1887

Chapter 58 : Histotoxic Clostridia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Histotoxic Clostridia, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap58-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap58-2.gif

Abstract:

Histotoxic clostridial infection is a general term coined over a century ago that referred to gas gangrene and malignant edema in humans and blackleg in cattle. Histotoxic infections are rapidly progressive, are associated with gas in tissue, and manifest impressive tissue destruction, shock, and frequently death. Although the histotoxic clostridia are classified as grampositive, spore-forming, anaerobic bacilli, not all of them are definitely so. The main habitats of all of the histotoxic clostridia are soils and the intestinal contents of humans and animals. is the most widespread of the histotoxic clostridia, with the quantity of organisms in soil being proportional to the degree and duration of animal husbandry in the region. The major extracellular toxins implicated in gas gangrene are alpha-toxin and theta-toxin. Two independent studies have shown that the alpha-toxin is an essential toxin in the disease process. First, vaccination with a purified recombinant protein consisting of the C-terminal alpha-toxin domain (amino acids 247 to 370) has been shown to protect mice from experimental infection. Second, an alpha-toxin (plc) mutant constructed by allelic exchange has been shown to be avirulent in a mouse myonecrosis model. Toxin production has been documented in vivo by demonstrating the progressive appearance of both theta- and alpha-toxins at the site of the experimental infection by 4 h. Immunization with the C-domain of alpha-toxin is a viable strategy for the prevention of gas gangrene caused by .

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58

Key Concept Ranking

Two-Component Signal Transduction Systems
0.6838856
Amino Acids, Peptides and Proteins
0.5123375
0.6838856
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Effects of clostridial exotoxins on mean arterial pressure. Rabbits with stable vital signs were given intravenous infusions of normal saline, crude toxin preparation, or recombinant alpha-toxin or theta-toxin. Mean arterial pressures were measured continuously via a catheter placed in the carotid arterty. Each data point represents the mean arterial pressure (± standard error) determined by using six animals, with triplicate determinations for each time point. Asterisks indicate values significantly different from control values ( 0.05) using Student's test. Circles, control (normal saline); squares, recombinant alpha-toxin; triangles, recombinant theta-toxin; inverted triangles, crude toxin. (Reprinted, with permission, from reference .)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Effects of clostridial exotoxins on cardiac index. Rabbits with stable vital signs were given an intravenous infusion of normal saline, crude toxin preparation, or recombinant alpha-toxin or theta-toxin. Cardiac index was measured over a 3-h period using a thermodilution technique. Each data point represents the mean cardiac index (± standard error) determined by using six animals, with triplicate determinations for each time point. Asterisks indicate values significantly different from control values ( < 0.05). Circles, control (normal saline); squares, recombinant alpha-toxin; triangles, recombinant theta-toxin; inverted triangles, crude toxin. (Reprinted, with permission, from reference .)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

In vivo TNF-α production is induced by alpha-toxin. Serum samples were obtained from rabbits infused with recombinant alpha-toxin. TNF-α was measured by enzyme-linked immunosorbent assay. Each data point represents the mean TNF-α production (± standard error) of duplicate serum samples run in triplicate. (Reprinted, with permission, from reference .)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Alpha-toxin-induced TNF-α production by human mononuclear cells. TNF-α was measured in supernatant from 106 human mononuclear cells stimulated with recombinant alpha-toxin. Each data point represents the mean TNF-α production (± standard error) on samples collected at 24 h and assayed in duplicate using a commercial enzyme-linked immunosorbent assay. (Reprinted, with permission, from reference 43.)

