1887

Chapter 58 : Histotoxic Clostridia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Histotoxic Clostridia, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap58-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap58-2.gif

Abstract:

Histotoxic clostridial infection is a general term coined over a century ago that referred to gas gangrene and malignant edema in humans and blackleg in cattle. Histotoxic infections are rapidly progressive, are associated with gas in tissue, and manifest impressive tissue destruction, shock, and frequently death. Although the histotoxic clostridia are classified as grampositive, spore-forming, anaerobic bacilli, not all of them are definitely so. The main habitats of all of the histotoxic clostridia are soils and the intestinal contents of humans and animals. is the most widespread of the histotoxic clostridia, with the quantity of organisms in soil being proportional to the degree and duration of animal husbandry in the region. The major extracellular toxins implicated in gas gangrene are alpha-toxin and theta-toxin. Two independent studies have shown that the alpha-toxin is an essential toxin in the disease process. First, vaccination with a purified recombinant protein consisting of the C-terminal alpha-toxin domain (amino acids 247 to 370) has been shown to protect mice from experimental infection. Second, an alpha-toxin (plc) mutant constructed by allelic exchange has been shown to be avirulent in a mouse myonecrosis model. Toxin production has been documented in vivo by demonstrating the progressive appearance of both theta- and alpha-toxins at the site of the experimental infection by 4 h. Immunization with the C-domain of alpha-toxin is a viable strategy for the prevention of gas gangrene caused by .

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58

Key Concept Ranking

Two-Component Signal Transduction Systems
0.6838856
Amino Acids, Peptides and Proteins
0.5123375
0.6838856
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Effects of clostridial exotoxins on mean arterial pressure. Rabbits with stable vital signs were given intravenous infusions of normal saline, crude toxin preparation, or recombinant alpha-toxin or theta-toxin. Mean arterial pressures were measured continuously via a catheter placed in the carotid arterty. Each data point represents the mean arterial pressure (± standard error) determined by using six animals, with triplicate determinations for each time point. Asterisks indicate values significantly different from control values ( 0.05) using Student's test. Circles, control (normal saline); squares, recombinant alpha-toxin; triangles, recombinant theta-toxin; inverted triangles, crude toxin. (Reprinted, with permission, from reference .)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Effects of clostridial exotoxins on cardiac index. Rabbits with stable vital signs were given an intravenous infusion of normal saline, crude toxin preparation, or recombinant alpha-toxin or theta-toxin. Cardiac index was measured over a 3-h period using a thermodilution technique. Each data point represents the mean cardiac index (± standard error) determined by using six animals, with triplicate determinations for each time point. Asterisks indicate values significantly different from control values ( < 0.05). Circles, control (normal saline); squares, recombinant alpha-toxin; triangles, recombinant theta-toxin; inverted triangles, crude toxin. (Reprinted, with permission, from reference .)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

