1887

Chapter 61 : The Pathogenesis of Nocardia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

The Pathogenesis of Nocardia, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap61-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap61-2.gif

Abstract:

Nocardiae are gram-positive, partially acid-fast, filamentous bacteria that grow by apical extension, forming elongated cells with lateral branching. Most species of have been recovered from soil, plant material, and water in most regions of the world. Diseases in humans caused by nocardiae may be divided into at least six general categories based on the route of infection, site of disease, and subsequent pathological responses. They are pulmonary nocardiosis, extrapulmonary nocardiosis, systemic nocardiosis, central nervous system (CNS) nocardiosis, cutaneous, subcutaneous, and lymphocutaneous nocardiosis. A mycetoma is a chronic, progressive, pyogranulomatous disease that usually develops at the site of a localized injury such as a thorn prick. , , and have caused significant outbreaks worldwide in dairy cattle, usually in the form of mastitis. Nocardiae are facultatively intracellular pathogens that resist the microbicidal activities of polymorphonuclear neutrophils (PMNs). Concentrated culture filtrates from GUH-2 grown in a chemically defined medium also induced apoptosis, as well as dopamine depletion. Cells of GUH-2 in the log phase of growth adhered by way of the filament tip to the surface of both pulmonary epithelial cells (Clara cells) and brain capillary endothelial cells in mice. The differential and selective adherence displayed by nocardiae both in vitro and in vivo suggested distinct multiple ligands for host cells on the nocardial surface.

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61

Key Concept Ranking

Immune Systems
0.56617206
Infectious Diseases
0.53848094
Tumor Necrosis Factor
0.43653858
Chemicals
0.42785978
Nocardia asteroides
0.41367403
0.56617206
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General characteristics of nocardiae. (A) Phase-contrast micrograph of spp. grown on tryptone agar for 12 h. Note the typical branching, filamentous growth characterized as nocardioform morphology. Bar, 10 μm. (Reprinted from reference with permission from the publisher.) (B) Typical colonial morphology of grown on glucose yeast extract agar at 37°C for 14 days. Bar, 1 cm. (C) Gram stain of in a smear from an abscess. Note the typical beaded appearance of the branching filaments. Bar, 15 μm.

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Electron micrographs of phagosome-lysosome interactions in activated rabbit alveolar macrophages infected with GUH-2. The lysosomes were prelabeled with horseradish peroxidase for the purpose of ultrastructural and histochemical localization. (A) Section showing inhibition of phagosome-lysosome fusion and the intact appearance of the nocardiae. Many of the bacteria appear to be surrounded by a large granular zone (GZ) that prevents contact between the lysosome (L) and the phagosome (open arrow). The nocardiae were preincubated with 20% normal rabbit serum. Bar, 1.0 μm. (Reprinted from reference with permission from the publisher.) (B) Phagosome-lysosome fusion and bacterial cellular damage are prominent (arrows) in the same preparation of macrophages shown in panel A, except that these phagocytes were incubated with specifically primed lymph node lymphocytes; the bacteria were preincubated with sera and pulmonary lavage fluid from immunized rabbits. Note that the extensive bacterial damage and enhanced phagosome-lysosome fusion presented in this figure did not occur if any one of the components (primed lymphocytes, antibody, or pulmonary lavage fluid from immunized rabbits) were deleted. Bar, 1.0 μm. (Reprinted from reference with permission from the publisher.)

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The comparative interactions of with different types of host cells grown in tissue culture. (A) Apical attachment of a log-phase nocardial filament to the surface of a HeLa cell. Note that this tip-associated adherence precedes penetration and invasion. (Reprinted from reference with permission from the publisher.) (B) Apical penetration of the HeLa cell by three nocardial filaments (arrows). (Reprinted from reference with permission from the publisher.) (C) Longitudinal adherence of a log-phase cell of to the surface of a HeLa cell. Note that only the bacterial filaments that attach by way of the filament tip appear to penetrate into the host cell. Bar, 1.0 μm. (Reprinted from reference with permission from the publisher.) (D) Nocardial filament (N) tip invading through the surface (arrow) of an astrocytoma cell (CCF-STTG1) even after pretreatment of the tissue culture with cytochalasin. Bar, 1.0 μm. (Reprinted from reference with permission from the publisher.) (E) Longitudinal association of stationary-phase bacilli to the microvilli of the HeLa cell. Bacteria attached in this manner do not invade the host cell. (Reprinted from reference with permission from the publisher.) (F) Light micrograph of stationary-phase cells of GUH-2 adherent to the surface of type II astroglia (II). Bar, 10.0 μm. Note the arrangement of bacteria clustered around the nuclear region (N). Note, in contrast, the adjacent cuboidal type I astroglia ( ) with a total absence of adherent nocardiae.

