1887

Chapter 64 : Tetracycline Resistance Determinants in Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Tetracycline Resistance Determinants in Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap64-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap64-2.gif

Abstract:

The emergence of tetracycline resistance in the mid-1950s, initially in gram-negative bacteria and then in gram-positive bacteria, resulted in the declining usefulness of tetracyclines. There are three different tetracycline resistance mechanisms of clinical importance found among gram-positive organisms. They are active efflux, ribosomal protection, and mutated rRNA. Multidrug transporters are able to efflux substrates that are chemically diverse, and some from gram-negative bacteria include tetracycline in their repertoire, for example, AcrAB () and MexAB/OprM ( sp.). The only multidrug transporter from gram-positive bacteria known to transport tetracycline is the TetAB transporter from . The emphasis in this chapter is on proteins found in gram-positive organisms. The Asp-66–Ala mutation may directly or indirectly prevent tetracycline binding, or it may prevent a conformational change in motif A caused by binding elsewhere. In the case of the gram-positive Tet(L) and Tet(K) proteins, substitutions at Asp-74, corresponding to the essential Asp-66 in TetA(B), only partly decrease tetracycline resistance, although efflux activity is more severely affected. Tetracycline resistance determinants are widely spread among different gram-positive genera. Tetracycline resistance spreads because the determinants are often located on conjugative elements, either plasmids or transposons.

Citation: McMurry L, Levy S. 2006. Tetracycline Resistance Determinants in Gram-Positive Bacteria, p 801-820. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch64
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structure of tetracycline and some of its clinically used analogs.

Citation: McMurry L, Levy S. 2006. Tetracycline Resistance Determinants in Gram-Positive Bacteria, p 801-820. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch64
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Predicted or verified (see text) transmembrane topology of tetracycline efflux proteins from groups 1 to 4. The inset at the bottom shows the consensus motif A sequence in loop 2 to 3, followed by the motif A sequences for Tet proteins of groups 1 to 4. L chr, the protein from the chromosomal Tet L determinant. The topologies of groups 5 and 6 are less certain (see text) and are not included. In group 1, the better-studied gram-negative TetA(B) protein replaces the gram-positive TetA(Z) and TetA( ) proteins. Residues marked in TetA(B) are identical in TetA(Z) and TetA( ), except for H257 and residue 253. Transmembrane α-helices (presumed) are shown in gray and are numbered. Charged residues predicted or known to be within transmembrane helices are shown with a large font and lettering. In motif A of TetA(B), a plus or minus sign indicates the necessity of that charge at that site. Gly-62 and, to a lesser extent, Gly-69 probably cause a β-turn (see references and ). Other residues mentioned in the text are shown in small fonts without letters. An asterisk indicates residues possibly involved in tetracycline binding in TetA(B). A large arrow indicates the Fe-mediated cleavage site within helix 7, and the dotted line there shows the membrane impermeability barrier, which is not marked in other helices. Small arrows show regions in Tcr3 that are longer than similar regions in Tet(K) and Tet(L). A dotted line in group 3 similarly shows where OtrB has regions longer than those in Tcr3.