In vivo TNF-α production is induced by alpha-toxin. Serum samples were obtained from rabbits infused with recombinant alpha-toxin. TNF-α was measured by enzyme-linked immunosorbent assay. Each data point represents the mean TNF-α production (± standard error) of duplicate serum samples run in triplicate. (Reprinted, with permission, from reference .)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Alpha-toxin-induced TNF-α production by human mononuclear cells. TNF-α was measured in supernatant from 106 human mononuclear cells stimulated with recombinant alpha-toxin. Each data point represents the mean TNF-α production (± standard error) on samples collected at 24 h and assayed in duplicate using a commercial enzyme-linked immunosorbent assay. (Reprinted, with permission, from reference 43.)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap58
1. Altemeier, W. A.,, and W. D. Fullen. 1971. Prevention and treatment of gas gangrene. JAMA 217: 806 813.
2. Asmuth, D. A.,, R. D. Olson,, S. P. Hackett,, A. E. Bryant,, R. K. Tweten,, J. Y. Tso,, T. Zollman,, and D. L. Stevens. 1995. Effects of Clostridium perfringens recombinant and crude phospholipase C and theta toxins on rabbit hemodynamic parameters. J. Infect. Dis. 172: 1317 1323.
3. Assadian, O.,, A. Assadian,, C. Senekowitsch,, A. Makristathis,, and G. Hagmuller. 2004. Gas gangrene due to Clostridium perfringens in two injecting drug users in Vienna, Austria. Wien. Klin. Wochenschr. 116: 264 267.
4. Awad, M. M.,, A. E. Bryant,, D. L. Stevens,, and J. I. Rood. 1995. Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Mol. Microbiol. 15: 191 202.
5. Awad, M. M.,, and J. I. Rood. 2002. Perfringolysin O expression in Clostridium perfringens is independent of the upstream pfoR gene. J. Bacteriol. 184: 2034 2038.
6. Awad, M. M.,, D. M. Ellemor,, R. L. Boyd,, J. J. Emmins,, and J. I. Rood. 2001. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69: 7904 7910.
7. Bakker, D. J., 1988. Clostridial myonecrosis, p. 153 172. In J. C. Davis, and T. K. Hunt (ed.), Problem Wounds: the Role of Oxygen. Elsevier Science Publishing, Inc., New York, N.Y.
8. Ballard, J.,, A. Bryant,, D. Stevens,, and R. K. Tweten. 1992. Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum. Infect. Immun. 60: 784 790.
9. Ballard, J.,, B. A. Crabtree,, J. Roe,, and R. K. Tweten. 1995. The primary structure of Clostridium septicum alphatoxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect. Immun. 63: 340 344.
10. Banu, S.,, K. Ohtani,, H. Yaguchi,, T. Swe,, S. T. Cole,, H. Hayashi,, and T. Shimizu. 2000. Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Mol. Microbiol. 35: 854 864.
11. Bartlett, J. G., 1990. Gas gangrene (other clostridium-associated diseases), p. 1851 1860. In G. L. Mandell,, R. G. Douglas,, and J. E. Bennett (ed.), Principles and Practice of Infectious Diseases. Churchill Livingstone, Ltd., New York, N.Y.
12. Ba-Thein, W.,, M. Lyristis,, K. Ohtani,, I. T. Nisbet,, H. Hayashi,, J. I. Rood,, and T. Shimizu. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J. Bacteriol. 178: 2514 2520.
13. Bryant, A. E.,, C. R. Bayer,, S. M. Hayes-Schroer,, and D. L. Stevens. 2003. Activation of platelet gpIIbIIIa by phospholipase C from Clostridium perfringens involves store-operated calcium entry. J. Infect. Dis. 187: 408 417.
14. Bryant, A. E.,, R. Bergstrom,, G. A. Zimmerman,, J. L. Salyer,, H. R. Hill,, R. K. Tweten,, H. Sato,, and D. L. Stevens. 1993. Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol. Med. Microbiol. 7: 321 336.
15. Bryant, A. E.,, R. Y. Chen,, Y. Nagata,, Y. Wang,, C. H. Lee,, S. Finegold,, P. H. Guth,, and D. L. Stevens. 2000. Clostridial gas gangrene I: cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of C. perfringens. J. Infect. Dis. 182: 799 807.
16. Bryant, A. E.,, R. Y. Chen,, Y. Nagata,, Y. Wang,, C. H. Lee,, S. Finegold,, P. H. Guth,, and D. L. Stevens. 2000. Clostridial gas gangrene II: phospholipase C-induced activation of platelet gpIIb/IIIa mediates vascular occlusion and myonecrosis in C. perfringens gas gangrene. J. Infect. Dis. 182: 808 815.
17. Bryant, A. E.,, and D. L. Stevens. 1996. Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect. Immun. 64: 358 362.
