Chapter 60 : Actinomyces and Arcanobacterium spp.: Host-Microbe Interactions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Actinomyces and Arcanobacterium spp.: Host-Microbe Interactions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap60-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap60-2.gif


This chapter describes the current knowledge of the mechanisms of and spp. host-microbe interactions, with an emphasis on recent advances in the molecular analyses of toxins and factors involved in bacterial adherence. Members of the genus are nonmotile and non-spore-forming and although facultative anaerobes, most species grow best under anaerobic conditions. Numerous in vivo and in vitro studies have demonstrated the significance of spp. in the initiation and progression of plaque development. Adhesion of spp. to host epithelial, phagocytic, and red blood (hemagglutination) cells requires the action of neuraminidase to expose cryptic host cell receptors. The major receptor on host polymorphonuclear leukocytes (PMNs) was identified as CD43 (leukosialin). The levansucrases (fructosyltransferases) from spp. catabolize sucrose to form ß2,6-linked (levans or fructans) or β2,1-linked (inulin) homopolymers of fructose. Three recently described spp., , , and , are also associated with skin, genital, urinary, and reproductive tract infections. The genus is closely related to that of , so much so in fact that until recently, members of these genera were intermingled with each other phylogenetically. The two predominant species within the arcanobacteria are the ubiquitous animal commensal and opportunistic pathogen and the human pathogen . Further research investigating the mechanisms and regulation of the adhesins of and spp., as well as their interactions with other bacteria in polymicrobial infections, will be necessary to complete the understanding of disease pathogenesis.

Citation: Jost B, Billington S. 2006. Actinomyces and Arcanobacterium spp.: Host-Microbe Interactions, p 738-749. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch60

Key Concept Ranking

Bacterial Proteins
Microbial Ecology
Bacterial Pathogenesis
Tumor Necrosis Factor alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Organization of the fimbrial operons from spp. and . The size and direction of transcription of each gene are shown by the arrows. Genes with similar functions are shaded as follows: hatched lines, adhesin-minor subunit-accessory protein; white, major structural subunit; black, sortase; stippled, pre-pilin peptidase-like protein. Bar, 1 kb (lower right).

