1887

Chapter 62 : Mechanisms of Resistance to β-Lactam Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Resistance to β-Lactam Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap62-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap62-2.gif

Abstract:

The introduction of penicillin into clinical use in 1941 had a profound impact on the treatment of diseases caused by gram-positive pathogens. Antibiotic degradation by ß-lactamase and alterations in penicillin-binding membrane proteins remain the major mechanisms by which gram-positive pathogens express resistance to ß-lactam antibiotics. The penicillin-interactive enzymes involved in cell wall biosynthesis are specialized acyl serine transferases localized on the outer face of the cytoplasmic membrane. The strong antibacterial efficacy of β-lactams, combined with their low toxicity for eukaryotic cells, has helped to make them the most highly developed class of antibacterial agents in clinical use. The resistance phenotype in β-lactamase-producing gram-positive bacteria differs from that observed with gram-negative species and is associated with an inoculum effect in which the MIC depends upon the number of bacteria tested. Around 95% of isolates recovered from clinical specimens produce ß-lactamase. The production of large amounts of ß-lactamase in isolates possessing the normal penicillin-sensitive penicillin-binding proteins (PBPs) has been associated with borderline susceptibility to the antistaphylococcal penicillins. External factors such as temperature, osmolality, and light influence the proportion of the bacterial cell population that exhibits resistance. Most penicillin-resistant clinical isolates exhibit a PBP pattern more complex than just a combination of point mutations. In clinical isolates, tolerance appears to be more prevalent among gram-positive than gram-negative species.

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62

Key Concept Ranking

Antibacterial Agents
0.45760384
Two-Component Signal Transduction Systems
0.4396255
0.45760384
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Interaction between the β-lactam ring and the active-site serine of penicillin-interactive enzymes. The chemical reaction for binding of penicillin and other β-lactams to PBPs and β-lactamases is represented by the equation

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ribbon figure of the type A β-lactamase of , illustrating key motifs of penicillin-interactive enzymes. S70 indicates the active-site serine in the SxxK motif, S130 and N132 are in the SDN loop, and K234 begins the KTG triad. R244 is a highly conserved residue in class A β-lactamases that is important in catalysis. Differences in amino acids positioned near the active-site cleft at residues 128 and 216 that are responsible for the kinetic differences observed among the wild-type variants of β-lactamase are summarized in Table 2 .

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Mechanisms of induction of β-lactamase and PBP2a in . Normally the penicillin- interactive proteins are produced in only small amounts because of the binding of a encoded repressor to the promoters (P) of and . Induction of β-lactamase is initiated by the binding of a β-lactam to the sensor-transducer encoded by . Binding induces autocatalytic cleavage within , which unmasks a metalloprotease domain that cleaves the repressor into two fragments, either directly or via interaction with another factor. Thus, the repressor can no longer bind to P, and β-lactamase and sensor-transducer production are induced via derepression. The induced β-lactamase is excreted to the extracellular space, where it inactivates the β-lactam. The induction of the low-affinity PBP2a, encoded by , is regulated in a fashion similar to that regulating β-lactamase, and PBP2a mediates resistance by cross-linking peptidoglycan in the presence of β-lactams. There is homology between and , and , and the promoter and N-terminal portions of and . The zigzag arrows denoting the products of and indicate that these genes encode homologs of the and products, respectively, with similar functions in induction signaling. The homology is strong enough that a plasmidderived genomic element can restore the normal inducible phenotype to MRSA clonotypes that produce large amounts of PBP2a constitutively because of deletions in the region.

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Model for the formation of mosaic PBPs in . An isolate of in the nasopharynx or oropharynx of a colonized person becomes transformed with PBP-encoding DNA from , , or another commensal streptococcal species that has accumulated point mutations related to exposure to β-lactams. Recombination occurs between regions of identity or high homology between species (black) such that heterologous DNA from the donor (gray) is inserted into the PBP (white) of , thereby producing a mosaic PBP that contains regions of both PBPs and exhibits reduced β-lactam-binding affinity.