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Scanning electron micrographs of differential attachment to and penetration of cells within the brain and lungs of mice by log-phase cells of GUH-2. (A) Apical penetration of capillary endothelial cells within an arteriole in the thalamus by nocardial filaments (arrows). Bar, 1.0 μm. (Reprinted from reference with permission from the publisher.) (B) High-magnification view of two nocardial filaments penetrating into the endothelium of an arteriole in the region of the hypothalamus (arrows). Bar, 1.0 μm. (Reprinted from reference with permission from the publisher.) (C) Nocardial interactions in the bronchiole of a C57BL/6 mouse 3 h after intranasal administration of log-phase cells of GUH-2. Note the association with nonciliated epithelial cells and apical penetration of Clara cells (arrowheads). Bar, 1.0 μm. (D) High-magnification view of nocardial penetration into bronchiolar epithelial cells as shown in panel C. Bar, 1.0 μm.

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Comparative ultrastructure of GUH-2 growing within cells of the brain of a mouse and a monkey. Note that there is no inflammatory infiltration at the site of nocardial invasion in either animal. (A) Cell of GUH-2 growing within a neuron in the midbrain of a mouse 24 h after tail vein injection of a suspension of log-phase nocardiae. Note the numerous layers of membrane surrounding the ultrastructurally intact bacterium, with the innermost layer of membrane tightly adherent to the bacterial surface (arrow). N, nocardial filament. Bar, 0.5 μm. (Reprinted from reference with permission from the publisher.) (B) A cross section of a nocardial cell growing within the brain of a monkey 48 h after i.v. injection (leg vein) of a suspension of log-phase cells of GUH-2 as in panel A. Note the numerous layers of membrane, with the innermost layer adherent to the bacterial surface (arrow). Bar, 0.5 μm.

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Confocal micrographs of nocardia-inducedapoptosis. (A) Apoptosis of dopaminergic neurons in the substantianigra in a head-shake mouse 14 days after infection.The red stain localizes dopaminergic neurons. Free 3′-OH endsof DNA from apoptotic nuclei were labeled with nucleotidesconjugated to fluorescein isothiocyanate (green). (B) Uninfectedcontrol. Dopaminergic neurons in the substantia nigrain a healthy uninfected mouse. The red stain localizes dopaminergicneurons. Note that there is no apoptosis. (Reproduced from reference .)