Citation: McMurry L, Levy S. 2006. Tetracycline Resistance Determinants in Gram-Positive Bacteria, p 801-820. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch64
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap64
1. Abramson, J.,, I. Smirnova,, V. Kasho,, G. Verner,, H. R. Kaback,, and S. Iwata. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610615.
2. Aevarsson, A.,, E. Brazhnikov,, M. Garber,, J. Zheltonosova,, Y. Chirgadze,, A. Al-Karadaghi,, L. A. Svensson,, and A. Liljas. 1994. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13:36693677.
3. Aldema, M. L.,, L. M. McMurry,, A. R. Walmsley,, and S. B. Levy. 1996. Purification of the Tn10-specified tetracycline efflux antiporter TetA in a native state as a polyhistidine fusion protein. Mol. Microbiol. 19:187195.
4. Allard, J. D.,, and K. P. Bertrand. 1992. Membrane topology of the pBR322 tetracycline resistance protein: TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion. J. Biol. Chem. 267:1780917819.
5. Bannam, T. L.,, P. A. Johanesen,, C. L. Salvado,, S. J. Pidot,, K. A. Farrow,, and J. I. Rood. 2004. The Clostridium perfringens TetA(P) efflux protein contains a functional variant of the Motif A region found in major facilitator superfamily transport proteins. Microbiology 150:127134.
6. Bannam, T. L.,, and J. I. Rood. 1999. Identification of structural and functional domains of the tetracycline efflux protein TetA(P) from Clostridium perfringens. Microbiology 145:29472955.
7. Barbosa, T. M. Personal communication.
8. Barbosa, T. M.,, K. P. Scott,, and H. J. Flint. 1999. Evidence for recent intergeneric transfer of a new tetracycline resistance gene, tet(W), isolated from Butyrivibrio fibrisolvens, and the occurrence of tet(O), in ruminal bacteria. Environ. Microbiol. 1:5364.
9. Bauer, G.,, C. Berens,, S. J. Projan,, and W. Hillen. 2004. Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA. J. Antimicrob. Chemother. 53:592599.
10. Bechhofer, D. H.,, and S. J. Stasinopoulos. 1998. tetA(L) mutants of a tetracycline-sensitive strain of Bacillus subtilis with the polynucleotide phosphorylase gene deleted. J. Bacteriol. 180:34703473.
11. Bergeron, J.,, M. Ammirati,, D. Danley,, L. James,, M. Norcia,, J. Retsema,, C. A. Strick,, W.-G. Su,, J. Sutcliffe,, and L. Wondrack. 1996. Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)- and Tet(O)-mediated ribosomal protection. Antimicrob. Agents Chemother. 40:22262228.
12. Bhatia, B.,, T. Bowser,, J. Chen,, M. Ismail,, L. Mcintyre,, R. Mechiche,, M. Nelson,, K. Ohemeng,, and A. Verma. 2003. PTK0796 and other novel tetracycline derivatives exhibiting potent in vitro and in vivo activities against antibiotic resistant gram-positive bacteria. Progr. Abstr. 43rd Intersci. Conf. Antimicrob. Agents Chemother., abstr. 2420. American Society for Microbiology, Washington, D.C.
13. Bjork, G., 1996. Stable RNA modification, p. 861886. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
14. Blackwood, R. K.,, and A. R. English,. 1970. Structure-activity relationships in the tetracycline series, p. 237266. In D. Perlman (ed.), Advances in Applied Microbiology. Academic Press, New York, N.Y.
15. Brimacombe, R.,, B. Greuer,, P. Mitchell,, M. Osswald,, J. Rinke-Appel,, D. Schueler,, and K. Stade,. 1990. Three-dimensional structure and function of Escherichia coli 16S and 23S rRNA as studied by cross-linking techniques, p. 93106. In W. E. Hill (ed.), The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, D.C.
16. Brodersen, D. E.,, W. M. Clemons, Jr.,, A. P. Carter,, R. J. Morgan-Warren,, B. T. Wimberly,, and V. Ramakrishnan. 2000. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:11431154.
17. Brown, B. A.,, R. J. Wallace, Jr.,, and G. Onyi. 1996. Activities of the glycylcyclines N,N-dimethylglycylamidominocycline and N,N-dimethylglycylamido-6-demethyl-6-deoxytetracycline against Nocardia spp. and tetracycline-resistant isolates of rapidly growing mycobacteria. Antimicrob. Agents Chemother. 40:874878.
18. Brown, J. R.,, and D. S. Ireland. 1978. Structural requirements for tetracycline activity. Adv. Pharmacol. Chemother. 15:161202.
19. Buck, M. A.,, and B. S. Cooperman. 1990. Single protein omission reconstitution studies of tetracycline binding to the 30S subunit of Escherichia coli ribosomes. Biochemistry 29:53745379.
20. Burdett, V. 1991. Purification and characterization of Tet(M), a protein that renders ribosomes resistant to tetracycline. J. Biol. Chem. 266:28722877.
21. Burdett, V. 1986. Streptococcal tetracycline resistance mediated at the level of protein biosynthesis. J. Bacteriol. 165:564569.
22. Burdett, V. 1996. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 178:32463251.
23. Burdett, V. 1993. tRNA modification activity is necessary for Tet(M)-mediated tetracycline resistance. J. Bacteriol. 175:72097215.
24. Celli, J.,, and P. Trieu-Cuot. 1998. Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28:103117.
25. Charpentier, E.,, G. Gerbaud,, and P. Courvalin. 1993. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene 131:2734.
26. Cheng, J.,, K. Baldwin,, A. A. Guffanti,, and T. A. Krulwich. 1996. Na+/H+ antiport activity conferred by Bacillus subtilis tetA(L), a 5' truncation product of tetA(L), and related plasmid genes upon Escherichia coli. Antimicrob. Agents Chemother. 40:852857.
27. Cheng, J.,, A. A. Guffanti,, and T. A. Krulwich. 1994. The chromosomal tetracycline resistance locus of Bacillus subtilis encodes a Na+/H+ antiporter that is physiologically important at elevated pH. J. Biol. Chem. 269:2736527371.
28. Cheng, J.,, A. A. Guffanti,, W. Wang,, T. A. Krulwich,, and D. H. Bechhofer. 1996. Chromosomal tetA(L) gene of Bacillus subtilis: regulation of expression and physiology of a tetA(L) deletion strain. J. Bacteriol. 178:28532860.
29. Cheng, J.,, D. B. Hicks,, and T. A. Krulwich. 1996. The purified Bacillus subtilis tetracycline efflux protein TetA(L) reconstitutes both tetracycline-cobalt/H+ and Na+ (K+)/H+ exchange. Proc. Natl. Acad. Sci. USA 93:1444614451.
30. Chopra, I., 1985. Mode of action of the tetracyclines and the nature of bacterial resistance to them, p. 317392. In J. J. Hlavka, and J. H. Boothe (ed.), The Tetracyclines. Springer-Verlag, Berlin, Germany.