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap62
1. Ambler, R. P.,, A. F. Coulson,, J. M. Frere,, J. M. Ghuysen,, B. Joris,, M. Forsman,, R. C. Levesque,, G. Tiraby,, and S. G. Waley. 1991. A standard numbering scheme for the class A beta-lactamases. Biochem. J. 276: 269 270.
2. Appelbaum, P. C.,, A. Bhamjee,, J. N. Scragg,, A. F. Hallett,, A. J. Bowen,, and R. C. Cooper. 1977. Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet ii: 995 997.
3. Barg, N.,, H. Chambers,, and D. Kernodle. 1991. Borderline susceptibility to antistaphylococcal penicillins is not conferred exclusively by the hyperproduction of β-lactamase. Antimicrob. Agents Chemother. 35: 1975 1979.
4. Berger-bächi, B., 1997. Resistance not mediated by β-lactamase (methicillin resistance), p. 158 174. In K. B. Crossley, and G. L. Archer (ed.), The Staphylococci in Human Disease. Churchill Livingstone, Ltd., New York, N.Y.
5. Brakstad, O. G.,, and J. A. Maeland. 1997. Mechanisms of methicillin resistance in staphylococci. APMIS 105: 264 276.
6. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39: 1211 1233.
7. Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10: 781 791.
8. Chambers, H. F.,, and M. Sachdeva. 1990. Binding of β-lactam antibiotics to penicillin-binding proteins in methicillin- resistant Staphylococcus aureus. J. Infect. Dis. 161: 1170 1176.
9. Cohen, S.,, and H. M. Sweeney. 1968. Constitutive penicillinase formation in Staphylococcus aureus owing to a mutation unlinked to the penicillinase plasmid. J. Bacteriol. 95: 1368 1374.
10. Colombo, M. L.,, S. Hanique,, S. L. Baurin,, C. Bauvois,, K. De Vriendt,, J. J. Van Beeumen,, J. M. Frere,, and B. Joris. 2004. The ybxI gene of Bacillus subtilis 168 encodes a class D β-lactamase of low activity. Antimicrob. Agents Chemother. 48: 484 490.
11. Couto, I.,, S. W. Wu,, A. Tomasz,, and H. de Lencastre. 2003. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. J. Bacteriol. 185: 645 653.
12. Dagan, R.,, M. Ferne,, M. Sheinis,, M. Alkan,, and E. Katzenelson. 1987. An epidemic of penicillin-tolerant group A streptococcal pharyngitis in children living in a closed community: mass treatment with erythromycin. J. Infect. Dis. 156: 514 516.
13. Daum, R. S.,, T. Ito,, K. Hiramatsu,, F. Hussain,, K. Mongkolrattanothai,, M. Jamklang,, and S. Boyle-Vavra. 2002. A novel methicillin-resistance cassette in community-acquired methicillin-resistant Staphylococcus aureus iso lates of diverse genetic backgrounds. J. Infect. Dis. 186: 1344 1347.
14. de Lencastre, H.,, and A. Tomasz. 2002. From ecological reservoir to disease: the nasopharynx, day-care centres and drug-resistant clones of Streptococcus pneumoniae. J. Antimicrob. Chemother. 50( Suppl. S2): 75 81.
15. de Lencastre, H.,, S. W. Wu,, M. G. Pinho,, A. M. Ludovice,, S. Filipe,, S. Gardete,, R. Sobral,, S. Gill,, M. Chung,, and A. Tomasz. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. 5: 163 175.
16. Dowson, C. G.,, T. J. Coffey,, C. Kell,, and R. A. Whiley. 1993. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol. Microbiol. 9: 635 643.
17. Dyke, K.,, and P. Gregory,. 1997. Resistance to β-lactam antibiotics: resistance mediated by β-lactamases, p. 139 157. In K. B. Crossley, and G. L. Archer (ed.), The Staphylococci in Human Disease. Churchill Livingstone, Ltd., New York, N.Y.
18. Dyke, K. G. H., 1979. β-Lactamases of Staphylococcus aureus, p. 291 310. In J. M. T. Hamilton-Miller, and J. T. Smith (ed.), Beta-Lactamases. Academic Press, Inc., New York, N.Y.
19. East, A. K.,, S. P. Curnock,, and K. G. Dyke. 1990. Change of a single amino acid in the leader peptide of a staphylococcal β-lactamase prevents the appearance of the enzyme in the medium. FEMS Microbiol. Lett. 57: 249 254.
20. Ellerbrok, H.,, and R. Hakenbeck. 1988. Penicillin-degrading activities of peptides from pneumococcal penicillin-binding proteins. Eur. J. Biochem. 171: 219 224.
21. Fierer, J.,, P. Wolf,, L. Seed,, T. Gay,, K. Noonan,, and P. Haghighi. 1987. Non-pulmonary Rhodococcus equi infections in patients with acquired immune deficiency syndrome (AIDS). J. Clin. Pathol. 40: 556 558.
