1887

Chapter 63 : Resistance to Glycopeptides in Gram-Positive Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Resistance to Glycopeptides in Gram-Positive Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap63-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap63-2.gif

Abstract:

Glycopeptide antimicrobials are natural products that are produced by various soil-dwelling species of the order such as and . With the recent emergence of glycopeptide-resistant enterococci and staphylococci, there has been renewed interest by the pharmaceutical industry in the development of modified semisynthetic glycopeptides with enhanced activity against resistant gram-positive pathogens including glycopeptide-resistant organisms. Due to glycopeptides' unique mechanism of action and ability to interfere with multiple critical reactions in peptidoglycan synthesis, acquired resistance to glycopeptides was deemed unlikely. The mechanisms of acquired resistance to glycopeptides in enterococci have been well characterized and reflect changes in target analogous to those in intrinsically resistant organisms. The newer, semisynthetic glycopeptides oritavancin and telavancin have enhanced activity against some strains of enterococci with acquired glycopeptide resistance. The basis of both intrinsic and acquired glycopeptide resistance in enterococci involves alteration of the composition of the terminal dipeptide in muramyl pentapeptide cell wall precursors, resulting in a structure with decreased binding affinity for glycopeptides. Two additional enterococcal resistance genotypes, and , have also recently been described. Both are characterized by low-level vancomycin resistance mediated through the synthesis of precursors terminating in D-Ala-DSer analogous to the mechanism of VanC-type resistance. The chromosomally located five-gene resistance cluster from BM4405 is organized very similarly to the operon and includes genes encoding the VanE ligase, the VanXY D,D-dipeptidase-D,D-carboxypeptidase, and the VanT serine racemase, as well as the VanRS two-component regulator.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63

Key Concept Ranking

Glycopeptide Antibiotics
0.4889
Lower Gastrointestinal Tract
0.42741257
Pulsed-Field Gel Electrophoresis
0.4229135
0.4889
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Increases in vancomycin usage (in kilograms) worldwide (primarily in the United States) from 1979 to 1983 and in the United States from 1984 to 1996 (◊—◊) that parallels the emergence of MRSA as a percentage of isolates from large teaching hospitals in the United States from 1975 to 1989 (■ ■) and as a percentage of nosocomial isolates from ICU (●—●) and non-ICU (▲—▲) settings from 1989 to 2003 ( ). Rates of VRE in ICU (○—○) and non-ICU (∆—∆) settings begin to rise a decade after the dramatic increase in vancomycin usage ( ). Also shown is the appearance of clinical VISA isolates in the United States in 1997 and VRSA in 2002, though these remain a very small percentage of total strains.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structure of the glycopeptide; the peptidyl--Ala--Ala complex. Binding of the glycopeptide to the -Ala--Ala residue on a peptidoglycan precursor involves five hydrogen bond interactions (indicated by the dashed lines). In -Ala--Lac-terminating precursors, the NH of the amide group (*) is replaced by an oxygen in an ester linkage, eliminating the central hydrogen bond. In -Ala--Ser-terminating precursors, the methyl side chain of the carboxy-terminal -Ala (^) is replaced by a hydroxymethyl (CHOH) side chain.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transglycosylation and subsequent reactions in the cell wall synthesis pathway catalyzed by PBPs. Binding of glycopeptide to the terminal -Ala--Ala stem inhibits both the transglycosylation reaction and the subsequent carboxypeptidase and transpeptidase steps. In the initial step of the carboxypeptidase or transpeptidase reactions, the terminal -Ala is cleaved during the initial binding of the active serine site of the PBPs to form the acyl-enzyme complex. The same acylenzyme intermediate would be produced if the terminal -Ala residue were replaced by either -Lac or -Ser. (Adapted from reference ).

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Structure of Tn (10,851 bp) carrying the vancomycin resistance gene cluster. The nine ORFs are delineated by 38-bp imperfect inverted repeats and include genes with resolvase and transposase activity (ORF1 and -2), as well as genes involved in regulation ( and v), synthesis of -Ala--Lac ( and ), and hydrolysis of -Ala--Ala precursors ( and ). The percent G+C content of each gene is also shown.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

General scheme of peptidoglycan synthesis in GRE. The enterococcal Ddl ligases produce -Ala--Ala residues that are incorporated into peptidoglycan precursors. -Ala--Ala-terminating precursors interact with glycopeptides, preventing transglycosylation and leading to the accumulation of cytoplasmic precursors. The VanRS signal-transducing system responds directly or indirectly (via accumulation of cytoplasmic precursors) to the presence of glycopeptides leading to induction of transcription of the operon in the cytoplasm. Induction of these genes results in production of -Lac-containing precursors, as well as elimination of the pool of -Ala--Ala precursors. (Adapted from reference .)