31. Chopra, I.,, P. M. Hawkey,, and M. Hinton. 1992. Tetracyclines, molecular and clinical aspects. J. Antimicrob. Chemother. 29:245277.
32. Clermont, D.,, O. Chesneau,, G. de Cespedes,, and T. Horaud. 1997. New tetracycline resistance determinants coding for ribosomal protection in streptococci and nucleotide sequence of tet(T) isolated from Streptococcus pyogenes A498. Antimicrob. Agents Chemother. 41:112116.
33. Connell, S. R.,, D. M. Tracz,, K. H. Nierhaus,, and D. E. Taylor. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47:36753681.
34. Connell, S. R.,, C. A. Trieber,, G. P. Dinos,, E. Einfeldt,, D. E. Taylor,, and K. H. Nierhaus. 2003. Mechanism of Tet(O)-mediated tetracycline resistance. EMBO J. 22:945953.
35. Cundliffe, E.,, and K. McQuillen. 1967. Bacterial protein synthesis: the effects of antibiotics. J. Mol. Biol. 30:137146.
36. Dairi, T.,, K. Aisaka,, R. Katsumata,, and M. Hasegawa. 1995. A self-defense gene homologous to tetracycline effluxing gene essential for antibiotic production in Streptomyces aureofaciens.Biosci. Biotechnol. Biochem. 59:18351841.
37. Dantley, K. A.,, H. K. Dannelly,, and V. Burdett. 1998. Binding interaction between Tet(M) and the ribosome: requirements for binding. J. Bacteriol. 180:40894092.
38. De Rossi, E.,, M. C. Blokpoel,, R. Cantoni,, M. Branzoni,, G. Riccardi,, D. B. Young,, K. A. De Smet,, and O. Ciferri. 1998. Molecular cloning and functional analysis of a novel tetracycline resistance determinant, tet(V), from Mycobacterium smegmatis. Antimicrob. Agents Chemother. 42:19311937.
39. Diaz-Torres, M. L.,, R. McNab,, D. A. Spratt,, A. Villedieu,, N. Hunt,, M. Wilson,, and P. Mullany. 2003. Novel tetracycline resistance determinant from the oral metagenome. Antimicrob. Agents Chemother. 47:14301432.
40. Dittrich, W.,, and H. Schrempf. 1992. The unstable tetracycline resistance gene of Streptomyces lividans 1326 encodes a putative protein with similarities to translational elongation factors and Tet(M) and Tet(O) proteins. Antimicrob. Agents Chemother. 36:11191124.
41. Dosch, D. C.,, F. F. Salvacion,, and W. Epstein. 1984. Tetracycline resistance element of pBR322 mediates potassium transport. J. Bacteriol. 160:11881190.
42. Doyle, D.,, K. J. McDowall,, M. J. Butler,, and I. S. Hunter. 1991. Characterization of an oxytetracycline-resistance gene, otrA, of Streptomyces rimosus. Mol. Microbiol. 5:29232933.
43. Fath, M. J.,, and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57:9951017.
44. Francois, B.,, M. Charles,, and P. Courvalin. 1997. Conjugative transter of tet(S) between strains of Enterococcus faecalis is associated with the exchange of large fragments of chromosomal DNA. Microbiology 143:21452154.
45. Fujihira, E.,, T. Kimura,, Y. Shiina,, and A. Yamaguchi. 1996. Transmembrane glutamic acid residues play essential roles in the metal-tetracycline/H+ antiporter of Staphylococcus aureus. FEBS Lett. 391:243246.
46. Fujihira, E.,, T. Kimura,, and A. Yamaguchi. 1997. Roles of acidic residues in the hydrophilic loop regions of metal-tetracycline/H+ antiporter Tet(K) of Staphylococcus aureus. FEBS Lett. 419:211214.
47. Gerrits, M. M.,, M. R. de Zoete,, N. L. Arents,, E. J. Kuipers,, and J. G. Kusters. 2002. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Antimicrob. Agents Chemother. 46:29963000.
48. Gibbons, S.,, and E. E. Udo. 2000. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res. 14:139140.
49. Ginn, S. L.,, M. H. Brown,, and R. A. Skurray. 1997. Membrane topology of the metal-tetracycline/H+ anti-porter TetA(K) from Staphylococcus aureus. J. Bacteriol. 179:37863789.
50. Ginn, S. L.,, M. H. Brown,, and R. A. Skurray. 2000. The TetA(K) tetracycline/H+ antiporter from Staphylococcus aureus: mutagenesis and functional analysis of motif C. J. Bacteriol. 182:14921498.
51. Goldman, R. A.,, T. Hasan,, C. C. Hall,, W. A. Strycharz,, and B. S. Cooperman. 1983. Photoincorporation of tetracycline into Escherichia coli ribosomes. Identification of the major proteins photolabeled by native tetracycline and tetracycline photoproducts and implications for the inhibitory action of tetracycline on protein synthesis. Biochemistry 22:359368.
52. Gottesman, M. E. 1967. Reaction of ribosome-bound peptidyl transfer ribonucleic acid with aminoacyl transfer ribonucleic acid or puromycin. J. Biol. Chem. 242:55645571.
53. Griffith, J. K.,, T. Kogoma,, D. L. Corvo,, W. L. Anderson,, and A. L. Kazim. 1988. An N-terminal domain of the tetracycline resistance protein increases susceptibility to aminoglycosides and complements potassium uptake defects in Escherichia coli. J. Bacteriol. 170:598604.
54. Guay, G. G.,, S. A. Khan,, and D. M. Rothstein. 1993. The tet(K) gene of plasmid pT181 of Staphylococcus aureus encodes an efflux protein that contains 14 transmembrane helices. Plasmid 30:163166.
55. Guay, G. G.,, M. Tuckman,, P. McNicholas,, and D. M. Rothstein. 1993. The tet(K) gene from Staphylococcus aureus mediates the transport of potassium in Escherichia coli. J. Bacteriol. 175:49274929.
56. Guffanti, A. A.,, J. Cheng,, and T. A. Krulwich. 1998. Electrogenic antiport activities of the gram-positive Tet proteins include a Na+(K+)/K+ mode that mediates net K+ uptake. J. Biol. Chem. 273:2644726454.
57. Guffanti, A. A.,, and T. A. Krulwich. 1995. Tetracycline/H+ antiport and Na+/H+ antiport catalyzed by the Bacillus subtilis TetA(L) transporter expressed in Escherichia coli. J. Bacteriol. 177:45574561.
58. Guillaume, G.,, V. Ledent,, W. Moens,, and J. M. Collard. 2004. Phylogeny of efflux-mediated tetracycline resistance genes and related proteins revisited. Microb. Drug Resist. 10:1126.
59. Hillen, W.,, and C. Berens. 1994. Mechanism underlying expression of Tn10 encoded tetracycline resistance. Annu. Rev. Microbiol. 48:345369.
60. Hirata, T.,, E. Fujihira,, T. Kimura-Someya,, and A. Yamaguchi. 1998. Membrane topology of the staphylococcal tetracycline efflux protein Tet(K) determined by antibacterial resistance gene fusion. J. Biochem. (Tokyo) 124:12061211.
61. Hirata, T.,, R. Wakatabe,, J. Nielsen,, Y. Someya,, E. Fujihira,, T. Kimura,, and A. Yamaguchi. 1997. A novel compound, 1,1-dimethyl-5-(1-hydroxypropyl)-4,6,7-trimethylindan, is an effective inhibitor of the tet(K) gene-encoded metal-tetracycline/H+ antiporter of Staphylococcus aureus. FEBS Lett. 412:337340.