Citation: Jost B, Billington S. 2006. Actinomyces and Arcanobacterium spp.: Host-Microbe Interactions, p 738-749. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch60
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Banck, G.,, and M. Nyman. 1986. Tonsillitis and rash associated with Corynebacterium haemolyticum. J. Infect. Dis. 154:10371040.
2. Bergeron, L. J.,, E. Morou-Bermudez,, and R. A. Burne. 2000. Characterization of the fructosyltransferase gene of Actinomyces naeslundii WVU45. J. Bacteriol. 182:36493654.
3. Billington, S. J.,, B. H. Jost,, W. A. Cuevas,, K. R. Bright,, and J. G. Songer. 1997. The Arcanobacterium (Actinomyces) pyogenes hemolysin, pyolysin, is a novel member of the thiol-activated cytolysin family. J. Bacteriol. 179:61006106.
4. Billington, S. J.,, B. H. Jost,, and J. G. Songer. 2000. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol. Lett. 182:197205.
5. Billington, S. J.,, J. G. Songer,, and B. H. Jost. 2002. The variant undecapeptide sequence of the Arcanobacterium pyogenes haemolysin, pyolysin, is required for full cytolytic activity. Microbiology 148:39473954.
6. Brennan, M. J.,, J. O. Cisar,, and A. L. Sandberg. 1986. A 160-kilodalton epithelial cell surface glycoprotein recognized by plant lectins that inhibit the adherence of Actinomyces naeslundii. Infect. Immun. 52:840845.
7. Brennan, M. J.,, J. O. Cisar,, A. E. Vatter,, and A. L. Sandberg. 1984. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells. Infect. Immun. 46:459464.
8. Burne, R. A.,, and Y. Y. Chen. 2000. Bacterial ureases in infectious diseases. Microbes Infect. 2:533542.
9. Carlén, A.,, S. G. Rüdiger,, I. Loggner,, and J. Olsson. 2003. Bacteria-binding plasma proteins in pellicles formed on hydroxyapatite in vitro and on teeth in vivo. Oral Microbiol. Immunol. 18:203207.
10. Carlson, P.,, K. Lounatmaa,, and S. Kontiainen. 1974. Biotypes of Arcanobacterium haemolyticum. J. Clin. Microbiol. 32:16541657.
11. Cisar, J. O.,, and A. E. Vatter. 1979. Surface fibrils (fimbriae) of Actinomyces viscosus T14V. Infect. Immun. 24:523531.
12. Collins, M. D.,, D. Jones,, and G. M. Schofield. 1982. Reclassification of ‘Corynebacterium haemolyticum’ (MacLean, Liebow & Rosenberg) in the genus Arcanobacterium gen. nov. as Arcanobacterium haemolyticum nom. rev., comb. nov. J. Gen. Microbiol. 128:12791281.
13. Costello, A. H.,, J. O. Cisar,, P. E. Kolenbrander,, and O. Gabriel. 1979. Neuraminidase-dependent hemagglutination of human erythrocytes by human strains of Actinomyces viscosus and Actinomyces naeslundii. Infect. Immun. 26:563572.
14. Coyle, M. B.,, and B. A. Lipsky. 1990. Coryneform bacteria in infectious diseases: clinical and laboratory aspects. Clin. Microbiol. Rev. 3:227246.
15. Cuevas, W. A.,, and J. G. Songer. 1993. Arcanobacterium haemolyticum phospholipase D is genetically and functionally similar to Corynebacterium pseudotuberculosis phospholipase D. Infect. Immun. 61:43104316.
16. Ding, H.,, and C. Lämmler. 1996. Purification and further characterization of a haemolysin of Actinomyces pyogenes. J. Vet. Med. B 43:179188.
17. Donkersloot, J. A.,, J. O. Cisar,, M. E. Wax,, R. J. Harr,, and B. M. Chassy. 1985. Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type 2 fimbriae. J. Bacteriol. 162:10751078.
18. Ellen, R. P., 1982. Oral colonization by gram-positive bacteria significant to periodontal disease, p. 98111. In R. J. Genco, and S. E. Mergenhagen (ed.), Host-Parasite Interactions in Periodontal Disease. American Society for Microbiology, Washington, D.C.
19. Esmay, P. A.,, S. J. Billington,, M. A. Link,, J. G. Songer,, and B. H. Jost. 2003. The Arcanobacterium pyogenes collagen binding protein, CbpA, promotes adhesion to host cells. Infect. Immun. 71:43684374.
20. Frandsen, E. V. G. 1994. Carbohydrate depletion of immunoglobulin A1 by oral species of gram-positive rods. Oral Microbiol. Immunol. 9:352358.
21. Funke, G.,, A. von Graevenitz,, J. E. Clarridge III,, and K. A. Bernard. 1997. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 10:125159.