22. Fong, I. W.,, E. R. Engelking,, and W. M. Kirby. 1976. Relative inactivation by Staphylococcus aureus of eight cephalosporin antibiotics. Antimicrob. Agents Chemother. 9: 939 944.
23. Fontana, R.,, M. Aldegheri,, M. Ligozzi,, H. Lopez,, A. Sucari,, and G. Satta. 1994. Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 38: 1980 1983.
24. Frere, J. M. 1995. β-Lactamases and bacterial resistance to antibiotics. Mol. Microbiol. 16: 385 395.
25. Georgopapadakou, N. H. 1993. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob. Agents Chemother. 37: 2045 2053.
26. Georgopapadakou, N. H.,, and F. Y. Liu. 1980. Binding of β-lactam antibiotics to penicillin-binding proteins of Staphylococcus aureus and Streptococcus faecalis: relation to antibacterial activity. Antimicrob. Agents Chemother. 18: 834 836.
27. Ghuysen, J. M. 1991. Serine β-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37 67.
28. Goffin, C.,, and J. M. Ghuysen. 1998. Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62: 1079 1093.
29. Goffin, C.,, and J. M. Ghuysen. 2002. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of effi ciency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev. 66: 702 738.
30. Gregory, P. D.,, R. A. Lewis,, S. P. Curnock,, and K. G. Dyke. 1997. Studies of the repressor (BlaI) of β-lactamase synthesis in Staphylococcus aureus. Mol. Microbiol. 24: 1025 1037.
31. Gutmann, L.,, and A. Tomasz. 1982. Penicillin-resistant and penicillin-tolerant mutants of group A streptococci. Antimicrob. Agents Chemother. 22: 128 136.
32. Hakenbeck, R.,, and J. Coyette. 1998. Resistant penicillin-binding proteins. Cell Mol. Life Sci. 54: 332 340.
33. Hakenbeck, R.,, A. Konig,, I. Kern,, M. van der Linden,, W. Keck,, D. Billot-Klein,, R. Legrand,, B. Schoot,, and L. Gutmann. 1998. Acquisition of five high- Mr penicillinbinding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J. Bacteriol. 180: 1831 1840.
34. Handwerger, S.,, and A. Tomasz. 1985. Antibiotic tolerance among clinical isolates of bacteria. Rev. Infect. Dis. 7: 368 386.
35. Hansman, D.,, H. Glasgow,, J. Sturt,, L. Devitt,, and R. Douglas. 1971. Increased resistance to penicillin of pneumococci isolated from man. N. Engl. J. Med. 284: 175 177.
36. Hiramatsu, K.,, L. Cui,, M. Kuroda,, and T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9: 486 493.
37. Hodges, T. L.,, S. Zighelboim-Daum,, G. M. Eliopoulos,, C. Wennersten,, and R. C. Moellering, Jr. 1992. Antimicrobial susceptibility changes in Enterococcus faecalis following various penicillin exposure regimens. Antimicrob. Agents Chemother. 36: 121 125.
38. Horn, D. L.,, J. B. Zabriskie,, R. Austrian,, P. P. Cleary,, J. J. Ferretti,, V. A. Fischetti,, E. Gotschlich,, E. L. Kaplan,, M. McCarty,, S. M. Opal,, R. B. Roberts,, A. Tomasz,, and Y. Wachtfogel. 1998. Why have group A streptococci remained susceptible to penicillin? Report on a symposium. Clin. Infect. Dis. 26: 1341 1345.
39. Jevons, M. P. 1961. “Celebenin”-resistant staphylococci. Brit. Med. J. 1: 124 125.
40. Joris, B.,, P. Ledent,, O. Dideberg,, E. Fonze,, J. Lamotte-Brasseur,, J. A. Kelly,, J. M. Ghuysen,, and J. M. Frere. 1991. Comparison of the sequences of class A β-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob. Agents Chemother. 35: 2294 2301.
41. Katayama, Y.,, H. Z. Zhang,, and H. F. Chambers. 2004. PBP 2a mutations producing very-high-level resistance to β-lactams. Antimicrob. Agents Chemother. 48: 453 459.
42. Kernodle, D. S. Unpublished data.
43. Kernodle, D. S.,, D. C. Classen,, C. W. Stratton,, and A. B. Kaiser. 1998. Association of borderline oxacillin-susceptible strains of Staphylococcus aureus with surgical wound infections. J. Clin. Microbiol. 36: 219 222.
44. Kernodle, D. S.,, C. W. Stratton,, L. W. McMurray,, J. R. Chipley,, and P. A. McGraw. 1989. Differentiation of β-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J. Infect. Dis. 159: 103 108.
45. Kirby, W. M. M. 1944. Extraction of a highly potent penicillin inactivator from penicillin resistant staphylococci. Science 99: 452 453.
