Farrow et al. [ ].)

Citation: Lyras D, Rood J. 2006. Clostridial Genetics, p 672-687. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch55
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Excision and insertion model of Tn. Tn encodes six genes, as shown by the arrows, and is flanked by directly repeated GA dinucleotides. The TnpX-mediated excision of Tn leads to the formation of the circular form of the transposon, which carries one of the dinucleotides at the joint, and a deletion plasmid, in which one dinucleotide remains at the deletion site. Note the location of the components of the promoter. (Modified from Lyras and Rood [ ].)

Citation: Lyras D, Rood J. 2006. Clostridial Genetics, p 672-687. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch55
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Genetic organization of the putative enterotoxin transposon Tn. The organization of the chromosomal gene region is shown. ORFs are indicated by the arrows. The insertion elements are shown by the gray boxes. The scale is shown in kilobases. (Modified from Rood [ ].)

Citation: Lyras D, Rood J. 2006. Clostridial Genetics, p 672-687. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch55
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap55
1. Abraham, L. J.,, and J. I. Rood. 1987. Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens. J. Bacteriol. 169: 1579 1584.
2. Ackermann, G.,, A. Degner,, S. H. Cohen,, J. Silver, Jr., and A. C. Rodloff. 2003. Prevalence and association of macrolide-lincosamide-streptogramin B (MLS B) resistance with resistance to moxifloxacin in Clostridium difficile. J. Antimicrob. Chemother. 51: 599 603.
3. Ackermann, G.,, Y. J. Tang,, J. P. Henderson,, A. C. Rodloff,, J. Silver, Jr., and S. H. Cohen. 2001. Electroporation of DNA sequences from the pathogenicity locus (PaLoc) of toxigenic Clostridium difficile into a nontoxigenic strain. Mol. Cell. Probes 15: 301 306.
4. Adams, V.,, I. S. Lucet,, D. Lyras,, and J. I. Rood. 2005. DNA binding properties of TnpX indicate that different synapses are formed in the excision and integration of the Tn4451 family. Mol. Microbiol. 53: 1195 1207.
5. Bannam, T. L.,, P. K. Crellin,, and J. I. Rood. 1995. Molecular genetics of the chloramphenicol-resistance transposon Tn4451 from Clostridium perfringens:the TnpX site-specific recombinase excises a circular transposon molecule. Mol. Microbiol. 16: 535 551.
6. Bannam, T. L.,, and J. I. Rood. 1999. Identification of structural and functional domains of the tetracycline efflux protein TetA(P) from Clostridium perfringens. Microbiology 145: 2947 2955.
7. Bannam, T. L.,, P. A. Johanesen,, C. L. Salvado,, S. J. Pidot,, K. A. Farrow,, and J. I. Rood. 2004. The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology 150: 127 134.
8. Berryman, D. I.,, and J. I. Rood. 1995. The closely related ermB-ermAM genes from Clostridium perfringens, Enterococcus faecalis (pAMβ1), and Streptococcus agalactiae (pIP501) are flanked by variants of a directly repeated sequence. Antimicrob. Agents Chemother. 39: 1830 1834.
9. Bradshaw, M.,, M. Goodnough,, and E. Johnson. 1998. Conjugative transfer of the E. coli-C. perfringens shuttle vector pJIR1457 to Clostridium botulinum type A strains. Plasmid 40: 233 237.
10. Bruggeman, H.,, S. Baumer,, W. F. Fricke,, A. Wiezer,, H. Liesegang,, I. Decker,, C. Herzberg,, R. Martinez-Arias,, R. Merkl,, A. Henne,, and G. Gottschalk. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100: 1316 1321.
11. Brynestad, S.,, and P. E. Granum. 1999. Evidence that Tn5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol. Lett. 170: 281 286.
12. Brynestad, S.,, B. Synstad,, and P. E. Granum. 1997. The Clostridium perfringens entertotoxin gene is on a transposable genetic element in type A human food poisoning strains. Microbiology 143: 2109 2115.