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap58
1. Altemeier, W. A.,, and W. D. Fullen. 1971. Prevention and treatment of gas gangrene. JAMA 217:806813.
2. Asmuth, D. A.,, R. D. Olson,, S. P. Hackett,, A. E. Bryant,, R. K. Tweten,, J. Y. Tso,, T. Zollman,, and D. L. Stevens. 1995. Effects of Clostridium perfringens recombinant and crude phospholipase C and theta toxins on rabbit hemodynamic parameters. J. Infect. Dis. 172:13171323.
3. Assadian, O.,, A. Assadian,, C. Senekowitsch,, A. Makristathis,, and G. Hagmuller. 2004. Gas gangrene due to Clostridium perfringens in two injecting drug users in Vienna, Austria. Wien. Klin. Wochenschr. 116:264267.
4. Awad, M. M.,, A. E. Bryant,, D. L. Stevens,, and J. I. Rood. 1995. Virulence studies on chromosomal α-toxin and θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Mol. Microbiol. 15:191202.
5. Awad, M. M.,, and J. I. Rood. 2002. Perfringolysin O expression in Clostridium perfringens is independent of the upstream pfoR gene. J. Bacteriol. 184:20342038.
6. Awad, M. M.,, D. M. Ellemor,, R. L. Boyd,, J. J. Emmins,, and J. I. Rood. 2001. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69:79047910.
7. Bakker, D. J., 1988. Clostridial myonecrosis, p. 153172. In J. C. Davis, and T. K. Hunt (ed.), Problem Wounds: the Role of Oxygen. Elsevier Science Publishing, Inc., New York, N.Y.
8. Ballard, J.,, A. Bryant,, D. Stevens,, and R. K. Tweten. 1992. Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum. Infect. Immun. 60:784790.
9. Ballard, J.,, B. A. Crabtree,, J. Roe,, and R. K. Tweten. 1995. The primary structure of Clostridium septicum alphatoxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect. Immun. 63:340344.
10. Banu, S.,, K. Ohtani,, H. Yaguchi,, T. Swe,, S. T. Cole,, H. Hayashi,, and T. Shimizu. 2000. Identification of novel VirR/VirS-regulated genes in Clostridium perfringens. Mol. Microbiol. 35:854864.
11. Bartlett, J. G., 1990. Gas gangrene (other clostridium-associated diseases), p. 18511860. In G. L. Mandell,, R. G. Douglas,, and J. E. Bennett (ed.), Principles and Practice of Infectious Diseases. Churchill Livingstone, Ltd., New York, N.Y.
12. Ba-Thein, W.,, M. Lyristis,, K. Ohtani,, I. T. Nisbet,, H. Hayashi,, J. I. Rood,, and T. Shimizu. 1996. The virR/virS locus regulates the transcription of genes encoding extracellular toxin production in Clostridium perfringens. J. Bacteriol. 178:25142520.
13. Bryant, A. E.,, C. R. Bayer,, S. M. Hayes-Schroer,, and D. L. Stevens. 2003.Activation of platelet gpIIbIIIa by phospholipase C from Clostridium perfringens involves store-operated calcium entry. J. Infect. Dis. 187:408417.
14. Bryant, A. E.,, R. Bergstrom,, G. A. Zimmerman,, J. L. Salyer,, H. R. Hill,, R. K. Tweten,, H. Sato,, and D. L. Stevens. 1993. Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol. Med. Microbiol. 7:321336.
15. Bryant, A. E.,, R. Y. Chen,, Y. Nagata,, Y. Wang,, C. H. Lee,, S. Finegold,, P. H. Guth,, and D. L. Stevens. 2000. Clostridial gas gangrene I: cellular and molecular mechanisms of microvascular dysfunction induced by exotoxins of C. perfringens. J. Infect. Dis. 182:799807.
16. Bryant, A. E.,, R. Y. Chen,, Y. Nagata,, Y. Wang,, C. H. Lee,, S. Finegold,, P. H. Guth,, and D. L. Stevens. 2000. Clostridial gas gangrene II: phospholipase C-induced activation of platelet gpIIb/IIIa mediates vascular occlusion and myonecrosis in C. perfringens gas gangrene. J. Infect. Dis. 182:808815.