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Comparison of the organization of the enterococcal D-Ala-D-Lac glycopeptide resistance operons vanA, vanB, and vanD and the enterococcal D-Ala-D-Ser glycopeptide resistance operons vanC, vanE, and vanG. The G+C content of the respective genes is also shown. The percent amino acid identities of the various genes to their homologs in the other enterocococcal resistance clusters are listed underneath each cluster ( Table 2 ).

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap63
1. Aarestrup, F. M.,, P. Ahrens,, M. Madsen,, L. V. Pallesen,, R. L. Poulsen,, and H. Westh. 1996. Glycopeptide susceptibility among Danish Enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the VanA cluster. Antimicrob. Agents Chemother. 40:19381940.
2. Abadia-Patino, L.,, P. Courvalinand B. Perichon. 2002. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J. Bacteriol. 184:64576464.
3. Arias, C. A.,, P. Courvalin,, and P. E. Reynolds. 2000. VanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 44:16601666.
4. Arthur, M.,, F. Depardieu,, and P. Courvalin. 1999. Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci. Microbiology 145:18491858.
5. Arthur, M.,, F. Depardieu,, P. Reynolds,, and P. Courvalin. 1996. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide- resistant enterococci. Mol. Microbiol. 21:3344.
6. Arthur, M.,, F. Depardieu,, P. Reynolds,, and P. Courvalin. 1999. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob. Agents Chemother. 43:18751880.
7. Arthur, M.,, C. Molinas,, and P. Courvalin. 1992. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 174:25822591.
8. Arthur, M.,, C. Molinas,, F. Depardieu,, and P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175:117127.
9. Arthur, M.,, P. Reynolds,, and P. Courvalin. 1996. Glycopeptide resistance in enterococci. Trends Microbiol. 4:401407.
10. Baptista, M.,, F. Depardieu,, P. E. Reynolds,, P. Courvalin,, and M. Arthur. 1997. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol. Microbiol. 25:93105.
11. Billot-Klein, D.,, D. Blanot,, L. Gutmann,, and J. van Heijenoort. 1994. Association constants for the binding of vancomycin and teicoplanin to N-acetyl-D-alanyl-Dalanine and N-acetyl-D-alanyl-D-serine. Biochem. J. 304:10211022.
12. Billot-Klein, D.,, L. Gutmann,, S. Sable,, E. Guittet,, and J. van Heijenoort. 1994. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin- resistant VANB-type Enterococcus D366 and of the naturally glycopeptide-resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J. Bacteriol. 176:23982405.
13. Bonten, M. J.,, R. Willems,, and R. A. Weinstein. 2001. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect. Dis. 1:314325.
14. Boyle-Vavra, S.,, H. Labischinski,, C. C. Ebert,, K. Ehlert,, and R. S. Daum. 2001. A spectrum of changes occurs in peptidoglycan composition of glycopeptide-intermediate clinical Staphylococcus aureus isolates. Antimicrob. Agents Chemother. 45:280287.
15. Bugg, T. D. H.,, G. D. Wright,, S. Dutka-Malen,, M. Arthur,, P. Courvalin,, and C. T. Walsh. 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:1040810415.
16. Carias, L. L.,, S. D. Rudin,, C. J. Donskey,, and L. B. Rice. 1998. Genetic linkage and co-transfer of a novel, vanB-containing transposon (Tn5382) and a low-affinity penicillin-binding protein 5 gene in a clinical vancomycin- resistant Enterococcus faecium isolate. J. Bacteriol. 180:44264434.
17.Centers for Disease Control and Prevention. 1995. Recommendations for preventing the spread of vancomycin resistance: recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). Morb. Mortal. Wkly. Rep. Recomm. Rep. 44(RR-12):120.
18.Centers for Disease Control and Prevention. 1997. Interim guidelines for prevention and control of staphylococcal infection associated with reduced susceptibility to vancomycin. Morb. Mortal. Wkly. Rep. 46:626628, 635-636.