62. Hlavka, J. J.,, and J. H. Boothe (ed.). 1985. The Tetracyclines. Springer-Verlag, Berlin, Germany.
63. Hooper, D. C. 2004. Personal communication.
64. Hoshino, T.,, T. Ikeda,, N. Tomizuka,, and K. Furukawa. 1985. Nucleotide sequence of the tetracycline resistance gene of pTHT15, a thermophilic Bacillus plasmid: comparison with staphylococcal TcR controls. Gene 37:131138.
65. Huang, Y.,, M. J. Lemieux,, J. Song,, M. Auer,, and D. N. Wang. 2003. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616620.
66. Ishiwa, H.,, and H. Shibahara. 1985. New shuttle vectors for Escherichia coli and Bacillus subtilis. III. Nucleotide sequence analysis of tetracycline resistance gene of pAMa1 and ori-177. Jpn. J. Genet. 60:485498.
67. Jin, J.,, A. A. Guffanti,, D. H. Bechhofer,, and T. A. Krulwich. 2002. Tet(L) and Tet(K) tetracycline-divalent metal/H+ antiporters: characterization of multiple catalytic modes and a mutagenesis approach to differences in their efflux substrate and coupling ion preferences. J. Bacteriol. 184:47224732.
68. Jin, J.,, A. A. Guffanti,, C. Beck,, and T. A. Krulwich. 2001. Twelve-transmembrane-segment (TMS) version (δTMS VII-VIII) of the 14-TMS Tet(L) antibiotic resistance protein retains monovalent cation transport modes but lacks tetracycline efflux capacity. J. Bacteriol. 183:26672671.
69. Jin, J.,, and T. A. Krulwich. 2002. Site-directed mutagenesis studies of selected motif and charged residues and of cysteines of the multifunctional tetracycline efflux protein Tet(L). J. Bacteriol. 184:17961800.
70. Johanesen, P. A.,, D. Lyras,, and J. I. Rood. 2001. Induction of pCW3-encoded tetracycline resistance in Clostridium perfringens involves a host-encoded factor. Plasmid 46:229232.
71. Kennan, R. M.,, L. M. McMurry,, S. B. Levy,, and J. I. Rood. 1997. Glutamate residues located within putative transmembrane helices are essential for TetA(P)-mediated tetracycline efflux. J. Bacteriol. 179:70117015.
72. Khan, S. A.,, and R. P. Novick. 1983. Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251259.
73. Kimura, T.,, Y. Inagaki,, T. Sawai,, and A. Yamaguchi. 1995. Substrate-induced acceleration of N-ethylmaleimide reaction with the Cys-65 mutant of the transposon Tn10-encoded metal-tetracycline/H+ antiporter depends on the interaction of Asp-66 with the substrate. FEBS Lett. 362:4749.
74. Kimura, T.,, M. Nakatani,, T. Kawabe,, and A. Yamaguchi. 1998. Roles of conserved arginine residues in the metal-tetracycline/H+ antiporter of Escherichia coli. Biochemistry 37:54755480.
75. Kimura, T.,, M. Ohnuma,, T. Sawai,, and A. Yamaguchi. 1997. Membrane topology of the transposon 10-encoded metal-tetracycline/H+ antiporter as studied by site-directed chemical labeling. J. Biol. Chem. 272:580585.
76. Kimura, T.,, T. Sawai,, and A. Yamaguchi. 1997. Remote conformational effects of the Gly-62→Leu mutation of the Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli and its second-site suppressor mutation. Biochemistry 36:69416946.
77. Kimura, T.,, and A. Yamaguchi. 1996. Asp-285 of the metal-tetracycline/H+ antiporter of Escherichia coli is essential for substrate binding. FEBS Lett. 388:5052.
78. Kornblum, J.,, and R. Novick. Personal communication.
79. Lacks, S. A.,, P. Lopez,, B. Greenberg,, and M. Espinosa. 1986. Identification and analysis of genes for tetracycline resistance and replication functions in the broad-host-range plasmid pSL1. J. Mol. Biol. 192:753765.
80. LeBlanc, D. J.,, L. N. Lee,, B. M. Titman,, C. J. Smith,, and F. C. Tenover. 1988. Nucleotide sequence analysis of tetracycline resistance gene tetO from Streptococcus mutans DL5. J. Bacteriol. 170:36183626.
81. Leng, Z.,, D. E. Riley,, R. E. Berger,, J. N. Krieger,, and M. C. Roberts. 1997. Distribution and mobility of the tetracycline resistance determinant tetQ. J. Antimicrob. Chemother. 40:551559.
82. Lepine, G.,, J.-M. Lacroix,, C. B. Walker,, and A. Progulske-Fox. 1993. Sequencing of a tet(Q) gene isolated from Bacteroides fragilis 1126. Antimicrob. Agents Chemother. 37:20372041.
83. Levy, S. B. 1992. Active efflux mechanisms for antimicrobial resistance. Antimicrob. Agents Chemother. 36:695703.
84. Levy, S. B. 1992. The Antibiotic Paradox. How Miracle Drugs Are Destroying the Miracle. Plenum Publishing, New York, N.Y.
85. Levy, S. B., 1984. Resistance to the tetracyclines, p. 191240. In L. E. Bryan (ed.), Antimicrobial Drug Resistance. Academic Press, Inc., New York, N.Y.
86. Levy, S. B.,, L. M. McMurry,, T. M. Barbosa,, V. Burdett,, P. Courvalin,, W. Hillen,, M. C. Roberts,, J. I. Rood,, and D. E. Taylor. 1999. Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents Chemother. 43: 15231524.
87. Levy, S. B.,, L. M. McMurry,, V. Burdett,, P. Courvalin,, W. Hillen,, M. C. Roberts,, and D. E. Taylor. 1989. Nomenclature for tetracycline resistance determinants. Antimicrob. Agents Chemother. 33:13731374.
88. Lewin, B. 1997. Genes VI. Oxford University Press, Oxford, United Kingdom.
89. Lopez, P. J.,, I. Marchand,, O. Yarchuk,, and M. Dreyfus. 1998. Translation inhibitors stabilize Escherichia coli mRNAs independently of ribosome protection. Proc. Natl. Acad. Sci. USA 95:60676072.
90. Lovett, P. S.,, and E. J. Rogers. 1996. Ribosome regulation by the nascent peptide. Microbiol. Rev. 60:366385.
91. Maloney, P. C.,, and T. H. Wilson,. 1996. Ion-coupled transport and transporters, p. 11301148. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
92. Manavathu, E. K.,, C. L. Fernandez,, B. S. Cooperman,, and D. E. Taylor. 1990. Molecular studies on the mechanism of tetracycline resistance mediated by Tet(O). Antimicrob. Agents Chemother. 34:7177.
93. Manavathu, E. K.,, K. Hiratsuka,, and D. E. Taylor. 1988. Nucleotide sequence analysis and expression of a tetracycline-resistance gene from Campylobacter jejuni. Gene 62:1726.
94. Martin, R. B., 1985. Tetracyclines and daunorubicin, p. 1952. In H. Sigel (ed.), Metal Ions in Biological Systems. Marcel Dekker, Inc., New York, N.Y.
95. McDowall, K. J.,, A. Thamchaipenet,, and I. S. Hunter. 1999. Phosphate control of oxytetracycline production by Streptomyces rimosus is at the level of transcription from promoters overlapped by tandem repeats similar to those of the DNA-binding sites of the OmpR family. J. Bacteriol. 181:30253032.