17. Bryant, A. E.,, and D. L. Stevens. 1996. Phospholipase C and perfringolysin O from Clostridium perfringens upregulate endothelial cell-leukocyte adherence molecule 1 and intercellular leukocyte adherence molecule 1 expression and induce interleukin-8 synthesis in cultured human umbilical vein endothelial cells. Infect. Immun. 64:358362.
18. Bryant, A.,, D. Stevens,, and J. Tso. 1991. Effects of alpha toxin from Clostridium perfringens (Cp) on PMNL, abstr. B-311, p. 77. Abstr. 91st Gen. Meet. Am. Soc. Microbiol. 1991. American Society for Microbiology, Washington, D.C.
19. Bullifent, H. L.,, A. Moir,, M. M. Awad,, P. T. Scott,, and R. W. Titball. 1996. The level of expression of α-toxin by different strains of Clostridium perfringens is dependent upon differences in promoter structure and genetic background. Anaerobe 2:365371.
20. Bunting, M.,, D. E. Lorant,, A. E. Bryant,, G. A. Zimmerman,, T. M. McIntyre,, D. L. Stevens,, and S. M. Prescott. 1997. Alpha toxin from Clostridium perfringens induces proinflammatory changes in endothelial cells. J. Clin. Investig. 100:565574.
21.CentersforDiseaseControlandPrevention. 2003. Clostridial endophthalmitis after cornea transplantation—Florida,. Morb. Mortal. Wkly. Rep. 52:11761179.
22. Cheung, J. K.,, and J. I. Rood. 2000. The VirR response regulator from Clostridium perfringens binds independently to two imperfect direct repeats located upstream of the pfoA promoter. J. Bacteriol. 182:5766.
23. Cheung, J. K.,, B. Dupuy,, D. S. Deveson,, and J. I. Rood. 2004. The spatial organization of the VirR boxes is critical for VirR-mediated expression of the perfringolysin O gene, pfoA, from Clostridium perfringens. J. Bacteriol. 186:33213330.
24. Cole, S. T.,, and B. Canard,. 1997. Structure, organization and evolution of the genome of Clostridium perfringens, p. 4963. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
25. Czajkowsky, D. M.,, E. M. Hotze,, Z. Shao,, and R. K. Tweten. 2004. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J. 23:32063215.
26. delaCochetiere, M. F.,, H. Piloquet,, C. desRobert,, D. Darmaun,, J. P. Galmiche,, and J. C. Roze. 2004. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of clostridium. Pediatr. Res. 56:366370.
27. Ellemor, D. M.,, R. N. Baird,, M. M. Awad,, R. L. Boyd,, J. I. Rood,, and J. J. Emmins. 1999. Use of genetically manipulated strains of Clostridium perfringens reveals that both alpha-toxin and theta-toxin are required for vascular leukostasis to occur in experimental gas gangrene. Infect. Immun. 67:49024907.
28. Gorbach, S. L., 1992. Clostridium perfringens and other clostridia, p. 15871596. In S. L. Gorbach,, J. G. Bartlett,, and N. R. Blacklow (ed.), Infectious Diseases. The W. B. Saunders Co., Philadelphia, Pa.
29. Gordon, V.,, R. Benz,, K. Fujii,, S. Leppla,, and R. Tweten. 1997. Clostridium septicum alpha-toxin is proteolytically activated by furin. Infect. Immun. 65:41304134.
30. Guillouard, I.,, P. M. Alzari,, B. Saliou,, and S. T. Cole. 1997. The carboxy-terminal C2-like domain of the α-toxin from Clostridium perfringens mediates calcium-dependent membrane recognition. Mol. Microbiol. 26:867876.
31. Hackett, S. P.,, and D. L. Stevens. 1992. Streptococcal toxic shock syndrome: synthesis of tumor necrosis factor and interleukin-1 by monocytes stimulated with pyrogenic exotoxin A and streptolysin O. J. Infect. Dis. 165: 879885.
32. Hart, G. B.,, R. C. Lamb,, and M. B. Strauss. 1983. Gas gangrene. I. A collective review. J. Trauma 23:9911000.
