1887

Chapter 9 : Streptococcus-Mediated Host Cell Signaling

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Streptococcus-Mediated Host Cell Signaling, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816513/9781555813437_Chap09-2.gif

Abstract:

This chapter provides information on host cell-signaling events induced by streptococci. With the availability of complete genome sequence analyses of five group A (GAS) strains, including M1, M3 (two strains), M18, and M6, it is easy to predict the number of surface proteins, which may serve as potential adhesins during initial interactions with host cells. Pathogenic gram-positive cocci through their surface proteins interact with specific receptors on the target cell and induce a series of biochemical signals. These signals, which are characterized by the induction of phosphokinase enzymes and phosphorylation of several intracellular proteins, ultimately target the nucleus and lead to either generalized or specific gene activation. Activation of some of these genes may result in the modulation of interleukin or cytokine expression, which may then initiate a proinflammatory response. These induced signals, and subsequent products, could have several effects on the invasion of bacteria. For example, these induced signals may modulate cytoskeletal structure and/or specific host cell receptor expression or may destroy adjoining cells and disrupt natural protective barriers in autocrine or paracrine modes. This, in turn, could facilitate bacterial entry.

Citation: Pancholi V. 2006. Streptococcus-Mediated Host Cell Signaling, p 100-112. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch9

Key Concept Ranking

Bacterial Proteins
0.61121464
Tumor Necrosis Factor alpha
0.43461612
0.61121464
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

() Streptococcus-mediated signaling events and their implications. The cartoon illustrates reported signaling events. Some of the pathways are hypothesized on the basis of available specific reports on streptococci-mediated signaling events and established signal transduction pathways in eukaryotes. There are at least four receptors (uPAR, enolase, CD44, CD46) that directly interact with group A (GAS) surface proteins. Indirect binding to eukaryotic cells through fibronectin is likely mediated by α5β1 integrin. GAS invades host epithelial cells by two different mechanisms, either by invagination at the point of bacterial contact with host cells or by massive induction of microvilli, which form membrane ruffling for engulfment of bacteria (filopodia). Cytoskeletal rearrangements involve induction of the IP-3 kinase pathway or RAS/CDC42/tyrosine kinase activation. Some of the GAS secretory products such as SLO and NAD glycohydrolase may cooperatively make holes in eukaryotic cells and inject bacterial product in eukaryotic cells to exploit intracellular signaling events in a manner similar to the type III secretory system of gram-negative bacteria. Intracellular GAS may then direct host cells to undergo apoptosis via caspase-dependent and -independent pathways. In GAS-mediated apoptosis mitochondria seem to play a crucial role. NAD-glycohydrolase of GAS may convert NAD to ADP-ribose and/or cyclic ADP-ribose, which may then direct the host cell to undergo apoptosis through the Ca signaling pathway. Although not fully explored, transcriptional regulation of many inflammatory cytokines and apoptosis in the GAS-infected host cells may be mediated via NF-κB and JAK/STAT pathways. Histone-phosphorylation/dephosphorylation and histone acetylation/deacetylation also seem to play important roles in gene