22. Hallberg, K.,, C. Holm,, U. Ohman,, and N. Strömberg. 1998. Actinomyces naeslundii displays variant fimP and fimA fimbrial subunit genes corresponding to different types of acidic proline-rich protein and β-linked galactosamine binding specificity. Infect. Immun. 66:44034410.
23. Hawkins, B. W.,, R. D. Cannon,, and H. F. Jenkinson. 1993. Interactions of Actinomyces naeslundii strains T14V and ATCC 12104 with saliva, collagen and fibrinogen. Arch. Oral Biol. 38:533535.
24. Hoflack, L.,, and M. K. Yeung. 2001. Actinomyces naeslundii fimbrial protein Orf977 shows similarity to a streptococcal adhesin. Oral Microbiol. Immunol. 16:319320.
25. Johnson, J. L.,, L. V. Moore,, B. Kaneko,, and W. E. Moore. 1990. Actinomyces georgiae sp. nov., Actinomyces gerencseriae sp. nov., designation of two genospecies of Actinomyces naeslundii, and inclusion of A. naeslundii serotypes II and III and Actinomyces viscosus serotype II in A. naeslundii genospecies 2. Int. J. Syst. Bacteriol. 40:273286.
26. Jost, B. H.,, and S. J. Billington. Unpublished data.
27. Jost, B. H.,, K. W. Post,, J. G. Songer,, and S. J. Billington. 2002. Isolation of Arcanobacterium pyogenes from the porcine gastric mucosa. Vet. Res. Comm. 26:419425.
28. Jost, B. H.,, J. G. Songer,, and S. J. Billington. 1999. An Arcanobacterium (Actinomyces) pyogenes mutant deficient in production of the pore-forming cytolysin pyolysin has reduced virulence. Infect. Immun. 67:17231728.
29. Jost, B. H.,, J. G. Songer,, and S. J. Billington. 2001. Cloning, expression and characterization of a neuraminidase gene from Arcanobacterium pyogenes. Infect. Immun. 69:44304437.
30. Jost, B. H.,, J. G. Songer,, and S. J. Billington. 2002. Identification of a second Arcanobacterium pyogenes neuraminidase, and involvement of neuraminidase activity in host cell adhesion. Infect. Immun. 70:11061112.
31. Jost, B. H.,, H. T. Trinh,, J. G. Songer,, and S. J. Billington. 2003. Immunization with genetic toxoids of the Arcanobacterium pyogenes cholesterol-dependent cytolysin, pyolysin, protects mice against infection. Infect. Immun. 71:29662969.
32. Klier, C. M.,, A. G. Roble,, and P. E. Kolenbrander. 1998. Actinomyces serovar WVA963 coaggregation-defective mutant strain PK2407 secretes lactose-sensitive adhesin that binds to coaggregation partner Streptococcus oralis 34. Oral Microbiol. Immunol. 13:337340.
33. Kolenbrander, P. E., 1991. Coaggregation: adherence in the human oral microbial ecosystem, p. 309329. In M. Dworkin (ed.), Microbial Cell-Cell Interactions. American Society for Microbiology, Washington, D.C.
34. Lämmler, C. 1994. Studies on biochemical and serological characteristics and binding properties of Arcanobacterium haemolyticum for human plasma proteins. Med. Microbiol. Lett. 3:6671.
35. Lämmler, C.,, and H. Ding. 1994. Characterization of fibrinogen-binding properties of Actinomyces pyogenes. J. Vet. Med. B 41:588596.
36. Li, T.,, I. Johansson,, D. I. Hay,, and N. Strömberg. 1999. Strains of Actinomyces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Infect. Immun. 67:20532059.
37. Li, T.,, M. K. Khah,, S. Slavnic,, I. Johansson,, and N. Strömberg. 2001. Different type 1 fimbrial genes and tropisms of commensal and potentially pathogenic Actinomyces spp. with different salivary acidic proline-rich protein and statherin ligand specificities. Infect. Immun. 69:72247233.
38. Linder, R. 1997. Rhodococcus equi and Arcanobacterium haemolyticum: two “coryneform” bacteria increasingly recognized as agents of human infection. Emerg. Infect. Dis. 3:145153.
39. Liu, T.,, R. J. Gibbons,, D. I. Hay,, and Z. Skobe. 1991. Binding of Actinomyces viscosus to collagen: association with the type 1 fimbrial adhesin. Oral Microbiol. Immunol. 6:15.
40. Loo, C. Y.,, M. D. P. Willcox,, and K. W. Knox. 1994. Surface-associated properties of Actinomyces strains and their potential relation to pathogenesis. Oral Microbiol. Immunol. 9:1218.