13. Brynestad, S.,, M. R. Sarker,, B. A. McClane,, P. E. Granum,, and J. I. Rood. 2001. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect. Immun. 69: 3483 3487.
14. Bullifent, H. L.,, A. Moir,, and R. W. Titball. 1995. The construction of a reporter system and use for the investigation of Clostridium perfringens gene expression. FEMS Microbiol. Lett. 131: 99 105.
15. Collie, R. E.,, and B. A. McClane. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J. Clin. Microbiol. 36: 30 36.
16. Collins, M. D.,, P. A. Lawson,, A. Willems,, J. J. Cordoba,, J. Fernandez-Garayzabal,, P. Garcia,, J. Cai,, H. Hippe,, and J. A. Farrow. 1994. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int. J. Syst. Bacteriol. 44: 812 826.
17. Cornillot, E.,, B. Saint-Joanis,, G. Daube,, S.-I. Katayama,, P. E. Granum,, B. Canard,, and S. T. Cole. 1995. The enterotoxin gene ( cpe) of Clostridium perfringens can be chromosomal or plasmid-borne. Mol. Microbiol. 15: 639 647.
18. Crellin, P. K.,, and J. I. Rood. 1997. The resolvase/ invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J. Bacteriol. 179: 5148 5156.
19. Crellin, P. K.,, and J. I. Rood. 1998. Tn4451 from Clostridium perfringens is a mobilizable transposon that encodes the functional Mob protein, TnpZ. Mol. Microbiol. 27: 631 642.
20. Dupuy, B.,, G. Daube,, M. R. Popoff,, and S. T. Cole. 1997. Clostridium perfringens urease genes are plasmid borne. Infect. Immun. 65: 2313 2320.
21. Farrow, K. A.,, D. Lyras,, and J. I. Rood. 2000. The macrolide-lincosamide-streptogramin B resistance determinant from Clostridium difficile 630 contains two erm(B) genes. Antimicrob. Agents Chemother. 44: 411 413.
22. Farrow, K. A.,, D. Lyras,, and J. I. Rood. 2001. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. Microbiology 147: 2717 2728.
23. Farrow, K. A.,, D. Lyras,, G. Polekhina,, K. Koutsis,, M. W. Parker,, and J. I. Rood. 2002. Identification of essential residues in the Erm(B) rRNA methyltransferase of Clostridium perfringens. Antimicrob. Agents Chemother. 46: 1253 1261.
24. Galimand, M.,, G. Gerbaud,, M. Guibourdenche,, J.-Y. Riou,, and P. Courvalin. 1998. High-level chloramphenicol resistance in Neisseria meningitidis. N. Engl. J. Med. 339: 868 874.
25. Garnier, T.,, and S. T. Cole. 1988. Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens. Plasmid 19: 134 150.
26. Gibert, M.,, C. Jolivet-Renaud,, and M. R. Popoff. 1997. Beta2 toxin, a novel toxin produced by Clostridium perfringens. Gene 203: 65 73.
27. Haraldsen, J. D.,, and A. L. Sonenshein. 2003. Efficient sporulation in Clostridium difficile requires disruption of the σ K gene. Mol. Microbiol. 48: 811 821.
28. Hauser, D.,, M. Gibert,, P. Boquet,, and M. R. Popoff. 1992. Plasmid localization of a type E botulinal neurotoxin gene homologue in toxigenic Clostridium butyricum strains, and absence of this gene in non-toxigenic C. butyricum strains. FEMS Microbiol. Lett. 99: 251 256.
29. Hauser, D.,, M. Gibert,, M. W. Eklund,, P. Boquet,, and M. R. Popoff. 1993. Comparative analysis of C3 and botulinal neurotoxin genes and their environment in Clostridium botulinum types C and D. J. Bacteriol. 175: 7260 7268.
30. Henderson, I.,, T. Davis,, M. Elmore,, and N. Minton,. 1997. The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani, p. 261 294. In J. Rood,, B. McClane,, J. Songer,, and R. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
31. Herbert, M.,, T. A. O’Keeffe,, D. Purdy,, M. Elmore,, and N. P. Minton. 2003. Gene transfer into Clostridium difficile CD630 and characterisation of its methylase genes. FEMS Microbiol. Lett. 229: 103 110.
32. Johanesen, P. A.,, D. Lyras,, and J. I. Rood. 2001. Induction of pCW3-encoded tetracycline resistance in Clostridium perfringens involves a host-encoded factor. Plasmid 46: 229 232.
33. Johanesen, P. A.,, D. Lyras,, T. L. Bannam,, and J. I. Rood. 2001. Transcriptional analysis of the tet(P) operon from Clostridium perfringens. J. Bacteriol. 183: 7110 7119.