19.Centers for Disease Control and Prevention. 2002. Staphylococcus aureus resistant to vancomycin—United States, 2002. Morb. Mortal. Wkly. Rep. 51:565567.
20.Centers for Disease Control and Prevention. 2004. Vancomycin- resistant Staphylococcus aureus—New York, 2004. Morb. Mortal. Wkly. Rep. 53:322323.
21. Chang, S.,, D. M. Sievert,, J. C. Hageman,, M. L. Boulton,, F. C. Tenover,, F. P. Downes,, S. Shah,, J. T. Rudrik,, G. R. Pupp,, W. J. Brown,, D. Cardo,, S. K. Fridkin, and Vancomycin- Resistant Staphylococcus aureus Investigative Team. 2003. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N. Engl. J. Med. 348:13421347.
22. Cui, L.,, X. Ma,, K. Sato,, K., K,. Okuma, F. C., Tenover, E. M., Mamizuka, C., G. Gemmell,, M.-N. Kim,, M.-C. Ploy,, N. El Solh,, V. Ferraz,, and K. Hiramatsu. 2003. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol. 41:514.
23. Cui, L.,, and K. Hiramatsu,. 2003. Vancomycin-resistant Staphylococcus aureus, p. 187212. In A. C. Fluit, and F.-J. Schmitz (ed.), MRSA: Current Perspectives. Caister Academic Press, Norfolk, England.
24. David, V.,, B. Bozdogan,, J. L. Mainardi,, R. Legrand,, L. Gutmann,, and R. Leclercq. 2004. Mechanism of intrinsic resistance to vancomycin in Clostridium innocuum NCIB 10674. J. Bacteriol. 186:34153422.
25. Depardieu, F.,, M. G. Bonora,, P. E. Reynolds,, and P. Courvalin. 2003. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol. 50:931948.
26. Depardieu, F.,, P. Courvalin,, and T. Msadek. 2003. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanB-type Enterococcus faecium. Mol. Microbiol. 50:10691083.
27. Depardieu, F.,, M. Kolbert,, H. Pruul,, J. Bell,, and P. Courvalin. 2004. VanD-type vancomycin-resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 48:38923904.
28. Depardieu, F.,, B. Perichon,, and P. Courvalin. 2004. Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J. Clin. Microbiol. 42:58575860.
29. Dutka-Malen, S.,, C. Molinas,, M. Arthur,, and P. Courvalin. 1992. Sequence of the vanC gene of Enterococcus gallinarum BM4174 encoding a D-alanine:D-alanine ligaserelated protein necessary for vancomycin resistance. Gene 112:5358.
30. Evers, S.,, B. Casadewall,, M. Charles,, S. Dutka-Malen,, M. Galimand,, and P. Courvalin. 1996. Evolution of structure and substrate specificity in D-alanine:D-alanine ligases and related enzymes. J. Mol. Evol. 42:706712.
31. Evers, S.,, and P. Courvalin. 1996. Regulation of VanBtype vancomycin resistance gene expression by the VanSBVanRB two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol. 178:13021309.
32. Fraimow, H. S.,, D. L. Jungkind,, D. W. Lander,, D. R. Delso,, and J. L. Dean. 1994. Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann. Intern. Med. 121:2226.
33. Fridkin, S. K.,, and R. P. Gaynes. 1999. Antimicrobial resistance in intensive care units. Clin. Chest Med. 20:303316.
34. Fridkin, S. K.,, J. Hageman,, L. K. McDougal,, J. Mohammed,, W. R. Jarvis,, T. M. Perl,, F. C. Tenover, and the Vancomycin-Intermediate Staphylococcus aureus Epidemiology Study Group. 2003. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997-2001. Clin. Infect. Dis. 36:429439.
35. Froggatt, J. W.,, J. L. Johnston,, and G. L. Archer. 1989. Antimicrobial resistance in nosocomial isolates of Staphylococcus haemolyticus. Antimicrob. Agents Chemother. 33:460466.
36. Garnier, F.,, S. Taourit,, P. Glaser,, P. Courvalin,, and M. Galimand. 2000. Characterization of transposon Tn1549 conferring VanB type resistance in Enterococcus spp. Microbiology 146:14811489.
37. Hayden, M. K.,, G. M. Trenholme,, J. E. Schultz,, and D. F. Sahm. 1993. In vivo development of teicoplanin resistance in a VanB Enterococcus faecium isolate. J. Infect. Dis. 167:12241227.
38. Hiramatsu, K. 1998.The emergence of Staphylococcus aureus with reduced susceptiblity to vancomycin in Japan. Am. J. Med. 104:7S10S.