18. Bryant, A.,, D. Stevens,, and J. Tso. 1991. Effects of alpha toxin from Clostridium perfringens (Cp) on PMNL, abstr. B-311, p. 77. Abstr. 91st Gen. Meet. Am. Soc. Microbiol. 1991. American Society for Microbiology, Washington, D.C.
19. Bullifent, H. L.,, A. Moir,, M. M. Awad,, P. T. Scott,, and R. W. Titball. 1996. The level of expression of α-toxin by different strains of Clostridium perfringens is dependent upon differences in promoter structure and genetic background. Anaerobe 2: 365 371.
20. Bunting, M.,, D. E. Lorant,, A. E. Bryant,, G. A. Zimmerman,, T. M. McIntyre,, D. L. Stevens,, and S. M. Prescott. 1997. Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J. Clin. Investig. 100: 565 574.
21.CentersforDiseaseControlandPrevention. 2003. Clostridial endophthalmitis after cornea transplantation—Florida,. Morb. Mortal. Wkly. Rep. 52: 11761179.
22. Cheung, J. K.,, and J. I. Rood. 2000. The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. J. Bacteriol. 182: 57 66.
23. Cheung, J. K.,, B. Dupuy,, D. S. Deveson,, and J. I. Rood. 2004. The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens. J. Bacteriol. 186: 3321 3330.
24. Cole, S. T.,, and B. Canard,. 1997. Structure, organization and evolution of the genome of Clostridium perfringens, p. 49 63. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
25. Czajkowsky, D. M.,, E. M. Hotze,, Z. Shao,, and R. K. Tweten. 2004. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J. 23: 3206 3215.
26. delaCochetiere, M. F.,, H. Piloquet,, C. desRobert,, D. Darmaun,, J. P. Galmiche,, and J. C. Roze. 2004. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of clostridium. Pediatr. Res. 56: 366 370.
27. Ellemor, D. M.,, R. N. Baird,, M. M. Awad,, R. L. Boyd,, J. I. Rood,, and J. J. Emmins. 1999. Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect. Immun. 67: 4902 4907.
28. Gorbach, S. L., 1992. Clostridium perfringens and other clostridia, p. 1587 1596. In S. L. Gorbach,, J. G. Bartlett,, and N. R. Blacklow (ed.), Infectious Diseases. The W. B. Saunders Co., Philadelphia, Pa.
29. Gordon, V.,, R. Benz,, K. Fujii,, S. Leppla,, and R. Tweten. 1997. Clostridium septicum alpha-toxin is proteolytically activated by furin. Infect. Immun. 65: 4130 4134.
30. Guillouard, I.,, P. M. Alzari,, B. Saliou,, and S. T. Cole. 1997. The carboxy-terminal C2-like domain of the α-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition. Mol. Microbiol. 26: 867 876.
31. Hackett, S. P.,, and D. L. Stevens. 1992. Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O. J. Infect. Dis. 165: 879 885.
32. Hart, G. B.,, R. C. Lamb,, and M. B. Strauss. 1983. Gas gangrene. I. A collective review. J. Trauma 23: 991 1000.
33. Hausmann, R.,, F. Albert,, W. Geissdorfer,, and P. Betz. 2004. Clostridium fallax associated with sudden death in a 16-year-old boy. J. Med. Microbiol. 53: 581 583.
34. Heimbach, R. D.,, I. Boerema,, W. H. Brummelkamp,, and W. G. Wolfe,. 1977. Current therapy of gas gangrene, p. 153 176. In J. C. Davis, and T. K. Hunt (ed.), Hyperbaric Oxygen Therapy. Undersea Medical Society, Bethesda, Md.
35. Hill, G. B.,, and S. Osterhout. 1972. Experimental effects of hyperbaric oxygen on selected clostridial species. I. In vitro studies. J. Infect. Dis. 125: 17 25.
36. Hill, G. B.,, and S. Osterhout. 1972. Experimental effects of hyperbaric oxygen on selected clostridial species. II. In vivo studies on mice. J. Infect. Dis. 125: 26 35.
37. Hoch, J. A.,, and T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
38. Houldsworth, S.,, P. W. Andrew,, and T. J. Mitchell. 1994. Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1β by human mononuclear phagocytes. Infect. Immun. 62: 1501 1503.
39. Kainer, M. A.,, J. V. Linden,, D. N. Whaley,, H. T. Holmes,, W. R. Jarvis,, D. B. Jernigan,, and L. K. Archibald. 2004. Clostridium infections associated with musculoskeletal-tissue allografts. N. Engl. J. Med. 350: 2564 2571.
40. Katayama, S. I.,, O. Matsushita,, J. Minami,, S. Mizobuchi,, and A. Okabe. 1993. Comparison of the alpha-toxin genes of Clostridium perfringens type A and C strains: evidence for extragenic regulation of transcription. Infect. Immun. 61: 457 463.
41. Katayama, S.,, O. Matsushita,, E. Tamai,, S. Miyata,, and A. Okabe. 2001. Phased A-tracts bind to the alpha subunit of RNA polymerase with increased affinity at low temperature. FEBS Lett. 509: 235 238.