34. Johnson, E., 1997. Extrachromosomal virulence determinants in the clostridia, p. 35 48. In J. Rood,, B. McClane,, J. Songer,, and R. Titball (ed.), The Clostridia:Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
35. Johnson, E.,, W. J. Lin,, Y. Zhou,, and M. Bradshaw. 1997. Characterization of neurotoxin mutants in Clostridium botulinum type A. Clin. Infect. Dis. 25(Suppl. 2): S168 S170.
36. Johnson, E. A.,, and M. Bradshaw. 2001. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon 39: 1703 1722.
37. Johnson, J. L.,, and B. S. Francis. 1975. Taxonomy of the clostridia: ribosomal acid homologies among the species. J. Gen. Microbiol. 88: 229 244.
38. Katayama, S.,, B. Dupuy,, G. Daube,, B. China,, and S. T. Cole. 1996. Genome mapping of Clostridium perfringens strains with I- CeuI shows many virulence genes to be plasmid-borne. Mol. Gen. Genet. 251: 720 726.
39. Kennan, R. M.,, L. M. McMurry,, S. B. Levy,, and J. I. Rood. 1997. Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux. J. Bacteriol. 179: 7011 7015.
40. Lin, W.-J.,, and E. A. Johnson. 1995. Genome analysis of Clostridium botulinum type A by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 61: 4441 4447.
41. Liyanage, H.,, S. Kashket,, M. Young,, and E. R. Kashket. 2001. Clostridium beijerinckii and Clostridium difficile detoxify methylglyoxal by a novel mechanism involving glycerol dehydrogenase. Appl. Environ. Microbiol. 67: 2004 2010.
42. Lucet, I. S.,, F. E. Tynan,, V. Adams,, J. Rossjohn,, D. Lyras,, and J. I. Rood. 2004. Identification of the structural and functional domains of the large serine recombinase TnpX from Clostridium perfringens. J. Biol. Chem. 280: 2503 2511.
43. Lyras, D.,, and J. I. Rood. 1996. Genetic organization and distribution of tetracycline resistance determinants in Clostridium perfringens. Antimicrob. Agents Chemother. 40: 2500 2504.
44. Lyras, D.,, and J. I. Rood,. 1997. Transposable genetic elements and antibiotic resistance determinants from Clostridium perfringens and Clostridium difficile, p. 73 92. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
45. Lyras, D.,, and J. Rood. 1998. Conjugative transfer of RP4- oriT shuttle vectors from Escherichia coli to Clostridium perfringens. Plasmid 39: 160 164.
46. Lyras, D.,, C. Storie,, A. S. Huggins,, P. K. Crellin,, T. L. Bannam,, and J. I. Rood. 1998. Chloramphenicol resistance in Clostridium difficile is encoded on Tn 4453 transposons that are closely related to Tn4451 from Clostridium perfringens. Antimicrob. Agents Chemother. 42: 1563 1567.
47.. Lyras, D.,, and J. I. Rood. 2000. Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol. Microbiol. 38: 588 601.
48. Lyras, D.,, and J. I. Rood,. 2005. Transposable genetic elements of the clostridia, p. 633 645. In P. Durre (ed.), Handbook of the Clostridia. CRC Press, Boca Raton, Fla..
49. Lyras, D.,, V. Adams,, I. Lucet,, and J. I. Rood. 2004. The large resolvase TnpX is the only transposon-encoded protein required for transposition of the Tn4451/3 family of integrative mobilizable elements. Mol. Microbiol. 51: 1787 1800.
50. Mani, N.,, and B. Dupuy. 2001. Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc. Natl. Acad. Sci. USA 98: 5844 5849.
51. Mani, N.,, D. Lyras,, L. Barroso,, P. Howarth,, T. Wilkins,, J. I. Rood,, A. L. Sonenshein,, and B. Dupuy. 2002. Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expresssion. J. Bacteriol. 184: 5971 5978.
52. Marvaud, J.,, M. Gibert,, K. Inoue,, Y. Fujinaga,, K. Oguma,, and M. Popoff. 1998. botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A. Mol. Microbiol. 29: 1009 10018.
53. Marvaud, J.-C.,, U. Eisel,, T. Binz,, H. Niemann,, and M. R. Popoff. 1998. TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to BotR. Infect. Immun. 66: 5698 5702.
54. Matsushita, C.,, O. Matsushita,, M. Koyama,, and A. Okabe. 1994. A Clostridium perfringens vector for the selection of promoters. Plasmid 31: 317 319.