46. Ligozzi, M.,, M. Aldegheri,, S. C. Predari,, and R. Fontana. 1991. Detection of penicillin-binding proteins immunologically related to penicillin-binding protein 5 of Enterococcus hirae ATCC 9790 in Enterococcus faecium and Enterococcus faecalis. FEMS Microbiol. Lett. 67: 335 339.
47. Massova, I.,, and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42: 1 17.
48. Materon, I. C.,, A. M. Queenan,, T. M. Koehler,, K. Bush,, and T. Palzkill. 2003. Biochemical characterization of β-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob. Agents Chemother. 47: 2040 2042.
49. McDougal, L. K.,, and C. Thornsberry. 1986. The role of β-lactamase in staphylococcal resistance to penicillinaseresistant penicillins and cephalosporins. J. Clin. Microbiol. 23: 832 839.
50. McDowell, T. D.,, and K. E. Reed. 1989. Mechanism of penicillin killing in the absence of bacterial lysis. Antimicrob. Agents Chemother. 33: 1680 1685.
51. McMurray, L. W.,, D. S. Kernodle,, and N. L. Barg. 1990. Characterization of a widespread strain of methicillin-susceptible Staphylococcus aureus associated with nosocomial infections. J. Infect. Dis. 162: 759 762.
52. Moreillon, P.,, Z. Markiewicz,, S. Nachman,, and A. Tomasz. 1990. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob. Agents Chemother. 34: 33 39.
53. Munoz, R.,, C. G. Dowson,, M. Daniels,, T. J. Coffey,, C. Martin,, R. Hakenbeck,, and B. G. Spratt. 1992. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 6: 2461 2465.
54. Murray, B. E. 1992. β-Lactamase-producing enterococci. Antimicrob. Agents Chemother. 36: 2355 2359.
55. Nannini, E. C.,, K. V. Singh,, and B. E. Murray. 2003. Relapse of type A β-lactamase-producing Staphylococcus aureus native valve endocarditis during cefazolin therapy: revisiting the issue. Clin. Infect. Dis. 37: 1194 1198.
56.National Committee for Clinical Laboratory Standards. 1998. Performance Standards for Antimicrobial Susceptibility Testing. Eighth informational supplement. NCCLS approved standard M100-S8. National Committee for Clinical Laboratory Standards, Wayne, Pa.
57. Nielsen, J. B.,, and J. O. Lampen. 1982. Membrane-bound penicillinases in gram-positive bacteria. J. Biol. Chem. 257: 4490 4495.
58. Nordmann, P.,, M. H. Nicolas,, and L. Gutmann. 1993. Penicillin-binding proteins of Rhodococcus equi: potential role in resistance to imipenem. Antimicrob. Agents Chemother. 37: 1406 1409.
59. Novak, R.,, E. Charpentier,, J. S. Braun,, and E. Tuomanen. 2000. Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. Mol. Cell 5: 49 57.
60. Pinho, M. G.,, H. de Lencastre,, and A. Tomasz. 2001. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc. Natl. Acad. Sci. USA 98: 10886 10891.
61. Reichmann, P.,, A. Konig,, J. Linares,, F. Alcaide,, F. C. Tenover,, L. McDougal,, S. Swidsinski,, and R. Hakenbeck. 1997. A global gene pool for high-level cephalosporin resistance in commensal Streptococcus species and Streptococcus pneumoniae. J. Infect. Dis. 176: 1001 1012.
62. Rybkine, T.,, J. L. Mainardi,, W. Sougakoff,, E. Collatz,, and L. Gutmann. 1998. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J. Infect. Dis. 178: 159 163.
63. Sabath, L. D.,, C. Garner,, C. Wilcox,, and M. Finland. 1975. Effect of inoculum and of beta-lactamase on the anti-staphylococcal activity of thirteen penicillins and cephalosporins. Antimicrob. Agents Chemother. 8: 344 349.
64. Sakoulas, G.,, G. M. Eliopoulos,, R. C. Moellering, Jr.,, R. P. Novick,, L. Venkataraman,, C. Wennersten,, P. C. De- Girolami,, M. J. Schwaber,, and H. S. Gold. 2003. Staphylococcus aureus accessory gene regulator ( agr) group II: is there a relationship to the development of intermediate-level glycopeptide resistance? J. Infect. Dis. 187: 929 938.
65. Sherris, J. C. 1986. Problems in in vitro determination of antibiotic tolerance in clinical isolates. Antimicrob. Agents Chemother. 30: 633 637.
66. Sibold, C.,, J. Henrichsen,, A. Konig,, C. Martin,, L. Chalkley,, and R. Hakenbeck. 1994. Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol. Microbiol. 12: 1013 1023.
67. Song, M. D.,, M. Wachi,, M. Doi,, F. Ishino,, and M. Matsuhashi. 1987. Evolution of an inducible penicillin-target protein in methicillin-resistant Staphylococcus aureus by gene fusion. FEBS Lett. 221: 167 171.