33. Hausmann, R.,, F. Albert,, W. Geissdorfer,, and P. Betz. 2004. Clostridium fallax associated with sudden death in a 16-year-old boy. J. Med. Microbiol. 53:581583.
34. Heimbach, R. D.,, I. Boerema,, W. H. Brummelkamp,, and W. G. Wolfe,. 1977. Current therapy of gas gangrene, p. 153176. In J. C. Davis, and T. K. Hunt (ed.), Hyperbaric Oxygen Therapy. Undersea Medical Society, Bethesda, Md.
35. Hill, G. B.,, and S. Osterhout. 1972. Experimental effects of hyperbaric oxygen on selected clostridial species. I. In vitro studies. J. Infect. Dis. 125:1725.
36. Hill, G. B.,, and S. Osterhout. 1972. Experimental effects of hyperbaric oxygen on selected clostridial species. II. In vivo studies on mice. J. Infect. Dis. 125:2635.
37. Hoch, J. A.,, and T. J. Silhavy (ed.). 1995. Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
38. Houldsworth, S.,, P. W. Andrew,, and T. J. Mitchell. 1994. Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1β by human mononuclear phagocytes. Infect. Immun. 62:15011503.
39. Kainer, M. A.,, J. V. Linden,, D. N. Whaley,, H. T. Holmes,, W. R. Jarvis,, D. B. Jernigan,, and L. K. Archibald. 2004. Clostridium infections associated with musculoskeletal-tissue allografts. N. Engl. J. Med. 350:25642571.
40. Katayama, S. I.,, O. Matsushita,, J. Minami,, S. Mizobuchi,, and A. Okabe. 1993. Comparison of the alpha-toxin genes of Clostridium perfringens type A and C strains: evidence for extragenic regulation of transcription. Infect. Immun. 61:457463.
41. Katayama, S.,, O. Matsushita,, E. Tamai,, S. Miyata,, and A. Okabe. 2001. Phased A-tracts bind to the alpha subunit of RNA polymerase with increased affinity at low temperature. FEBS Lett. 509:235238.
42. Kimura, A. C.,, J. I. Higa,, R. M. Levin,, G. Simpson,, Y. Vargas,, and D. J. Vugia. 2004. Outbreak of necrotizing fasciitis due to Clostridium sordellii among black-tar heroin users. Clin. Infect. Dis. 38:e87e91.
43. Lyristis, M.,, A. E. Bryant,, J. Sloan,, M. M. Awad,, I. T. Nisbet,, D. L. Stevens,, and J. I. Rood. 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol. Microbiol. 12:761777.
44. Matsushita, C.,, O. Matsushita,, S. Katayama,, J. Minami,, K. Takai,, and A. Okabe. 1996. An upstream activating sequence containing curved DNA involved in activation of the Clostridium perfringens plc promoter. Microbiology 142:25612566.
45. McGowan, S.,, I. S. Lucet,, J. K. Cheung,, M. M. Awad,, J. C. Whisstock,, and J. I. Rood. 2002. The FxRxHrS Motif: a conserved region essential for DNA binding of the VirR response regulator from Clostridium perfringens. J. Mol. Biol. 322:9971011.
46. McGowan, S.,, J. R. O’Connor,, J. K. Cheung,, and J. I. Rood. 2003. The SKHR motif is required for biological function of the VirR response regulator from Clostridium perfringens. J. Bacteriol. 185:62056208.
47. McNee, J. W.,, and J. S. Dunn. 1917. The method of spread of gas gangrene into living muscle. Br. Med. J. 1:727729.
48. Nikolskaya, A. N.,, and M. Y. Galperin. 2002. A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. Nucleic Acids Res. 30:24532459.
49. Noyes, H. E.,, W. L. Pritchard,, F. B. Brinkley,, and J. A. Mendelson. 1964. Analyses of wound exudates for clostridial toxins. J. Bacteriol. 87:623629.
50. Ohtani, K.,, H. I. Kawsar,, K. Okumura,, H. Hayashi,, and T. Shimizu. 2003. The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. FEMS Microbiol. Lett. 222:137141.
51. Otagiri, N.,, J. Soeda,, T. Yoshino,, H. Chisuwa,, H. Aruga,, H. Kasai,, M. Komatsu,, T. Ohmori,, K. Tauchi,, and H. Koike. 2004. Primary abscess of the omentum: report of a case. Surg. Today 34:261264.