55. Miyamoto, K.,, G. Chakrabarti,, Y. Morino,, and B. A. McClane. 2002. Organization of the plasmid cpe locus in Clostridium perfringens type A isolates. Infect. Immun. 70: 4261 4272.
56. Mullany, P.,, M. Pallen,, M. Wilks,, J. Stephen,, and S. Tabaqchali. 1996. A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174: 145 150.
57. Mullany, P.,, M. Wilks,, L. Puckey,, and S. Tabaqchali. 1994. Gene cloning in Clostridium difficile using Tn 916 as a shuttle conjugative transposon. Plasmid 31: 320 323.
58. Mullany, P.,, M. Wilks,, and S. Tabaqchali. 1995. Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon, Tn 5398. J. Antimicrob. Chemother. 35: 305 315.
59. Mullany, P.,, A. P. Roberts,, and H. Wang. 2002. Mechanism of integration and excision in conjugative transposons. Cell. Mol. Life Sci. 59: 2017 2022.
59a.. Norwood, D. A., Jr.,, and J. A. Sands. 1997. Physical map of the Clostridium difficile chromosome. Gene 201: 159-– 168.
60. Ohtani, K.,, H. I. Kawsar,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol. Lett. 222: 137 141.
61. Phillips-Jones, M. K. 1993. Bioluminescence ( lux) expression in the anaerobe Clostridium perfringens. FEMS Microbiol. Lett. 106: 265 270.
62. Purdy, D.,, T. A. T. O’Keeffe,, M. Elmore,, M. Herbert,, A. McLeod,, M. Bokori-Brown,, A. Ostrowski,, and N. P. Minton. 2002. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol. Microbiol. 46: 439 452.
63. Raffestin, S.,, B. Dupuy,, J. C. Marvaud,, and M. R. Popoff. 2005. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol. 55: 235 249.
64. Roberts, A. P.,, P. A. Johanesen,, D. Lyras,, P. Mullany,, and J. I. Rood. 2001. Comparison of Tn5397 from Clostridium difficile, Tn916 from Enterococcus faecalis and the CW459 tet(M) element from Clostridium perfringens shows that they have similar conjugation regions but different insertion and excision modules. Microbiology 147: 1243 1251.
65. Roberts, A. P.,, V. Braun,, C. von Eichel-Streiber,, and P. Mullany. 2001. Demonstration that the group II intron from the clostridial conjugative transposon Tn5397 undergoes splicing in vivo. J. Bacteriol. 183: 1296 1299.
66. Roberts, A. P.,, J. Pratten,, M. Wilson,, and P. Mullany. 1999. Transfer of a conjugative transposon, Tn5397, in a model oral biofilm. FEMS Microbiol. Lett. 177: 63 66.
67. Rood, J. I., 1997. Genetic analysis in C. perfringens, p. 65-– 72. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
68. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52: 333 360.
69. Rood, J. I.,, and S. T. Cole. 1991. Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol. Rev. 55: 621 648.
70. Rood, J. I., 2004. Virulence plasmids of spore-forming bacteria, p. 413 422. In B. E. Funnell, and G. J. Phillips (ed.), The Biology of Plasmids. ASM Press, Washington, D.C..
71. Sarker, M. R.,, R. P. Shivers,, S. G. Sparks,, V. K. Juneja,, and B. A. McClane. 2000. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl. Environ. Microbiol. 66: 3234 3240.
72. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara,, and H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 99: 996 1001.
73. Shultz, T. R.,, J. W. Tapsall,, P. A. White,, C. S. Ryan,, D. Lyras,, J. I. Rood,, E. Binotto,, and C. J. Richardson. 2003. Chloramphenicol-resistant Neisseria meningitidis containing catP isolated in Australia. J. Antimicrob. Chemother. 52: 856 859.
74. Sloan, J.,, L. M. McMurry,, D. Lyras,, S. B. Levy,, and J. I. Rood. 1994. The Clostridium perfringens TetP determinant comprises two overlapping genes: tetA(P) which mediates active tetracycline efflux and tetB(P) which is related to the ribosomal protection family of tetracycline resistance determinants. Mol. Microbiol. 11: 403 415.
75. Sparks, S. G.,, R. J. Carmen,, M. R. Sarker,, and B. A. McClane. 2001. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibioticassociated diarrhea and food poisoning in North America. J. Clin. Microbiol. 39: 883 888.