96. McMurry, L. M.,, M. L. Aldema-Ramos,, and S. B. Levy. 2002. Fe2+-tetracycline-mediated cleavage of the Tn10 tetracycline efflux protein TetA reveals a substrate binding site near glutamine 225 in transmembrane helix 7. J. Bacteriol. 184:51135120.
97. McMurry, L. M.,, J. C. Cullinane,, and S. B. Levy. 1982. Transport of the lipophilic analog minocycline differs from that of tetracycline in susceptible and resistant Escherichia coli strains. Antimicrob. Agents Chemother. 22:791799.
98. McMurry, L. M.,, and S. B. Levy. 1995. The NH2-terminal half of the tetracycline efflux protein from Tn10 contains a functional dimerization domain. J. Biol. Chem. 270:2275222757.
99. McMurry, L. M.,, and S. B. Levy. 1998. Revised sequence of OtrB (Tet347) tetracycline efflux protein from Streptomyces rimosus. Antimicrob. Agents Chemother. 42:3050.
100. McMurry, L. M.,, R. E. Petrucci,Jr.,, and S. B. Levy. 1980. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc. Natl. Acad. Sci. USA 77:39743977.
101. McMurry, L. M.,, M. Stephan,, and S. B. Levy. 1992. Decreased function of the class B tetracycline efflux protein Tet with mutations at aspartate 15, a putative intramembrane residue. J. Bacteriol. 174:62946297.
102. McNicholas, P.,, I. Chopra,, and D. M. Rothstein. 1992. Genetic analysis of the tetA(C) gene on plasmid pBR322. J. Bacteriol. 174:79267933.
103. Melville, C. M.,, R. Brunel,, H. J. Flint,, and K. P. Scott. 2004. The Butyrivibrio fibrisolvens tet(W) gene is carried on the novel conjugative transposon TnB1230, which contains duplicated nitroreductase coding sequences. J. Bacteriol. 186:36563659.
104. Melville, C. M.,, K. P. Scott,, D. K. Mercer,, and H. J. Flint. 2001. Novel tetracycline resistance gene, tet(32), in the Clostridium-related human colonic anaerobe K10 and its transmission in vitro to the rumen anaerobe Butyrivibrio fibrisolvens. Antimicrob. Agents Chemother. 45:32463249.
105. Mendez, B.,, C. Tachibana,, and S. B. Levy. 1980. Heterogeneity of tetracycline resistance determinants. Plasmid 3:99108.
106. Mitscher, L. A. 1978. The Chemistry of the Tetracycline Antibiotics. Marcel Dekker, Inc., New York, N.Y.
107. Mojumdar, M.,, and S. A. Khan. 1988. Characterization of the tetracycline resistance gene of plasmid pT181 of Staphylococcus aureus. J. Bacteriol. 170:55225528.
108. Mullany, P.,, A. P. Roberts,, and H. Wang. 2002. Mechanism of integration and excision in conjugative transposons. Cell. Mol. Life Sci. 59:20172022.
109. Munske, G. R.,, E. V. Lindley,, and J. A. Magnuson. 1984. Streptococcus faecalis proton gradients and tetracycline transport. J. Bacteriol. 158:4954.
110. Nakamura, A.,, M. Nakagawa,, H. Yoshikoshi,, S. Shoutou,, K. O’Hara,, and T. Sawai. 2002. Novel enzymatically determined minocycline-resistance in a Pseudomonas aeruginosa clinical isolate. Progr. Abstr. 42st Intersci. Conf. Antimicrob. Agents Chemother., abstr. C1-1603. American Society for Microbiology, Washington, D.C.
111. Nakamura, T.,, Y. Matsuba,, A. Ishihara,, T. Kitagawa,, F. Suzuki,, and T. Unemoto. 1995. N-terminal quarter part of tetracycline transporter from pACYC184 complements K+ uptake activity in K+ uptake-deficient mutants of Escherichia coli and Vibrio alginolyticus. Biol. Pharm. Bull. 18:11891193.
112.Reference omitted.
113. Nelson, M. L.,, and S. B. Levy. 1999. Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrob. Agents Chemother. 43:17191724.
114. Nelson, M. L.,, B. H. Park,, J. S. Andrews,, V. A. Georgian,, R. C. Thomas,, and S. B. Levy. 1993. Inhibition of the tetracycline efflux antiport protein by 13-thio-substituted 5-hydroxy-6-deoxytetracyclines. J. Med. Chem. 36:370377.
115. Nelson, M. L.,, B. H. Park,, and S. B. Levy. 1994. Molecular requirements for the inhibition of the tetracycline antiport protein and the effect of potent inhibitors on the growth of tetracycline-resistant bacteria. J. Med. Chem. 37:13551361.
116. Nguyen, T. T.,, K. Postle,, and K. P. Bertrand. 1983. Sequence homology between the tetracycline-resistance determinants of Tn10 and pBR322. Gene 25:8392.
117. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178:58535859.
118. Nikaido, H.,, and D. G. Thanassi. 1993. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrob. Agents Chemother. 37:13931399.
119. Nikolich, M. P.,, N. B. Shoemaker,, and A. A. Salyers. 1992. A Bacteroides tetracycline resistance gene represents a new class of ribosome protection tetracycline resistance. Antimicrob. Agents Chemother. 36:10051012.
120. Noguchi, N.,, T. Aoki,, M. Sasatsu,, M. Kono,, K. Shishido,, and T. Ando. 1986. Determination of the complete nucleotide sequence of pNS1, a staphylococcal tetracycline-resistance plasmid propagated in Bacillus subtilis. FEMS Microbiol. Lett. 37:283288.
121. Oehler, R.,, N. Polacek,, G. Steiner,, and A. Darta. 1997. Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res. 25:12191224.
122. Ohnuki, T.,, T. Katch,, T. Imanaka,, and S. Aiba. 1985. Molecular cloning of tetracycline resistance genes from Streptomyces rimosus in Streptomyces griseus and characterization of the cloned genes. J. Bacteriol. 161:10101016.
123. Orth, P.,, F. Cordes,, D. Schnappinger,, W. Hillen,, W. Saenger,, and W. Hinrichs. 1998. Conformational changes of the Tet repressor induced by tetracycline trapping. J. Mol. Biol. 279:439447.
124. Paulsen, I. T.,, M. H. Brown,, and R. A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60:575608.
125. Paulsen, I. T.,, and R. A. Skurray. 1993. Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes—an analysis. Gene 124:111.
126. Peska, S. 1971. Inhibitors of ribosome function. Annu. Rev. Microbiol. 25:487562.
127. Pioletti, M.,, F. Schlunzen,, J. Harms,, R. Zarivach,, M. Gluhmann,, H. Avila,, A. Bashan,, H. Bartels,, T. Auerbach,, C. Jacobi,, T. Hartsch,, A. Yonath,, and F. Franceschi. 2001. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. EMBO J. 20:18291839.
128. Platteeuw, C.,, F. Michiels,, H. Joos,, J. Seurinck,, and W. M. de Vos. 1995. Characterization and heterologous expression of the tetL gene and identification of iso-ISS1 elements from Enterococcus faecalis plasmid pJH1. Gene 160:8993.