41. MacLean, P. D.,, A. A. Liebow,, and A. A. Rosenberg. 1946. A haemolytic bacterium resembling Corynebacterium ovis and Corynebacterium pyogenes in man. J. Infect. Dis. 79:6990.
42. Mazmanian, S. K.,, H. Ton-That,, and O. Schneewind. 2001. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40:10491057.
43. McNab, R.,, H. Forbes,, P. S. Handley,, D. M. Loach,, G. W. Tannock,, and H. F. Jenkinson. 1999. Cell wall-anchored CshA polypeptide α259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181:30873095.
44. Moncla, B. J.,, and P. Braham. 1989. Detection of sialidase (neuraminidase) activity in Actinomyces species by using 2′-(4-methylumbelliferyl)α-D-N-acetylneuraminic acid in a filter paper spot test. J. Clin. Microbiol. 27:182184.
45. Moore, W. E. C.,, and L. V. H. Moore. 1994. The bacteria of periodontal diseases. Periodontol. 2000 5:6677.
46. Morou-Bermudez, E.,, and R. A. Burne. 2000. Analysis of urease expression in Actinomyces naeslundii WVU45. Infect. Immun. 68:66706676.
47. Morou-Bermudez, E.,, and R. A. Burne. 1999. Genetic and physiologic characterization of urease of Actinomyces naeslundii. Infect. Immun. 67:504512.
48. Mueller, H. E. 1973. The occurrence of neuraminidase and acylneuraminate pyruvate-lyase in Corynebacterium haemolyticum and Corynebacterium pyogenes. Zentralbl. Bakteriol. Orig. A 225:5965.
49. Narayanan, S.,, T. G. Nagaraja,, N. Wallace,, J. Staats,, M. M. Chengappa,, and R. D. Oberst. 1998. Biochemical and ribotypic comparison of Actinomyces pyogenes and A. pyogenes-like organisms from liver abscesses, ruminal wall, and ruminal contents of cattle. Am. J. Vet. Res. 59:271276.
50. Nesbitt, W. E.,, J. E. Beem,, K. P. Leung,, S. Stroup,, R. Swift,, W. P. McArthur,, and W. B. Clark. 1996. Inhibition of adherence of Actinomyces naeslundii (Actinomyces viscosus) T14V-J1 to saliva-treated hydroxyapatite by a monoclonal antibody to type 1 fimbriae. Oral Microbiol. Immunol. 11:5158.
51. Norman, J. M.,, K. L. Bunny,, and P. M. Giffard. 1995. Characterization of levJ, a sucrase/fructanase-encoding gene from Actinomyces naeslundii T14V, and comparison of its product with other sucrose-cleaving enzymes. Gene 152:9398.
52. Nyman, M.,, K. R. Alugupalli,, S. Stromberg,, and A. Forsgren. 1997. Antibody response to Arcanobacterium haemolyticum infection in humans. J. Infect. Dis. 175:15151518.
53. Nyvad, B.,, and M. Kilian. 1987. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95:369380.
54. Ochiai, K.,, T. Kurita-Ochiai,, Y. Kamino,, and T. Ikeda. 1993. Effect of co-aggregation on the pathogenicity of oral bacteria. J. Med. Microbiol. 39:183190.
55. Österlund, A. 1995. Are penicillin treatment failures in Arcanobacterium haemolyticum pharyngotonsillitis caused by intracellularly residing bacteria Scand. J. Infect. Dis. 27:131134.
56. Palmer, R. J., Jr.,, K. Kazmerzak,, M. C. Hansen,, and P. E. Kolenbrander. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect. Immun. 69:57945804.
57. Pascual Ramos, C.,, G. Foster,, and M. D. Collins. 1997. Phylogenetic analysis of the genus Actinomyces based on 16S rRNA gene sequences: description of Arcanobacterium phocae sp. nov., Arcanobacterium bernardiae comb. nov., and Arcanobacterium pyogenes comb. nov. Int. J. Syst. Bacteriol. 47:4653.
58. Patti, J. M.,, B. L. Allen,, M. J. McGavin,, and M. Höök. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48:585617.
59. Rozen, R.,, G. Bachrach,, M. Bronshteyn,, I. Gedalia,, and D. Steinberg. 2001. The role of fructans on dental biofilm formation by Streptococcus sobrinus, Streptococcus mutans, Streptococcus gordonii and Actinomyces viscosus. FEMS Microbiol. Lett. 195:205210.
60. Rudnick, S. T.,, B. H. Jost,, J. G. Songer,, and S. J. Billington. 2003. The gene encoding pyolysin, the poreforming toxin of Arcanobacterium pyogenes, resides within a genomic islet flanked by essential genes. FEMS Microbiol. Lett. 225:241247.
61. Ruhl, S.,, J. O. Cisar,, and A. L. Sandberg. 2000. Identification of polymorphonuclear leukocyte and HL-60 cell receptors for adhesins of Streptococcus gordonii and Actinomyces naeslundii. Infect. Immun. 68:63466354.