39. Hiramatsu, K.,, H. Hanaki,, T. Ino,, K. Yabuta,, T. Oguri,, and F. C. Tenover. 1997. Methicillin-resistant Staph ylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40:135136.
40. Hiramatsu, K.,, N. Aritaka,, H. Hanaki,, S. Kawasaki,, Y. Hosoda,, S. Hori,, Y. Fuckuchi,, and I. Kobayashi. 1997. Vancomycin-resistant Staphylococcus aureus: dissemination of heterogeneously resistant strains in a Japanese hospital. Lancet 350:16701673.
41. Hong, H. E.,, M. I. Hutchings,, J. M. Neu,, G. D. Wright,, M. S. B. Paget,, and M. Buttner. 1994. Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol. Microbiol. 52:11071121.
42. Kaatz, G. W.,, S. M. Seo,, N. J. Dorman,, and S. A. Lerner. 1990. Emergence of teicoplanin resistance during therapy of Staphylococcus aureus endocarditis. J. Infect. Dis. 162:103108.
43. Kirst, H. A.,, D. G. Thompson,, and T. I. Nicas. 1998. Historical yearly usage of vancomycin. Antimicrob. Agents Chemother. 42:13031304.
44. Leclercq, R.,, E. Derlot,, J. Duval,, and P. Courvalin. 1988. Plasmid-mediated vancomycin and teicoplanin resistance in Enterococcus faecium. N. Engl. J. Med. 319:157161.
45. Ligozzi, M.,, G. Lo Cascio,, and R. Fontana. 1998. vanA gene cluster in a vancomycin resistant clinical isolate of Bacillus circulans. Antimicrob. Agents Chemother. 42:20552059.
46. Liu, C.,, and H. F. Chambers. 2003. Staphylococcus aureus with heterogeneous resistance to vancomycin: epidemiology, clinical significance and critical assessment of diagnostic methods. Antimicrob. Agents Chemother. 47:30403045.
47. Marshall, C. G.,, G. Broadhead,, B. K. Leskiw,, and G. D. Wright. 1997. D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl. Acad. Sci. USA 94:64806483.
48. Martone, W. J. 1998. Spread of vancomycin-resistant enterococci: Why did it happen in the United States? Infect. Control Hosp. Epidemiol. 19:539545.
49. Noble, W. C.,, Z. Virani,, and R. Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93:195198.
50. Panlilio, A. L.,, D. H. Culver,, R. P. Gaynes,, S. Banerjee,, T. S. Henderson,, J. S. Tolson,, and W. J. Martone. 1992. Methicillin-resistant Staphylococcus aureus in U.S. hospitals, 1975-1991. Infect. Control Hosp. Epidemiol. 13:582586.
51. Patel, R.,, K. Piper,, F. R. Cockerill III,, J. M. Steckelberg,, and A. A. Yousten. 2000. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob. Agents Chemother. 44:705709.
52. Perichon, B.,, and P. Courvalin. 2004. Heterologous expression of the enterococcal vanA operon in methicillinresistant Staphylococcus aureus. Antimicrob. Agents Chemother. 48:42814285.
53. Pootoolal, J.,, M. G. Thomas,, C. G. Marshall,, J. M. Neu,, B. K. Hubbard,, C. T. Walsh,, and G. D. Wright. 2002. Assembling the glycopeptide antibiotic scaffold: the biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc. Natl. Acad. Sci. USA 99:89628967.
54. Quintiliani, R. J.,, and P. Courvalin. 1996. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements that confers vancomycin resistance in Enterococcus faecalis BM428. Gene 172:18.
55. Reynolds, P. E. 1989. Structure, biochemistry, and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8:943950.
56. Reynolds, P. E.,, C. A. Arias,, and P. Courvalin. 1999. Gene vanXYC encodes D,D-dipeptidase (VanX) and D,Dcarboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 34:341349.
57. Reynolds, P. E.,, and P. Courvalin. 2005. Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob. Agents Chemother. 49:2125.
58. Reynolds, P. E.,, F. Depardieu,, S. Dutka-Malen,, M. Arthur,, and P. Courvalin. 1994. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol. Microbiol. 13:10651070.
59. Sahm, D.,, J. Kissinger,, M. S. Gilmore,, P. R. Murray,, R. Mulder,, J. Solliday,, and B. Clarke. 1989. In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 33:15881591.
60. Schwabe, R. S.,, J. T. Stapleton,, and P. H. Gilligan. 1987. Emergence of vancomycin resistance in coagulase-negative staphylococci. N. Engl. J. Med. 316:927931.