129. Rasmussen, B. A.,, Y. Gluzman,, and F. P. Tally. 1994. Inhibition of protein synthesis occurring on tetracycline-resistant TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines. Antimicrob. Agents Chemother. 38:16581660.
130. Ridenhour, M. B.,, H. M. Fletcher,, J. E. Mortensen,, and L. Daneo-Moore. 1996. A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKQ10 in Enterococcus faecium. Plasmid 35:7180.
131. Roberts, M. C., 1997. Genetic mobility and distribution of tetracycline resistance determinants, p. 206218. In D. J. Chadwick (ed.), Antibiotic Resistance: Origins, Evolution, Selection, and Spread. John Wiley and Sons, Chichester, United Kingdom.
132. Roberts, M. C. 2004. Personal communication.
133. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19:124.
134. Roberts, M. C. 2004. Distribution of tetracycline resistance genes among gram-positive bacteria, Mycobacterium, Mycoplasma, Nocardia, Streptomyces and Ureaplasma. [Online.] http://faculty.washington.edu/marilynr/tetweb3.pdf.
135. Ross, J. I.,, E. A. Eady,, J. H. Cove,, and W. J. Cunliffe. 1998. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42:17021705.
136. Rothstein, D. M.,, M. McGlynn,, V. Bernan,, J. McGahren,, J. Zaccardi,, N. Cekleniak,, and K. P. Bertrand. 1993. Detection of tetracyclines and efflux pump inhibitors. Antimicrob. Agents Chemother. 37:16241629.
137. Rubin, R. A.,, and S. B. Levy. 1990. Interdomain hybrid tetracycline proteins confer tetracycline resistance only when they are derived from closely related members of the tet gene family. J. Bacteriol. 172:23032312.
138. Rubin, R. A.,, and S. B. Levy. 1991. Tet protein domains interact productively to mediate tetracycline resistance when present on separate polypeptides. J. Bacteriol. 173:45034509.
139. Rubin, R. A.,, S. B. Levy,, R. L. Heinrikson,, and F. J. Kézdy. 1990. Gene duplication in the evolution of the two complementing domains of gram-negative bacterial tetracycline efflux proteins. Gene 87:713.
140. Safferling, M.,, H. Griffith,, J. Jin,, J. Sharp,, M. De Jesus,, C. Ng,, T. A. Krulwich,, and D. N. Wang. 2003. TetL tetracycline efflux protein from Bacillus subtilis is a dimer in the membrane and in detergent solution. Biochemistry 42:1396913976.
141. Sakaguchi, R.,, H. Amano,, and K. Shishido. 1988. Nucleotide sequence homology of the tetracycline-resistance determinant naturally maintained in Bacillus subtilis Marburg 168 chromosome and the tetracycline-resistance gene of B. subtilis plasmid pNS1981. Biochim. Biophys. Acta 950:441444.
142. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens,, and L.-Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59:579590.
143. Saraceni-Richards, C. A.,, and S. B. Levy. 2000. Evidence for interactions between helices 5 and 8 and a role for the interdomain loop in tetracycline resistance mediated by hybrid Tet proteins. J. Biol. Chem. 275:61016106.
144. Saraceni-Richards, C. A.,, and S. B. Levy. 2000. Second-site suppressor mutations of inactivating substitutions at Gly247 of the tetracycline efflux protein, Tet(B). J. Bacteriol. 182:65146516.
145. Schnappinger, D.,, and W. Hillen. 1996. Tetracyclines: antiobiotic action, uptake, and resistance mechanisms. Arch. Microbiol. 165:359369.
146. Schwarz, S.,, M. Cardoso,, and H. C. Wegener. 1992. Nucleotide sequence and phylogeny of the tet(L) tetracycline resistance determinant encoded by plasmid pSTET1 from Staphylococcus hyicus. Antimicrob. Agents Chemother. 36:580588.
147. Scott, K. P. 2004. Personal communication.
148. Sheridan, R. P.,, and I. Chopra. 1991. Origin of tetracycline efflux proteins: conclusions from nucleotide sequence analysis. Mol. Microbiol. 5:895900.
149. Sloan, J.,, L. M. McMurry,, D. Lyras,, S. B. Levy,, and J. I. Rood. 1994. The Clostridium perfringens Tet P determinant comprises two overlapping genes: tetA(P), which mediates active tetracycline efflux, and tetB(P), which is related to the ribosomal protection family of tetracycline-resistance determinants. Mol. Microbiol. 11:403415.
150. Someya, Y.,, Y. Moriyama,, M. Futai,, T. Sawai,, and A. Yamaguchi. 1996. Reconstitution of the metal-tetracycline/H+ antiporter of Escherichia coli in proteoliposomes including F0F1-ATPase. FEBS Lett. 374:7276.
151. Someya, Y.,, and A. Yamaguchi. 1997. Second-site suppressor mutations for the Arg70 substitution mutants of the Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli. Biochim. Biophys. Acta 1322:230236.
152. Spahn, C. M.,, G. Blaha,, R. K. Agrawal,, P. Penczek,, R. A. Grassucci,, C. A. Trieber,, S. R. Connell,, D. E. Taylor,, K. H. Nierhaus,, and J. Frank. 2001. Localization of the ribosomal protection protein Tet(O) on the ribosome and the mechanism of tetracycline resistance. Mol. Cell 7:10371045.
153. Speer, B. S.,, N. B. Shoemaker,, and A. A. Salyers. 1992. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 5:387399.
154. Stanton, T. B.,, J. S. McDowall,, and M. A. Rasmussen. 2004. Diverse tetracycline resistance genotypes of Megasphaera elsdenii strains selectively cultured from swine feces. Appl. Environ. Microbiol. 70:37543757.
155. Stasinopoulos, S. J.,, G. A. Farr,, and D. H. Bechhofer. 1998. Bacillus subtilis tetA(L) gene expression: evidence for regulation by translational reinitiation. Mol. Microbiol. 30:923932.
156. Stezowski, J. J. 1976. Chemical-structural properties of tetracycline derivatives. 1. Molecular structure and conformation of the free base derivatives. J. Am. Chem. Soc. 98:60126018.
157. Su, Y. A.,, H. Ping,, and D. B. Clewell. 1992. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36:769778.
158. Suarez, G.,, and D. Nathans. 1965. Inhibition of aminoacyl-sRNA binding to ribosomes by tetracycline. Biochem. Biophys. Res. Commun. 18:743750.
159. Sudano Roccaro, A.,, A. R. Blanco,, F. Giuliano,, D. Rusciano,, and V. Enea. 2004. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob. Agents Chemother. 48:19681973.
160. Tamura, N.,, S. Konishi,, S. Iwaki,, T. Kimura-Someya,, S. Nada,, and A. Yamaguchi. 2001. Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J. Biol. Chem. 276:2033020339.
161. Tamura, N.,, S. Konishi,, and A. Yamaguchi. 2003. Mechanisms of drug/H+ antiport: complete cysteine-scanning mutagenesis and the protein engineering approach. Curr. Opin. Chem. Biol. 7:570579.