62. Sandberg, A. L.,, L. L. Mudrick,, J. O. Cisar,, M. J. Brennan,, S. E. Mergenhagen,, and A. E. Vatter. 1986. Type 2 fimbrial lectin-mediated phagocytosis of oral Actinomyces spp. by polymorphonuclear leukocytes. Infect. Immun. 54:472476.
63. Saunders, J. M.,, and C. H. Miller. 1983. Neuraminidase-activated attachment of Actinomyces naeslundii ATCC 12104 to human buccal epithelial cells. J. Dent. Res. 62: 10381040.
64. Schaufuss, P.,, R. Sting,, and C. Lämmler. 1989. Isolation and characterization of an extracellular protease of Actinomyces pyogenes. Zentralbl. Bakteriol. 271:452459.
65. Sneath, P. H. A.,, N. S. Mair,, M. E. Sharpe,, and J. G. Holt. 1986. Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams and Wilkins, Baltimore, Md.
66. Socransky, S. S.,, and A. D. Haffajee. 1991. Microbial mechanisms in the pathogenesis of destructive periodontal diseases: a critical assessment. J. Periodont. Res. 26:195212.
67. Soucek, A.,, and A. Souckova. 1974. Toxicity of bacterial sphingomyelinases D. J. Hyg. Epidemiol. Microbiol. Immunol. 18:327335.
68. Stenudd, C.,, A. Nordlund,, M. Ryberg,, I. Johansson,, C. Kallestal,, and N. Stromberg. 2001. The association of bacterial adhesion with dental caries. J. Dent. Res. 80:20052010.
69. Takeuchi, S.,, R. Azuma,, Y. Nakajima,, and T. Suto. 1979. Diagnosis of Corynebacterium pyogenes in pigs by immunodiffusion test with protease antigen. Natl. Inst. Anim. Health Q. 19:7782.
70. Takeuchi, S.,, T. Kaidoh,, and R. Azuma. 1995. Assay of proteases from Actinomyces pyogenes isolated from pigs and cows by zymography. J. Vet. Med. Sci. 57:977979.
71. Timoney, J. F.,, J. H. Gillespie,, F. W. Scott,, and J. E. Barlough. 1988. Hagan and Bruner’s Microbiology and Infectious Diseases of Domestic Animals, 8th ed. Cornell University Press,Ithaca, N.Y.
72. Ton-That, H.,, L. A. Marraffini,, and O. Schneewind. 2004. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol. Microbiol. 53:251261.
73. Ton-That, H.,, and O. Schneewind. 2004. Assembly of pili in gram-positive bacteria. Trends Microbiol. 12:228234.
74. Ton-That, H.,, and O. Schneewind. 2003. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol. Microbiol. 50:14291438.
75. Wu, H.,, and P. M. Fives-Taylor. 2001. Molecular strategies for fimbrial expression and assembly. Crit. Rev. Oral Biol. Med. 12:101115.
76. Yanagawa, R.,, and E. Honda. 1976. Presence of pili in species of human and animal parasites and pathogens of the genus Corynebacterium. Infect. Immun. 13:12931295.
77. Yeung, M. 1993. Complete nucleotide sequencing of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp. Infect. Immun. 61:109116.
78. Yeung, M. K. 1992. Conservation of an Actinomyces viscosus T14V type 1 fimbrial subunit homolog among divergent groups of Actinomyces spp. Infect. Immun.60:10471054.
79. Yeung, M. K. 1999. Molecular and genetic analyses of Actinomyces spp. Crit. Rev. Oral Biol. Med. 10:120138.
80. Yeung, M. K.,, B. M. Chassy,, and J. O. Cisar. 1987. Cloning and expression of a type 1 fimbrial subunit of Actinomyces viscosus T14V. J. Bacteriol. 169:16781683.
81. Yeung, M. K.,, and J. O. Cisar. 1988. Cloning and nucleotide sequence of a gene for Actinomyces naeslundii WVU45 type 2 fimbriae. J. Bacteriol. 170:38033809.
82. Yeung, M. K.,, J. A. Donkersloot,, J. O. Cisar,, and P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect. Immun. 66:14821491.
83. Yeung, M. K.,, and P. A. Ragsdale. 1997. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect. Immun. 65:26292639.


Generic image for table

fimbrial proteins

Citation: Jost B, Billington S. 2006. Actinomyces and Arcanobacterium spp.: Host-Microbe Interactions, p 738-749. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch60
Generic image for table

TABLE 2 Known and putative virulence factors of

Citation: Jost B, Billington S. 2006. Actinomyces and Arcanobacterium spp.: Host-Microbe Interactions, p 738-749. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch60

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error