76. Spigaglia, P.,, and P. Mastrantonio. 2002. Analysis of macrolide-lincosamide-streptogramin B (MLSB) resistance determinant in strains of Clostridium difficile. Microb. Drug Resist. 8: 45 53.
77. Spigaglia, P.,, and P. Mastrantonio. 2004. Comparative analysis of Clostridium difficile clinical isolates belonging to different genetic lineages and time periods. J. Med. Microbiol. 53: 1129 1136.
78. Stackebrandt, E.,, and F. A. Rainey,. 1997. Phylogenetic relationships, p. 3-– 19. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
79. Takamizawa, A.,, S. Miyata,, O. Matsushita,, M. Kaji,, Y. Taniguchi,, E. Tamai,, S. Shimamoto,, and A. Okabe. 2004. High-level expression of clostridial sialidase using a ferredoxin gene promoter-based plasmid. Protein Expr. Purif. 36: 70 75.
80. Tanaka, D.,, J. Isobe,, S. Hosorogi,, K. Kimata,, M. Shimizu,, K. Katori,, Y. Gyobu,, Y. Nagai,, T. Yamagishi,, T. Karasawa,, and S. Nakamura. 2003. An outbreak of food-borne gastroenteritis caused by Clostridium perfringens carrying the cpe gene on a plasmid. Jpn. J. Infect. Dis. 56: 137 139.
81. Tanaka, D.,, J. Isobe,, S. Hosorogi,, K. Kimata,, M. Shimizu,, K. Katori,, Y. Gyobu,, Y. Nagai,, T. Yamagishi,, T. Karasawa,, and S. Nakamura. 2003. An outbreak of food-borne gastroenteritis caused by Clostridium perfringens carrying the cpe gene on a plasmid. J. Infect. Dis. 56: 137 139.
82. Volk, W. A.,, B. Bizzini,, K. R. Jones,, and F. L. Macrina. 1988. Inter- and intrageneric transfer of Tn916 between Streptococcus faecalis and Clostridium tetani. Plasmid 19: 255 259.
83. Wang, H.,, and P. Mullany. 2000. The large resolvase TndX is required and sufficient for integration and excision of derivatives of the novel conjugative transposon Tn5397. J. Bacteriol. 182: 6577 6583.
84. Wang, H.,, A. P. Roberts,, D. Lyras,, J. I. Rood,, M. Wilks,, and P. Mullany. 2000. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J. Bacteriol. 182: 3775 3783.
85. Wang, H.,, A. P. Roberts,, and P. Mullany. 2000. DNA sequence of the insertional hot spot of Tn916 in the Clostridium difficile genome and discovery of a Tn916-like element in an environmental isolate integrated in the same hot spot. FEMS Microbiol. Lett. 192: 15 20.
86. Waters, M.,, A. Savoie,, H. S. Garmory,, D. Bueschel,, M. R. Popoff,, J. G. Songer,, R. W. Titball,, B. A. Mc-Clane,, and M. R. Sarker. 2003. Genotyping and phenotyping of beta2-toxigenic Clostridium perfringens fecal isolates associated with gastrointestinal diseases in piglets. J. Clin. Microbiol. 41: 3584 3591.
87. Wen, Q.,, K. Miyamoto,, and B. A. McClane. 2003. Development of a duplex PCR genotyping assay for distinguishing Clostridium perfringens type A isolates carrying chromosomal enterotoxin ( cpe) genes from those carrying plasmid-borne enterotoxin ( cpe) genes. J. Clin. Microbiol. 41: 1494 1498.
88. Zhao, Y.,, and S. B. Melville. 1998. Identification and characterization of sporulation-dependent promoters upstream of the enterotoxin gene ( cpe) of Clostridium perfringens. J. Bacteriol. 180: 136 142.
89. Zhou, Y.,, and E. Johnson. 1993. Genetic transformation of Clostridium botulinum Hall A by electroporation. Biotechnol. Lett. 15: 121 126.

Tables

Generic image for table
TABLE 1

Properties of - shuttle plasmids

For details and sources, see references and ; based on Table 5.1 from reference . For details on PFF, see reference .

Ap, Cm, Em, resistance to ampicillin, chloramphenicol, and erythromycin, respectively. XG, screening for β-galactosidase production on X-Gal medium.

These plasmids carry the RP4 region and can therefore be mobilized, in the presence of plasmid RP4, to recipient cells ( ).

Citation: Lyras D, Rood J. 2006. Clostridial Genetics, p 672-687. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch55

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error