162. Tauch, A.,, S. Gotker,, A. Puhler,, J. Kalinowski,, and G. Thierbach. 2002. The 27.8-kb R-plasmid pTET3 from Corynebacterium glutamicum encodes the aminoglycoside adenyltransferase gene cassette aadA9 and the regulated tetracycline efflux system Tet 33 flanked by active copies of the widespread insertion sequence IS6100. Plasmid 48:117129.
163. Tauch, A.,, S. Krieft,, A. Puhler,, and J. Kalinowski. 1999. The tetAB genes of the Corynebacterium striatum R-plasmid pTP10 encode an ABC transporter and confer tetracycline, oxytetracycline and oxacillin resistance in Corynebacterium glutamicum. FEMS Microbiol. Lett. 173:203209.
164. Tauch, A.,, A. Puhler,, J. Kalinowski,, and G. Thierbach. 2000. TetZ, a new tetracycline resistance determinant discovered in gram-positive bacteria, shows high homology to gram-negative regulated efflux systems. Plasmid 44:285291.
165. Taylor, D. E.,, and A. Chau. 1996. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother. 40:15.
166. Taylor, D. E.,, L. J. Jerome,, J. Grewal,, and N. Chang. 1995. Tet(O), a protein that mediates ribosomal protection to tetracycline, binds, and hydrolyses GTP. Can. J. Microbiol. 41:965978.
167. Taylor, D. E.,, C. A. Trieber,, G. Trescher,, and M. Bekkering. 1998. Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M). Antimicrob. Agents Chemother. 42:5964.
168. Testa, R. T.,, P. J. Petersen,, N. V. Jacobus,, P.-E. Sum,, V. J. Lee,, and F. P. Tally. 1993. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob. Agents Chemother. 37:22702277.
169. Thanassi, D. G.,, G. S. Suh,, and H. Nikaido. 1995. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. J. Bacteriol. 177:9981007.
170. Trieber, C. A.,, N. Burkhardt,, K. H. Nierhaus,, and D. E. Taylor. 1998. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol. Chem. 379:847855.
171. Trieber, C. A.,, and D. E. Taylor. 2002. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. J. Bacteriol. 184:21312140.
172. Tuckman, M.,, P. J. Petersen,, and S. J. Projan. 2000. Mutations in the interdomain loop region of the tetA(A) tetracycline resistance gene increase efflux of minocycline and glycylcyclines. Microb. Drug Resist. 6:277282.
173. Tuckman, M.,, and S. Projan. 1998. Characterization of TetA(B) glycylglycine-resistant mutants. Progr. Abstr. 38th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C-97, p. 96. American Society for Microbiology, Washington, D.C.
174. Vardy, E.,, I. T. Arkin,, K. E. Gottschalk,, H. R. Kaback,, and S. Schuldiner. 2004. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci. 13:18321840.
175. Villedieu, A.,, M. L. Diaz-Torres,, N. Hunt,, R. McNab,, D. A. Spratt,, M. Wilson,, and P. Mullany. 2003. Prevalence of tetracycline resistance genes in oral bacteria. Antimicrob. Agents Chemother. 47:878882.
176. Wang, Y.,, N. B. Shoemaker,, and A. A. Salyers. 2004. Regulation of a Bacteroides operon that controls excision and transfer of the conjugative transposon CTnDOT. J. Bacteriol. 186:25482557.
177. Wang, Y.,, and D. E. Taylor. 1991. A DNA sequence upstream of the tet(O) gene is required for full expression of tetracycline resistance. Antimicrob. Agents Chemother. 35:20202025.
178. Weckesser, J.,, and J. A. Magnuson. 1979. Light-induced, carrier-mediated transport of tetracycline by Rhodopseudomonas sphaeroides. J. Bacteriol. 138:678683.
179. Wells, S. J.,, J. O’Sullivan,, C. Aklonis,, H. A. Ax,, A. A. Tymiak,, D. R. Kirsch,, W. H. Trejo,, and P. Principe. 1992. Dactylocyclines: novel tetracycline derivatives produced by a Dactylosporangium sp. J. Antibiot. 45:18921898.
180. Whittle, G.,, T. R. Whitehead,, N. Hamburger,, N. B. Shoemaker,, M. A. Cotta,, and A. A. Salyers. 2003. Identification of a new ribosomal protection type of tetracycline resistance gene, tet(36), from swine manure pits. Appl. Environ. Microbiol. 69:41514158.
181. Willems, A.,, M. Amat-Marco,, and M. D. Collins. 1996. Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria. Int. J. Syst. Bacteriol. 46:195199.
182. Wilson, K. S.,, and H. F. Noller. 1998. Molecular movement inside the translational engine. Cell 92:337349.
183. Yamaguchi, A.,, K. Adachi,, T. Akasaka,, N. Ono,, and T. Sawai. 1991. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by a transposon Tn10: histidine 257 plays an essential role in H+ translocation. J. Biol. Chem. 266:60456051.
184. Yamaguchi, A.,, T. Akasaka,, N. Ono,, Y. Someya,, M. Nakatani,, and T. Sawai. 1992. Metal-tetracycline/H+ antiporter of Escherichia coli encoded by transposon Tn10. Roles of the aspartyl residues located in the putative transmembrane helices. J. Biol. Chem. 267:74907498.
185. Yamaguchi, A.,, Y. Iwasaki-Ohba,, N. Ono,, M. Kaneko-Ohdera,, and T. Sawai. 1991. Stoichiometry of metaltetracycline /H+ antiport mediated by transposon Tn10-encoded tetracycline resistance protein in Escherichia coli. FEBS Lett. 282:415418.
186. Yamaguchi, A.,, R. O’yauchi,, Y. Someya,, T. Akasaka,, and T. Sawai. 1993. Second-site mutation of Ala-220 to Glu or Asp suppresses the mutation of Asp-285 to Asn in the transposon Tn10-encoded metal-tetracycline/H+ antiporter of Escherichia coli. J. Biol. Chem. 268:2699026995.
187. Yamaguchi, A.,, T. Samejima,, T. Kimura,, and T. Sawai. 1996. His257 is a uniquely important histidine residue for tetracycline/H+ antiport function but not mandatory for full activity of the transposon Tn10-encoded metal-tetracycline/H+ antiporter. Biochemistry 35:43594364.
188. Yamaguchi, A.,, Y. Shiina,, E. Fujihira,, T. Sawai,, N. Noguchi,, and M. Sasatsu. 1995. The tetracycline efflux protein encoded by the tet(K) gene from Staphylococcus aureus is a metal-tetracycline/H+ antiporter. FEBS Lett. 365:193197.
189. Yamaguchi, A.,, Y. Someya,, and T. Sawai. 1993. The in vivo assembly and function of the N- and C-terminal halves of the Tn10-encoded TetA protein in Escherichia coli. FEBS Lett. 324:131135.
190. Yamaguchi, A.,, T. Udagawa,, and T. Sawai. 1990. Transport of divalent cations with tetracycline as mediated by the transposon Tn10-encoded tetracycline resistance protein. J. Biol. Chem. 265:48094813.
191. Yang, W.,, I. F. Moore,, K. P. Koteva,, D. C. Bareich,, D. W. Hughes,, and G. D. Wright. 2004. TetX is a flavin-dependent monooxygenase conferring resistance to tetracycline antibiotics. J. Biol. Chem. 279:5234652352.