transcription in GAS-infected host cells. The induction of signaling pathways may vary depending on the cell lines, status of the cell (polarized versus nonpolarized), type of GAS strains, and growth phase. Abbreviations: ADPR-adenosine diphosphate-ribose; cADPR-cyclic ADPR; AIF-apoptosis inducing factor; Akt-AKT retroviral oncogene protein Ser/Thr kinase; APAF1-apoptosis protease activating factor-1 or CED-4; Arp2/3-actin-related protein 2 and 3; ASK1-apoptosis signal-regulating kinase 1 (also known as MEKK5); ATF2-activating transcription factor 2; BAD-Bcl-xL/Bcl-2 associated death promoter; Bid-BH-3 interacting domain death agonist that induces ICE-like proteases and apoptosis; Bcl2-B-cell lymphoma 2, which belongs to the Bcl-2 family of proteins and is known to inhibit apoptosis; BAK-Bcl-2 antagonist/killer. Bak is a pro-apoptotic protein; BAX-Bcl-2 associated x protein. Bax is as member of the Bcl-2 family and is pro-apoptotic; tBid-truncated Bid; CARD-caspase activation and recruitment domain; Caspase-cysteinyl aspartic acid-protease; CD44-human leukocyte differentiation receptor antigen for hyaluronate and proteoglycin serglycin; CD46-member of RCA gene family, receptor for measles virus and the M protein of GAS; Cdc42-cell division cycle 42 (GTP-binding protein); CytC-cytochrome C; c-Fos/c-Jun-transcription factor, also known as activator protein or AP-1; ELK1-Ets domain containing DNA-binding protein. Mammalian ELK-1, ELK-3 (also known as Net or SAP-2) and ELK-4 (also known as SRF accessory protein 1 [SAP-1]), which all form a ternary complex with the serum response factor (SRF); ERK-extracellular signal-related protein kinase; FADD-Fas-associated death domain; FAK-focal adhesion kinase; FAS-known as CD95 or APO-1. Fas is a member of the TNF receptor family and promotes apoptosis. FasL-Fas ligand. FasL is also known as APO-1 ligand or Apo-L; FLIP-FLICE (Fadd-like ICE [interleukin-1b converting enzyme also known as caspase-1]) inhibitory protein; G-G-protein α, β, and γ; HAT-histone acetyl transferase; HDAC-histone deacetylase; IKB-inhibitory IB (inhibitor of NF-κB) proteins; IKKs-IKK-1 and IKK-2 are two direct IB kinases; IL-interleukins; INF-interferon α or γ; INFR-interferon- γ receptor; IRAK-interleukin-1 receptor-associated kinases; JAK-Janus kinase; JNK-c-Jun N terminal kinase; MAPK-mitogen-activated protein kinase; MEK-MAPK activator; MEKKs-mitogen-activated protein/ERK kinase kinases; MLK1,2-CdC42-dependent kinases; MLK4,7-CdC42-dependent kinases; mTOR-mammalian target of Rapamycin (an immunosuppressant) protein; MyD88-myeloid differentiation factor 88; NAD-nicotinamide adenine dinucleotide; NFKB-nuclear factor of immunoglobulin κ locus in B cells. NF-κB activates transcription of genes in many tissues; NIK-Nck interacting kinase (interacting with MEKK) is different from NIK (NFκB-interacting kinase); PI-3K-Phosphatidyl inositol-3 kinase; RAC-small GTP-binding protein encoded by the gene; RAS-small GTP-binding protein protooncogene encoded by the gene; RIP-receptor interacting protein; ROS-reactive oxygen species; SEN, streptococcal surface enolase; SH2-Src homology region 2; SLO, streptolysin O; STAT-signal transducers and activators of transcription; TIRAP-Toll-interleukin 1 receptor domain-containing adaptor protein; TLR-Toll-like receptor; TNF-tumor necrosis factor; TNFR-tumor necrosis factor receptor; TOLL-human homologue of the Toll protein; TOLLIP-Toll-interacting protein; TRAD-TNF receptor I associated death domain; TRAF-tumor necrosis factor receptor-associated factors; SDH-streptococcal surface dehydrogenase; uPAR-urokinase plasminogen activator receptor.