Citation: Beaman B. 2006. The Pathogenesis of Nocardia, p 750-766. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch61
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap61
1. Arenas, R. 1997. Mycetoma vs. nocardiosis. J. Dermatol. 24:68.
2. Baba, T.,, Y. Natsuhara,, K. Kaneda,, and I. Yano. 1997. Granuloma formation activity and mycolic acid composition of mycobacterial cord factor. Cell. Mol. Life Sci. 53:227232.
3. Beaman, B. L. 1993. Ultrastructural analysis of growth of Nocardia asteroides during invasion of the murine brain. Infect. Immun. 61:274283.
4. Beaman, B. L. 1996. Differential binding of Nocardia asteroides in the murine lung and brain suggests multiple ligands on the nocardial surface. Infect. Immun. 64:48594862.
5. Beaman, B. L.,, and L. Beaman. 1994. Nocardia species: host-parasite relationships. Clin. Microbiol. Rev. 7:213264.
6. Beaman, B. L.,, and D. M. Shankel. 1969. Ultrastructure of Nocardia cell growth and development on defined and complex agar media. J. Bacteriol. 99:876884.
7. Beaman, B. L.,, and A. M. Sugar. 1983. Nocardia in naturally acquired and experimental infections in animals. J. Hyg. 91:393419.
8. Beaman, B. L.,, and L. Beaman. 1998. Filament tip-associated antigens (FTAAs) involved in adherence to and invasion of pulmonary epithelia in vivo and HeLa cells in vitro by Nocardia asteroides. Infect. Immun. 66:46764689.
9. Beaman, B. L.,, and L. V. Beaman,. 2000. Nocardia asteroides as an invasive, intracellular pathogen of the brain and lungs, p. 167198. In J. Hacker, and T. Oelschlaeger (ed.), Bacterial Invasion into Eukaryotic Cells: Subcellular Biochemistry. Springer-Verlag, Berlin, Germany.
10. Beaman, B. L.,, D. Canfield,, J. Anderson,, B. Pate,, and D. Calne. 2000. Site specific invasion of the basal ganglia by Nocardia asteroides GUH-2. Med. Microbiol. Immunol. 188:161168.
11. Beaman, B. L.,, and S. A. Ogata. 1993. Ultrastructural analysis of attachment to and penetration of capillaries in the murine pons, midbrain, thalamus and hypothalamus by Nocardia asteroides. Infect. Immun. 61:955965.
12. Beaman, L.,, and B. L. Beaman. 1993. Interaction of Nocardia asteroides with murine glia cells in culture. Infect. Immun. 61:343347.
13. Beaman, L.,, and B. L. Beaman. 1994. Differences in the interactions of Nocardia asteroides with macrophage, endothelial, and astrocytoma cell lines. Infect. Immun. 62:17871798.
14. Beckman, E. M.,, S. A. Porcelli,, C. T. Morita,, S. M. Behar,, S. T. Furlong,, and M. B. Brenner. 1994. Recognition of a lipid antigen by CD1-restricted αβ+T-cells. Nature 372:691694.
15. Behling, C. A.,, B. Bennett,, K. Takayama,, and R. L. Hunter. 1993. Development of a trehalose 6,6'-dimycolate model which explains cord formation by Mycobacterium tuberculosis. Infect. Immun. 61:22962303.
16. Brown, J. M.,, K. N. Pham,, M. M. McNeil,, and B. A. Lasker. 2004. Rapid identification of Nocardia farcinica clinical isolates by a PCR assay targeting a 314-base-pair species-specific DNA fragment. J. Clin. Microbiol. 42:36553660.
17. Buckley, J. A.,, A. R. Padhani,, and J. E. Kuhlman. 1995. CT features of pulmonary nocardiosis. J. Comput. Assist. Tomogr. 19:726732.
18. Camicioli, R. 2002. Identification of parkinsonism and Parkinson’s disease. Drugs Today (Barcelona) 38:677686.
19. Camp, D. M.,, D. A. Loeffler,, B. A. Razoky,, S. Tam,, B. L. Beaman,, and P. A. LeWitt. 2003. Nocardia asteroides culture filtrates cause dopamine depletion and cytotoxicity in PC12 cells. Neurochem. Res. 28:13591367.
20. Castro, L. G.,, W. Belda, Jr.,, A. Salebian,, and L. C. Cuce. 1993. Mycetoma: a retrospective study of 41 cases seen in Sao Paulo, Brazil, from 1978 to 1989. Mycoses 36:8995.