52. Regal, J. F.,, and F. E. Shigeman. 1980. The effect of phospholipase C on the responsiveness of cardiac receptors. I. Inhibition of the adrenergic inotropic response. J. Pharmacol. Exp. Ther. 214:282290.
53. Rossjohn, J.,, S. C. Feil,, W. J. McKinstry,, R. K. Tweten,, and M. W. Parker. 1997. Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 88:685692.
54. Schickner, D. C.,, A. Yarkoni,, P. Langer,, L. Frohman,, X. Chen,, R. Folberg,, and L. V. Del Priore. 2004. Panophthalmitis due to clostridium septicum. Am. J. Ophthalmol. 137:942944.
55. Sellman, B. R.,, B. L. Kagan,, and R. K. Tweten. 1997. Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum alpha toxin. Mol. Microbiol. 23:551558.
56. Shatursky, O.,, A. Heuck,, L. Shepard,, J. Rossjohn,, M. Parker,, A. Johnson,, and R. Tweten. 1999. The mechanism of membrane insertion of a cholesterol-dependent cytolysin: a novel paradigm for pore-foring toxins. Cell 99:293299.
57. Shepard, L. A.,, A. P. Heuck,, B. D. Hamman,, J. Rossjohn,, M. W. Parker,, K. R. Ryan,, A. E. Johnson,, and R. K. Tweten. 1998. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfingolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:1456314574.
58. Shimizu, T.,, W. Ba-Thein,, M. Tamaki,, and H. Hayashi. 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in Clostridium perfringens. J. Bacteriol. 176:16161623.
59. Shimizu, T.,, A. Okabe,, J. Minami,, and H. Hayashi. 1991. An upstream regulatory sequence stimulates expression of the perfringolysin O gene of Clostridium perfringens. Infect. Immun. 59:137142.
60. Shimizu, T.,, A. Okabe,, and J. I. Rood,. 1997. Regulation of toxin production in C. perfringens, p. 451470. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
61. Shimizu, T.,, H. Yaguchi,, K. Ohtani,, S. Banu,, and H. Hayashi. 2002. Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins. Mol. Microbiol. 43:257265.
62. Smith, L. D. S., 1975. Clostridial wound infections, p. 321324. In L. D. S. Smith (ed.), The Pathogenic Anaerobic Bacteria. Charles C. Thomas, Springfield, Ill.
63. Smith, L. D. S., 1975. Clostridium, p. 109114. In L. D. S. Smith (ed.), The Pathogenic Anaerobic Bacteria. Charles C. Thomas, Springfield, Ill.
64. Stevens, D. L., 1995. Clostridial infections, p. 13.113.9. In D. L. Stevens, and G. L. Mandell (ed.), Atlas of Infectious Diseases. Churchill Livingstone, Ltd., Philadelphia, Pa.
65. Stevens, D. L., 1996. Clostridial myonecrosis and other clostridial diseases, p. 20902093. In J. C. Bennett, and F. Plum (ed.), Cecil Textbook of Medicine. The W. B. Saunders Co., Philadelphia, Pa.
66. Stevens, D. L. Unpublished data.
67. Stevens, D. L.,, and A. E. Bryant. 1997. Pathogenesis of Clostridium perfringens infection: mechanisms and mediators of shock. Clin. Infect. Dis. 25:S160S164.
68. Stevens, D. L.,, A. E. Bryant,, K. Adams,, and J. T. Mader. 1993. Evaluation of hyperbaric oxygen therapy for treatment of experimental Clostridium perfringens infection. Clin. Infect. Dis. 17:231237.
69. Stevens, D. L.,, A. E. Gibbons,, and R. A. Bergstrom. 1989. Ultrastructural changes in human granulocytes induced by purified exotoxins from Clostridium perfringens, abstr. J-17, p. 244. Abstr. 89th Annu. Meet. Am. Soc. Microbiol. 1989. American Society for Microbiology, Washington, D.C.
70. Stevens, D. L.,, B. M. Laine,, and J. E. Mitten. 1987. Comparison of single and combination antimicrobial agents for prevention of experimental gas gangrene caused by Clostridium perfringens. Antimicrob. Agents Chemother. 31:312316.