Tables

Generic image for table
TABLE 1

Tetracycline resistance genes from gram-positive organisms: efflux

A specific sequenced gene was chosen to represent each class. Information in the first eight columns applies to this gene. The last column indicates the locations of typical class members. Groups coincide well with the data of Guillaume et al. ( ), except that (the gram-negative) Tet Y has been moved from group 6 into group 1.

Number of amino acid residues in protein. For class Z, the N-terminal residue has been located 13 residues upstream of that originally annotated, to coincide with the putative translational start of Tet( ) and to agree with the topology of other group 1 proteins.

C, chromosome; P, plasmid; P**, conjugative plasmid; T, conjugative transposon.

The two (K) sequences, one from 1986 and one from 1993, are identical; in intervening years, inaccurate sequences were reported ( ).

Some plasmid-mediated Tet L determinants are constitutive (see text).

Citation: McMurry L, Levy S. 2006. Tetracycline Resistance Determinants in Gram-Positive Bacteria, p 801-820. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch64
Generic image for table
TABLE 2

Tetracycline resistance genes from gram-positive organisms: ribosomal protection

A specific sequenced gene was chosen to represent each class. Information in the first eight columns applies to this gene. The last column indicates the locations of typical class members.

AA, number of amino acid residues in the protein.

C, chromosome; P, plasmid; P**, conjugative plasmid; T, conjugative transposon.

A (O) sequence taken from the gram-negative is included because of the availability of additional upstream sequences of interest.

First discovered in a gram-negative bacterium, but also found in gram-positive organisms (see Table 3 ).

has recently been reclassified as a gram-positive-like organism ( ).

Citation: McMurry L, Levy S. 2006. Tetracycline Resistance Determinants in Gram-Positive Bacteria, p 801-820. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch64
Generic image for table
TABLE 3

Distribution of tetracycline resistance determinants in gram-positive and certain other bacteria

Includes , , , , , and spp. Based on reference , with additions from references (for ), , and . sp. has been reclassified as a gram-positive-like organism ( ); we have therefore included the related genera and .

In addition to the references listed in footnote , reference was also used.

Citation: McMurry L, Levy S. 2006. Tetracycline Resistance Determinants in Gram-Positive Bacteria, p 801-820. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch64

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error