21. Chapman, G.,, B. L. Beaman,, D. A. Loeffler,, D. M. Camp,, E. F. Domino,, D. W. Dickson,, W. G. Ellis,, I. Chen,, S. E. Bachus,, and P. A. LeWitt. 2003. In situ hybridization for detection of nocardial 16S rRNA: reactivity within intracellular inclusions in experimentally infected cynomolgus monkeys—and in Lewy body-containing human brain specimens. Exp. Neurol. 184:715725.
22. Chun, J.,, C. N. Seong,, K. S. Bae,, K. J. Lee,, S. O. Kang,, M. Goodfellow,, and Y. C. Hah. 1998. Nocardia flavorosea sp. nov. Int. J. Syst. Bacteriol. 48:901905.
23. Crowe, L. M.,, B. L. Spargo,, T. Ioneda,, B. L. Beaman,, and J. H. Crowe. 1994. Interaction of cord factor (alpha, alpha'-trehalose-6,6'-dimycolate) with phospholipids. Biochim. Biophys. Acta 1194:5360.
24. Davis-Scibienski, C.,, and B. L. Beaman. 1980. Interaction of alveolar macrophages with Nocardia asteroides: immunological enhancement of phagocytosis, phagosome lysosome fusion, and microbicidal activity. Infect. Immun. 30:578587.
25. Diaz-Corrales, F. J.,, C. Colasante,, Q. Contreras,, M. Puig,, J. A. Serrano,, L. Hernandez,, and B. L. Beaman. 2004. Nocardia otitidiscaviarum (GAM-5) induces Parkinsonian-like alterations in the mouse. Braz. J. Med. Biol. Res. 37:539548.
26. Ellis, T. N.,, and B. L. Beaman. 2002. Polymorphonuclear neutrophils are activated to produce interferon-γ in response to pulmonary infection with Nocardia asteroides. J. Leukoc. Biol. 72:373381.
27. Enomoto, K.,, S. Oka,, N. Fujiwara,, T. Okamoto,, Y. Okuda,, R. Maekura,, T. Kuroki,, and I. Yano. 1998. Rapid serodiagnosis of Mycobacterium avium-intracellulare complex infection by ELISA with cord factor (trehalose 6,6'-dimycolate), and serotyping using the glycopeptidolipid antigen. Microbiol. Immunol. 42:689696.
28. Ferrick, D. A.,, R. K. Braun,, H. D. Lepper,, and M. D. Schrenzel. 1996. Gamma delta T cells in bacterial infections. Res. Immunol. 147:532541.
29. Friedman, C. S.,, B. L. Beaman,, J. Chun,, M. Goodfellow,, A. Gee,, and R. P. Hedrick. 1998. Nocardia crassostreae sp. nov., the causal agent of nocardiosis in Pacific oysters. Int. J. Syst. Bacteriol. 48:237246.
30. Gao, L. Y.,, O. S. Harb,, and Y. Abu Kwaik. 1997. Utilization of similar mechanisms by Legionella pneumophila to parasitize two evolutionarily distant host cells, mammalian macrophages and protozoa. Infect. Immun. 65:47384746.
31. Gordon, R. E.,, and J. M. Mihm. 1959. A comparison of Nocardia asteroides and Nocardia brasiliensis. J. Gen. Microbiol. 20:129135.
32. Goren, M. B., 1990. Mycobacterial fatty acid esters of sugars and sulfosugars, p. 363461. In M. Kaitz (ed.), Handbook of Lipid Research, vol. 6. Glycolipids, Phospholipids, and Sulfoglycolipids. Plenum Press, New York, N.Y.
33. Hoq, M. M.,, T. Suzutani,, T. Toyoda,, G. Horiike,, I. Yoshida,, and M. Azuma. 1997. Role of gamma delta TCR+ lymphocytes in the augmented resistance of trehalose 6,6'-dimycolate-treated mice to influenza virus infection. J. Gen. Virol. 78:15971603.
34. Hubble, J. P.,, T. Cao,, J. A. Kjelstrom,, W. C. Koller,, and B. L. Beaman. 1995. Nocardia species as an etiologic agent in Parkinson’s disease: serological testing in a case-control study. J. Clin. Microbiol. 33:27682769.
35. Hyland, K.,, B. L. Beaman,, P. LeWitt,, and A. DeMaggio. 2000. Monoamine changes in the brain of BALB/c mice following sub-lethal infection with Nocardia asteroides (GUH-2). Neurochem. Res. 25:443448.
36. Ioneda, T.,, B. L. Beaman,, L. Viscaya,, and E. T. deAlmeida. 1993. Composition and toxicity of diethyl ether soluble lipids from Nocardia asteroides GUH-2 and Nocardia asteroides 10905. Chem. Phys. Lipids 65:171178.
37. Ishikawa J.,, A. Yamashita,, Y. Mikami,, Y. Hoshino,, H. Kurita,, K. Hotta,, T. Shiba,, and M. Hattori. 2004. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc. Natl. Acad. Sci. USA 101:1492514930.