42. Kimura, A. C.,, J. I. Higa,, R. M. Levin,, G. Simpson,, Y. Vargas,, and D. J. Vugia. 2004. Outbreak of necrotizing fasciitis due to Clostridium sordellii among black-tar heroin users. Clin. Infect. Dis. 38: e87 e91.
43. Lyristis, M.,, A. E. Bryant,, J. Sloan,, M. M. Awad,, I. T. Nisbet,, D. L. Stevens,, and J. I. Rood. 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol. Microbiol. 12: 761 777.
44. Matsushita, C.,, O. Matsushita,, S. Katayama,, J. Minami,, K. Takai,, and A. Okabe. 1996. An upstream activating sequence containing curved DNA involved in activation of the Clostridium perfringens plc promoter. Microbiology 142: 2561 2566.
45. McGowan, S.,, I. S. Lucet,, J. K. Cheung,, M. M. Awad,, J. C. Whisstock,, and J. I. Rood. 2002. The FxRxHrS Motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J. Mol. Biol. 322: 997 1011.
46. McGowan, S.,, J. R. O’Connor,, J. K. Cheung,, and J. I. Rood. 2003. The SKHR motif is required for biological function of the VirR response regulator from Clostridium perfringens. J. Bacteriol. 185: 6205 6208.
47. McNee, J. W.,, and J. S. Dunn. 1917. The method of spread of gas gangrene into living muscle. Br. Med. J. 1: 727 729.
48. Nikolskaya, A. N.,, and M. Y. Galperin. 2002. A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res. 30: 2453 2459.
49. Noyes, H. E.,, W. L. Pritchard,, F. B. Brinkley,, and J. A. Mendelson. 1964. Analyses of wound exudates for clostridial toxins. J. Bacteriol. 87: 623 629.
50. Ohtani, K.,, H. I. Kawsar,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol. Lett. 222: 137 141.
51. Otagiri, N.,, J. Soeda,, T. Yoshino,, H. Chisuwa,, H. Aruga,, H. Kasai,, M. Komatsu,, T. Ohmori,, K. Tauchi,, and H. Koike. 2004. Primary abscess of the omentum: report of a case. Surg. Today 34: 261 264.
52. Regal, J. F.,, and F. E. Shigeman. 1980. The effect of phospholipase C on the responsiveness of cardiac receptors. I. Inhibition of the adrenergic inotropic response. J. Pharmacol. Exp. Ther. 214: 282 290.
53. Rossjohn, J.,, S. C. Feil,, W. J. McKinstry,, R. K. Tweten,, and M. W. Parker. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 88: 685 692.
54. Schickner, D. C.,, A. Yarkoni,, P. Langer,, L. Frohman,, X. Chen,, R. Folberg,, and L. V. Del Priore. 2004. Panophthalmitis due to clostridium septicum. Am. J. Ophthalmol. 137: 942 944.
55. Sellman, B. R.,, B. L. Kagan,, and R. K. Tweten. 1997. Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum alpha toxin. Mol. Microbiol. 23: 551 558.
56. Shatursky, O.,, A. Heuck,, L. Shepard,, J. Rossjohn,, M. Parker,, A. Johnson,, and R. Tweten. 1999. The mechanism of membrane insertion of a cholesterol-dependent cytolysin: a novel paradigm for pore-foring toxins. Cell 99: 293 299.
57. Shepard, L. A.,, A. P. Heuck,, B. D. Hamman,, J. Rossjohn,, M. W. Parker,, K. R. Ryan,, A. E. Johnson,, and R. K. Tweten. 1998. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfingolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37: 14563 14574.
58. Shimizu, T.,, W. Ba-Thein,, M. Tamaki,, and H. Hayashi. 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J. Bacteriol. 176: 1616 1623.
59. Shimizu, T.,, A. Okabe,, J. Minami,, and H. Hayashi. 1991. An upstream regulatory sequence stimulates expression of the perfringolysin O gene of Clostridium perfringens. Infect. Immun. 59: 137 142.
60. Shimizu, T.,, A. Okabe,, and J. I. Rood,. 1997. Regulation of toxin production in C. perfringens, p. 451 470. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
61. Shimizu, T.,, H. Yaguchi,, K. Ohtani,, S. Banu,, and H. Hayashi. 2002. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol. 43: 257 265.
62. Smith, L. D. S., 1975. Clostridial wound infections, p. 321 324. In L. D. S. Smith (ed.), The Pathogenic Anaerobic Bacteria. Charles C. Thomas, Springfield, Ill.
63. Smith, L. D. S., 1975. Clostridium, p. 109 114. In L. D. S. Smith (ed.), The Pathogenic Anaerobic Bacteria. Charles C. Thomas, Springfield, Ill.
64. Stevens, D. L., 1995. Clostridial infections, p. 13.1 13.9. In D. L. Stevens, and G. L. Mandell (ed.), Atlas of Infectious Diseases. Churchill Livingstone, Ltd., Philadelphia, Pa.