71. Stevens, D. L.,, K. A. Maier,, B. M. Laine,, and J. E. Mitten. 1987. Comparison of clindamycin, rifampin, tetracycline, metronidazole, and penicillin for efficacy in prevention of experimental gas gangrene due to Clostridium perfringens. J. Infect. Dis. 155:220228.
72. Stevens, D. L.,, K. A. Maier,, and J. E. Mitten. 1987. Effect of antibiotics on toxin production and viability of Clostridium perfringens. Antimicrob. Agents Chemother. 31:213218.
73. Stevens, D. L.,, J. Mitten,, and C. Henry. 1987. Effects of alpha and theta toxins from Clostridium perfringens on human polymorphonuclear leukocytes. J. Infect. Dis. 156:324333.
74. Stevens, D. L.,, R. W. Titball,, M. Jepson,, C. R. Bayer,, S. M. Hayes-Schroer,, and A. E. Bryant. 2004. Immunization with the C-domain of alpha-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium perfringens. J. Infect. Dis. 190:767773.
75. Stevens, D. L.,, B. E. Troyer,, D. T. Merrick,, J. E. Mitten,, and R. D. Olson. 1988. Lethal effects and cardiovascular effects of purified alpha- and theta-toxins from Clostridium perfringens. J. Infect. Dis. 157:272279.
76. Stevens, D. L.,, R. K. Tweten,, M. M. Awad,, J. I. Rood,, and A. E. Bryant. 1997. Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 176:189195.
77. Stockinger, Z. T.,, and R. L. Corsetti. 2004. Pneumoperitoneum from gas gangrene of the pancreas: three unusual findings in a single case. J. Gastrointest. Surg. 8:489492.
78. Temple, A. M.,, and N. J. Thomas. 2004. Gas gangrene secondary to Clostridium perfringens in pediatric oncology patients. Pediatr. Emerg. Care 20:457459.
79. Titball, R. W.,, D. L. Leslie,, S. Harvey,, and D. Kelly. 1991. Hemolytic and sphingomyelinase activities of Clostridium perfringens alpha-toxin are dependent on a domain homologous to that of an enzyme from the human arachidonic acid pathway. Infect. Immun. 59:18721874.
80. Toyonaga, T.,, O. Matsushita,, S.-I. Katayama,, J. Minami,, and A. Okabe. 1992. Role of the upstream regulon containing an intrinsic DNA curvature in the negative regulation of the phospholipase C gene of Clostridium perfringens. Microbiol. Immunol. 36:603613.
81. van Unnik, A. J. M. 1965. Inhibition of toxin production in Clostridium perfringens in vitro by hyperbaric oxygen. Antonie Leeuwenhoek 31:181186.
82. Whatley, R. E.,, G. A. Zimmerman,, D. L. Stevens,, C. J. Parker,, T. M. McIntyre,, and S. M. Prescott. 1989. The regulation of platelet activating factor production in endothelial cells—the role of calcium and protein kinase C. J. Biol. Chem. 264:63256333.
83. Williamson, E. D.,, and R. W. Titball. 1993. A genetically engineered vaccine against alpha-toxin of Clostridium perfringens protects against experimental gas gangrene. Vaccine 11:12531258.
84. Zink, J. M.,, R. Singh-Parikshak,, A. Sugar,, and M. W. Johnson. 2004. Clostridium sordellii endophthalmitis after suture removal from a corneal transplant. Cornea 23:522523.

Tables

Generic image for table
TABLE 1

Histotoxic clostridial infections

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Generic image for table
TABLE 2

Major virulence factors of the histotoxic clostridia

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58
Generic image for table
TABLE 3

Anti-inflammatory effects of alpha- and theta-toxins

Adapted from reference .

Citation: Stevens D, Rood J. 2006. Histotoxic Clostridia, p 715-725. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch58

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error