38. Kannon, G. A.,, M. K. Kuechle,, and A. B. Garrett. 1996. Superficial cutaneous Nocardia asteroides infection in an immunocompetent pregnant woman. J. Am. Acad. Dermatol. 35:10001002.
39. Karakayali, G.,, A. Karaarslan,, F. Artz,, N. Alli,, and A. Tekeli. 1998. Primary cutaneous Nocardia asteroides. Br. J. Dermatol. 139:919920.
40. Kashima, K.,, S. Oka,, A. Tabata,, K. Yasuda,, A. Kitano,, K. Kobayashi,, and I. Yano. 1995. Detection of anti-cord factor antibodies in intestinal tuberculosis for its differential diagnosis from Crohn’s disease and ulcerative colitis. Dig. Dis. Sci. 40:26302634.
41. Kohbata, S.,, and B. L. Beaman. 1991. L-Dopa-responsive movement disorder caused by Nocardia asteroides localized in the brains of mice. Infect. Immun. 59:181191.
42. Koike, Y.,, Y. C. Yoo,, M. Mitobe,, T. Oka,, K. Okuma,, S. Tono-oka,, and I. Azuma. 1998. Enhancing activity of mycobacterial cell-derived adjuvants on immunogenicity of recombinant human hepatitis B virus vaccine. Vaccine 16:19821989.
43. Lisitchkina, H. V.,, and H. P. Ludin. 2002. Associated symptoms and relevant associated illnesses in idiopathic Parkinson syndrome. Schweiz. Rundsch. Med. Prax. 91:395401.
44. Loeffler, D. A.,, D. M. Camp,, S. Qu,, B. L. Beaman,, and P. A. LeWitt. 2004. Characterization of dopamine-depleting activity of Nocardia asteroides strain GUH-2 culture filtrate on PC 12 cells. Microb. Pathog. 37:7385.
45. Lopez Martinez, R.,, L. J. Mendez Tovar,, P. Lavalle,, O. Welsh,, A. Saul,, and E. Macotela Ruiz. 1992. Epidemiology of mycetoma in Mexico: study of 2105 cases. Gac. Med. Mex. 128:477481.
46. McNaught, K. S.,, D. P. Perl,, A. L. Brownell,, and C.W. Olanow. 2004. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann. Neurol. 56:149162.
47. McNeil, M. M.,, and J. M. Brown. 1994. The medically important aerobic actinomycetes: epidemiology and microbiology. Clin. Microbiol. Rev. 7:357417.
48. Mellmann, A.,, J. L. Cloud,, S. Andrees,, K. Blackwood,, K. C. Carroll,, A. Kabani,, A. Roth,, and D. Harmsen. 2003. Evaluation of RIDOM, MicroSeq, and Genbank services in the molecular identification of Nocardia species. Int. J. Med. Microbiol. 293:359370.
49. Menendez, R.,, P. J. Cordero,, M. Santos,, M. Gobernado,, and V. Marco. 1997. Pulmonary infection with Nocardia species: a report of 10 cases and review. Eur. Respir. J. 10:15421546.
50. Min, Y.,, M. Asano,, M. Kohanawa,, and T. Minagawa. 1999. Movement disorders in encephalitis induced by Rhodococcus aurantiacus infection relieved by the administration of L-dopa and anti-T-cell antibodies. Immunology 96:1015.
51. Natsuhara, Y.,, S. Oka,, K. Kaneda,, Y. Kato,, and I. Yano. 1990. Parallel antitumor, granuloma-forming and tumor-necrosis-factor-priming activities of mycoloyl glycolipids from Nocardia rubra that differ in carbohydrate moiety: structure-activity relationships. Cancer Immunol. Immunother. 31:99106.
52. Navarro, V.,, and M. Salavert. 1997. Mastitis caused by Nocardia brasiliensis in an immunocompetent patient. Enferm. Infec. Microbiol. Clin. 15:339340. (In Spanish.)
53. Ng, C. S.,, and W. C. Hellinger. 1998. Superficial cutaneous abscess and multiple brain abscesses from Nocardia asteroides in an immunocompetent patient. J. Am. Acad. Dermatol. 39:793794.
54. Oswald, I. P.,, C. M. Dozois,, J. F. Petit,, and G. Lemoire. 1997. Interleukin-12 synthesis is a required step in trehalose dimycolate-induced activation of mouse peritoneal macrophages. Infect. Immun. 65:13641369.
55. Ozeki, Y.,, K. Kaneda,, N. Fujiwara,, M. Morimoto,, S. Oka,, and I. Yano. 1997. In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6'-dimycolate). Infect. Immun. 65:17931799.
56. Pal, M. 1997. Nocardia asteroides as a cause of pneumonia in a buffalo calf. Rev. Sci. Tech. 16:881884.