65. Stevens, D. L., 1996. Clostridial myonecrosis and other clostridial diseases, p. 2090 2093. In J. C. Bennett, and F. Plum (ed.), Cecil Textbook of Medicine. The W. B. Saunders Co., Philadelphia, Pa.
66. Stevens, D. L. Unpublished data.
67. Stevens, D. L.,, and A. E. Bryant. 1997. Pathogenesis of Clostridium perfringens infection: mechanisms and mediators of shock. Clin. Infect. Dis. 25: S160 S164.
68. Stevens, D. L.,, A. E. Bryant,, K. Adams,, and J. T. Mader. 1993. Evaluation of hyperbaric oxygen therapy for treatment of experimental Clostridium perfringens infection. Clin. Infect. Dis. 17: 231 237.
69. Stevens, D. L.,, A. E. Gibbons,, and R. A. Bergstrom. 1989. Ultrastructural changes in human granulocytes induced by purified exotoxins from Clostridium perfringens, abstr. J-17, p. 244. Abstr. 89th Annu. Meet. Am. Soc. Microbiol. 1989. American Society for Microbiology, Washington, D.C.
70. Stevens, D. L.,, B. M. Laine,, and J. E. Mitten. 1987. Comparison of single and combination antimicrobial agents for prevention of experimental gas gangrene caused by Clostridium perfringens. Antimicrob. Agents Chemother. 31: 312 316.
71. Stevens, D. L.,, K. A. Maier,, B. M. Laine,, and J. E. Mitten. 1987. Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J. Infect. Dis. 155: 220 228.
72. Stevens, D. L.,, K. A. Maier,, and J. E. Mitten. 1987. Effect of antibiotics on toxin production and viability of Clostridium perfringens. Antimicrob. Agents Chemother. 31: 213 218.
73. Stevens, D. L.,, J. Mitten,, and C. Henry. 1987. Effects of alpha and theta toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J. Infect. Dis. 156: 324 333.
74. Stevens, D. L.,, R. W. Titball,, M. Jepson,, C. R. Bayer,, S. M. Hayes-Schroer,, and A. E. Bryant. 2004. Immunization with the C-domain of alpha-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens. J. Infect. Dis. 190: 767 773.
75. Stevens, D. L.,, B. E. Troyer,, D. T. Merrick,, J. E. Mitten,, and R. D. Olson. 1988. Lethal effects and cardiovascular effects of purified alpha- and theta-toxins from Clostridium perfringens. J. Infect. Dis. 157: 272 279.
76. Stevens, D. L.,, R. K. Tweten,, M. M. Awad,, J. I. Rood,, and A. E. Bryant. 1997. Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 176: 189 195.
77. Stockinger, Z. T.,, and R. L. Corsetti. 2004. Pneumoperitoneum from gas gangrene of the pancreas: three unusual findings in a single case. J. Gastrointest. Surg. 8: 489 492.
78. Temple, A. M.,, and N. J. Thomas. 2004. Gas gangrene secondary to Clostridium perfringens in pediatric oncology patients. Pediatr. Emerg. Care 20: 457 459.
79. Titball, R. W.,, D. L. Leslie,, S. Harvey,, and D. Kelly. 1991. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect. Immun. 59: 1872 1874.
80. Toyonaga, T.,, O. Matsushita,, S.-I. Katayama,, J. Minami,, and A. Okabe. 1992. Role of the upstream regulon containing an intrinsic DNA curvature in the negative regulation of the phospholipase C gene of Clostridium perfringens. Microbiol. Immunol. 36: 603 613.
81. van Unnik, A. J. M. 1965. Inhibition of toxin production in Clostridium perfringens in vitro by hyperbaric oxygen. Antonie Leeuwenhoek 31: 181 186.
82. Whatley, R. E.,, G. A. Zimmerman,, D. L. Stevens,, C. J. Parker,, T. M. McIntyre,, and S. M. Prescott. 1989. The regulation of platelet activating factor production in endothelial cells—the role of calcium and protein kinase C. J. Biol. Chem. 264: 6325 6333.
83. Williamson, E. D.,, and R. W. Titball. 1993. A genetically engineered vaccine against alpha-toxin of Clostridium perfringens protects against experimental gas gangrene. Vaccine 11: 1253 1258.
84. Zink, J. M.,, R. Singh-Parikshak,, A. Sugar,, and M. W. Johnson. 2004. Clostridium sordellii endophthalmitis after suture removal from a corneal transplant. Cornea 23: 522 523.

Tables

Generic image for table
TABLE 1

Histotoxic clostridial infections

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Generic image for table
TABLE 2

Major virulence factors of the histotoxic clostridia

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Generic image for table
TABLE 3

Anti-inflammatory effects of alpha- and theta-toxins

Adapted from reference .

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error