61. Sieradzki, K.,, and A. Tomasz. 1997. Inhibition of cell wall turnover and autolysis by vancomycin in a highly vancomycin-resistant mutant of Staphylococcus aureus. J. Bacteriol. 179:25572566.
62. Silva, J. C.,, A. Haldimann,, M. K. Prahalad,, C. T. Walsh,, and B. L. Wanner. 1998. In vivo characterization of the type A and B vancomycin resistant enterococci (VRE) VanRS two-component systems in Escherichia coli: a nonpathogenic model for studying the VRE signal transduction pathways. Proc. Natl. Acad. Sci. USA 95:1195111956.
63. Swenson, J. M.,, N. C. Clark,, M. J. Ferraro,, D. F. Sahm,, G. Doern,, M. A. Pfaller,, L. B. Reller,, M. P. Weinstein,, R. J. Zabransky,, and F. C. Tenover. 1994. Development of a standardized screening method for detection of vancomycin-resistant enterococci. J. Clin. Microbiol. 32:17001704.
64. Tenover, F. C.,, M. V. Lancaster,, B. C. Hill,, C. D. Steward,, S. A. Stocker,, G. A. Hancock,, C. M. O’Hara,, S. K. McAllister,, N. C. Clark,, and K. Hiramatsu. 1998. Characterization of staphylococci with reduced susceptibilities to vancomycin and other glycopeptides. J. Clin. Microbiol. 36:10201027.
65. Tenover, F. C.,, L. M. Weigel,, P. C. Appelbaum,, L. K. McDougal,, J. Chaitram,, S. McAllister,, N. Clark,, G. Killgore,, C. M. O’Hara,, L. Jevitt,, J. B. Patel,, and B. Bozdogan. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48:275280.
66. Uttley, A. H.,, C. H. Collins,, J. Naidoo,, and R. C. George. 1988. Vancomycin-resistant enterococci. Lancet i:5758.
67. Van Bambeke, F.,, M. Chauvel,, P. E. Reynolds,, H. S. Fraimow,, and P. Courvalin. 1999. Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob. Agents Chemother. 43:4147.
68. Van Bambeke, F.,, Y. Van Laethem,, P. Courvalin,, and P. M. Tulkens. 2004. Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs 64:913936.
69. Walsh, C. T.,, S. L. Fisher,, L.-S. Park,, M. Prahalad,, and Z. Wu. 1996. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem. Biol. 3:2128.
70. Wegener, H. C. 2003. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 6:439445.
71. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan,, J. F. Kolonay,, J. Shetty,, G. E. Killgore,, and F. C. Tenover. 2003. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:15691571.
72. Woodford, N. 2001. Epidemiology of the genetic elements responsible for acquired glycopeptide resistance in enterococci. Microb. Drug Resist. 7:229236.
73. Yao, R. C.,, and L. W. Crandall,. 1994. Glycopeptides: classification, occurrence and discovery, p. 127. In R. Nagarajan (ed.), Glycopeptide Antibiotics. Marcel Dekker, New York, N.Y.

Tables

Generic image for table
TABLE 1

Genotypic and phenotypic characterization of GRE

Expressed as MIC of vancomycin (Vanco) or teicoplanin (Teico) as micrograms per milliliter.

Rare isolates described.

MICs lower for strains.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Generic image for table
TABLE 2

Van alphabet

In enterococcal glycopeptide resistance operons.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Generic image for table
TABLE 3

Characteristics and methods used for detection of clinical isolates with reduced susceptibility to glycopeptides

Strains for which MICs of 8 to 16 μg/ml are defined as intermediately resistant by the NCCLS and the Comité de l' Antibiogramme de la Société Française de Microbiologie but are defined as resistant by the British Society for Antimicrobial Chemotherapy and the Swedish Reference Group for Antibiotics.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63
Generic image for table
TABLE 4

Mechanisms of resistance and clinical significance of VISA, VHRSA, and VRSA strains

Described for some clinical or laboratory strains.

Citation: Fraimow H, Courvalin P. 2006. Resistance to Glycopeptides in Gram-Positive Pathogens, p 782-800. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch63

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error