57. Patel, J. B.,, R. J. Wallace, Jr.,, B. A. Brown-Elliott,, T. Taylor,, C. Imperatrice,, D. G. Leonard,, R. W. Wilson,, L. Mann,, K. C. Jost,, and I. Nachamkin. 2004. Sequence-based identification of aerobic actinomycetes. J. Clin. Microbiol. 42:25302540.
58. Pujic, P.,, and B. L. Beaman,. 2001. Actinomyces and Nocardia, p. 937960. In M. Sussman (ed.), Molecular Medical Microbiology. Academic Press, New York, N.Y.
59. Roth, A.,, S. Andrees,, R. M. Kroppenstedt,, D. Harmsen,, and H. Mauch. 2003. Phylogeny of the genus Nocardia based on reassessed 16S rRNA gene sequences reveals underspeciation and division of strains classified as Nocardia asteroides into three established species and two unnamed taxons. J. Clin. Microbiol. 41:851856.
60. Saubolle, M. A.,, and D. Sussland. 2003. Nocardiosis: review of clinical and laboratory experience. J. Clin. Microbiol. 41:44974501.
61. Sazaki, K.,, I. Yoshida,, and M. Azuma. 1992. Mechanisms of augmented resistance of cyclosporin A-treated mice to influenza virus infection by trehalose-6,6'-dimycolate. Microbiol. Immunol. 36:10611075.
62. Seddon, M.,, D. Parr,, and R. B. Ellis-Pegler. 1995. Lymphocutaneous Nocardia brasiliensis infection: a case report and review. N. Z. Med. J. 108:385386.
63. Sridhar, M. S.,, S. Sharma,, M. K. Reddy,, P. Mruthyunjay,, and G. N. Rao. 1998. Clinicomicrobiological review of Nocardia keratitis. Cornea 17:1722.
64. Steinert, M.,, K. Birkness,, E. White,, B. Fields,, and F. Quinn. 1998. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 64:22562261.
65. Sueoka, E.,, S. Nishiwaki,, S. Okabe,, N. Iida,, M. Suganuma,, I. Yano,, K. Aoki,, and H. Fujiki. 1995. Activation of protein kinase C by mycobacterial cord factor, trehalose 6-monomycolate, resulting in tumor necrosis factor-alpha release in mouse lung tissues. Jpn. J. Cancer Res. 86:749755.
66. Syed, S. S.,, and R. L. Hunter, Jr. 1997. Studies on the toxic effects of quartz and a mycobacterial glycolipid, trehalose 6,6'-dimycolate. Ann. Clin. Lab. Sci. 27:375383.
67. Tabata, A.,, K. Kaneda,, H. Watanabe,, T. Abo,, and I. Yano. 1996. Kinetics of organ-associated natural killer cells and intermediate CD3 cells during pulmonary and hepatic granulomatous inflammation induced by mycobacterial cord factor. Microbiol. Immunol. 40:651658.
68. Tam, S.,, D. Barry,, L. Beaman,, and B. L. Beaman. 2002. Neuroinvasive Nocardia asteroides GUH-2 induces apoptosis in the substantia nigra in vivo and dopaminergic cells in vitro. Exp. Neurol. 177:453460.
69. Tosteson, T. R.,, D. L. Ballantine,, C. G. Tosteson,, V. Hensley,, and A. T. Bardales. 1989. Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus. Appl. Environ. Microbiol. 55:137141.
70. Tsuyuguchi, I.,, H. Kawasumi,, C. Ueta,, I. Yano,, and S. Kishimoto. 1991. Increase of T-cell receptor γ/δ-bearing T cells in cord blood of newborn babies obtained by in vitro stimulation with mycobacterial cord factor. Infect. Immun. 59:30533059.
71. Umunnabuike, A. C.,, and E. A. Irokanulo. 1986. Isolation of Campylobacter subsp. jejuni from Oriental and American cockroaches caught in kitchens and poultry houses in Vom, Nigeria. Int. J. Zoonoses 13:180186.
72. Uttamchandani, R. B.,, G. L. Daikos,, R. R. Reyes,, M. A. Fischl,, G. M. Dickinson,, E. Yamaguchi,, and M. R. Kramer. 1994. Nocardiosis in 30 patients with advanced human immunodeficiency virus infection: clinical features and outcome. Clin. Infect. Dis. 18:348353.
73. Wallace, R. J., Jr.,, B. A. Brown,, Z. Blacklock,, R. Ulrich,, K. Jost,, J. M. Brown,, M. M. McNeil,, G. Onyi,, V. A. Steingrube,, and J. Gibson. 1995. New Nocardia taxon among isolates of Nocardia brasiliensis associated with invasive disease. J. Clin. Microbiol. 33:15281533.
74. Yano, I. 1998. Biochemistry and bioactivities of mycobacterial components. Nippon Rinsho 56:30083016.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error