68. Statens Serum Institut. 2003. Annual Report on Staphylococcus aureus Bacteraemia Cases in Denmark, 2001. Staphylococcus Laboratory, National Center For Antimicrobials and Infection Control. Statens Serum Institut, Copenhagen, Denmark. [Online.] http://www.ssi.dk/graphics/dk/overvagning/ sygdomsovervaagning/Annual01.pdf.
69. Suzuki, E.,, K. Hiramatsu,, and T. Yokota. 1992. Survey of methicillin-resistant clinical strains of coagulase-negative staphylococci for mecA gene distribution. Antimicrob. Agents Chemother. 36: 429 434.
70. Thore, M. 1992. β-Lactamase substrate profiles of coagulase-negative skin staphylococci from orthopaedic inpatients and staff members. J. Hosp. Infect. 22: 229 240.
71. Tomasz, A.,, H. B. Drugeon,, H. M. de Lencastre,, D. Jabes,, L. McDougall,, and J. Bille. 1989. New mechanism for methicillin resistance in Staphylococcus aureus: clinical isolates that lack the PBP 2a gene and contain normal penicillin-binding proteins with modified penicillin-binding capacity. Antimicrob. Agents Chemother. 33: 1869 1874.
72. Tomayko, J. F.,, K. K. Zscheck,, K. V. Singh,, and B. E. Murray. 1996. Comparison of the β-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 40: 1170 1174.
73. Tuomanen, E.,, D. T. Durack,, and A. Tomasz. 1986. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob. Agents Chemother. 30: 521 527.
74. Vandenesch, F.,, T. Naimi,, M. C. Enright,, G. Lina,, G. R. Nimmo,, H. Heffernan,, N. Liassine,, M. Bes,, T. Greenland,, M. E. Reverdy,, and J. Etienne. 2003. Communityacquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg. Infect. Dis. 9: 978 984.
75. Voladri, R. K.,, and D. S. Kernodle. 1998. Characterization of a chromosomal gene encoding type B β-lactamase in phage group II isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 42: 3163 3168.
76. Voladri, R. K.,, M. K. Tummuru,, and D. S. Kernodle. 1996. Structure-function relationships among wild-type variants of Staphylococcus aureus β-lactamase: importance of amino acids 128 and 216. J. Bacteriol. 178: 7248 7253.
77. Wallace, R. J., Jr.,, P. Vance,, A. Weissfeld,, and R. R. Martin. 1978. β-Lactamase production and resistance to β-lactam antibiotics in Nocardia. Antimicrob. Agents Chemother. 14: 704 709.
78. Wisplinghoff, H.,, A. E. Rosato,, M. C. Enright,, M. Noto,, W. Craig,, and G. L. Archer. 2003. Related clones con taining SCCmec type IV predominate among clinically significant Staphylococcus epidermidis isolates. Antimicrob. Agents Chemother. 47: 3574 3579.
79. Zhang, H. Z.,, C. J. Hackbarth,, K. M. Chansky,, and H. F. Chambers. 2001. A proteolytic transmembrane signaling pathway and resistance to β-lactams in staphylococci. Science 291: 1962 1965.
80. Zygmunt, D. J.,, C. W. Stratton,, and D. S. Kernodle. 1992. Characterization of four β-lactamases produced by Staphylococcus aureus. Antimicrob. Agents Chemother. 36: 440 445.

Tables

Generic image for table
TABLE 1

β-Lactam hydrolysis by β-lactamase

Assays were performed using purified type A S. aureus β-lactamase ( ).

Relative efficacy of hydrolysis (REH) = / .

Stability is expressed as a ratio of the stability of benzylpenicillin, which was set at 1.

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Generic image for table
TABLE 2

Effect of amino acid differences upon kinetic profiles of β-lactamase

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Generic image for table
TABLE 3

Classification of penicillin-binding proteins and examples from prominent gram-positive organisms

Classification hierarchy as outlined by Goffin and Ghuysen ( ).

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62
Generic image for table
TABLE 4

MIC interpretive standards for gram-positive pathogens against ampicillin

MIC interpretive standards as recommended by CLSI (formerly NCCLS) ( ).

Citation: Kernodle D. 2006. Mechanisms of Resistance to β-Lactam Antibiotics, p 769-781. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch62

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error