Citation: Pancholi V. 2006. Streptococcus-Mediated Host Cell Signaling, p 100-112. In Fischetti V, Novick R, Ferretti J, Portnoy D, Rood J (ed), Gram-Positive Pathogens, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816513.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816513.chap9
1. Ajiro, K.,, and T. Nishimoto. 1985. Specific site of histone H3 phosphorylation related to the maintenance of premature chromosome condensation. J. Biol. Chem. 260: 15379 15381.
2. Akesson, P.,, K.-H. Schmidt,, J. Cooney,, and L. Bjorck. 1994. M1 protein and protein H: IgGFc- and albumin-binding streptococcal surface proteins encoded by adjacent genes. Biochem. J. 300: 877 886.
3. Alouf, J. E.,, and H. Muller-Alouf. 2003. Staphylococcal and streptococcal superantigens: molecular, biological and clinical aspects. Int. J. Med. Microbiol. 292: 429 440.
4. Ambrosino, D. M.,, N. R. Delaney,, and R. C. Shamberger. 1990. Human polysaccharide-specific B cells are responsive to pokeweed mitogen and IL-6. J. Immunol. 144: 1221 1226.
5. Baldwin, A. S., Jr. 1996. The NF-κB and IkB proteins: new discoveries and insights. Annu. Rev. Immunol. 14: 649 681.
6. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, S. B. Beres,, L. E. Philips,, J. M. Voyich,, F. R. DeLeo,, J. M. Martin,, G. A. Somerville,, and J. M. Musser. 2004. Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J. Infect. Dis. 190: 727 738.
7. Barratt, M. J.,, C. A. Hazzalin,, E. Cano,, and L. C. Mahadevan. 1994. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc. Natl. Acad. Sci. USA 91: 4781 4785.
8. Beres, S. B.,, G. L. Sylva,, K. D. Barbian,, B. Lei,, J. S. Hoff,, N. D. Mammarella,, M.-Y. Liu,, J. C. Smoot,, S. F. Porcella,, L. D. Parkins,, D. S. Campbell,, T. M. Smith,, J. K. McCormick,, D. Y. M. Leung,, P. Schlievert,, and J. M. Musser. 2002. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 99: 10078 10083.
9. Bergmann, S.,, M. Rohde,, G. S. Chhatwal,, and S. Hammerschmidt. 2001. Alpha-enolase of Streptococcus pneumonia is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40: 1273 1287.
10. Bissell, M. J. 1993. Introduction: form and function in the epithelia. Sem. Cell. Bio. 4: 157 159.
11. Bliska, J. B.,, J. E. Galan,, and S. Falkow. 1993. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73: 903 920.
12. Braun, J. S.,, R. Novak,, K. H. Herzog,, S. M. Bodner,, J. L. Cleveland,, and E. Tuomanen. 1999. Neuroprotection by a caspase inhibitor in acute bacterial meningitis. Nat. Med. 5: 298 302.
13. Braun, J. S.,, R. Novak,, P. J. Murray,, C.M. Eischen,, S. A. Susin,, G. Kroemer,, A. Halle,, J. R. Weber,, E. I. Tuomanen,, and J. L. Cleveland. 2001. Apoptosis-inducing factor mediates microglial and neuronal apoptosis caused by pneumococcus. J. Infect. Dis. 184: 1300 1309.
14. Bricker, A. L.,, C. Cywes,, C. D. Ashbaugh,, and M. R. Wessels. 2002. NAD +-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Mol. Microbiol. 44: 257 269.
15. Buchanan, R. M.,, B. P. Arulanandam,, and D. W. Metzger. 1998. IL-12 enhances antibody responses to T-independent polysaccharide vaccines in the absence of T and NK cells. J. Immunol. 161: 5525 5533.
16. Caparon, M. G.,, R. T. Geist,, J. Perez-Casal,, and J. R. Scott. 1992. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 174: 5693 5701.
17. Cauwels, A.,, E. Wan,, M. Leismann,, and E. Tuomanen. 1997. Coexistence of CD14-dependent and independent pathways for stimulation of human monocytes by gram-positive bacteria. Infect. Immun. 65: 3255 3260.
18. Chen, C. C.,, and P. P. Cleary. 1989. Cloning and expression of the streptococcal C5a peptidase gene in Escherichia coli: linkage to the type 12 M protein gene. Infect. Immun. 57: 1740 1745.
19. Cleary, P. P.,, E. L. Kaplan,, J. P. Handley,, A. Wlazlo,, M. H. Kim,, A. R. Hauser,, and P. M. Schlievert. 1992. Clonal basis for resurgence of serious Streptococcus pyogenes disease in the 1980s. Lancet 339: 518 521.
20. Cossart, P. 1997. Subversion of the mammalian cell cytoskeleton by invasive bacteria. J. Clin. Invest. 99: 2307 2311.
21. Cossart, P.,, P. Boquet,, S. Normark,, and R. Rappuoli. 1996. Cellular microbiology emerging. Science 271: 315 316.
22. Cotter, P. A.,, and J. F. Miller. 1996. Triggering bacterial virulence. Science 273: 1183 1184.
23. Courtney, H. S.,, and D. L. Hasty. 1991. Aggregation of group A streptococci by human saliva and effect of saliva on streptococcal adherence to host cells. Infect. Immun. 59: 1661 1666.
24. Courtney, H. S.,, Y. Li,, J. B. Dale,, and D. L. Hasty. 1994. Cloning, sequencing, and expression of a fibronectin/fibrinogen-binding protein from group A streptococci. Infect. Immun. 62: 3937 3946.
25. Cue, D.,, P. E. Dombek,, H. Lam,, and P. P. Cleary. 1998. Streptococcus pyogenes serotype M1 encodes multiple pathways for entry into human epithelial cells. Infect. Immun. 66: 4593 4601.
26. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Indanpaan-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumonia anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435 438.
27. Cundell, D. R.,, C. Gerard,, I. Idanpaan-Keikkila,, E. I. Tuomanen,, and N. P. Gerard. 1996. PAf receptor anchors Streptococcus pneumoniae to activated human endothelial cells. Adv. Exp. Med. Biol. 416: 89 94.
28. Cunningham, M. W. 2000. Pathogenesis of a group A streptococcal infections. Clin. Microbiol. Rev. 13: 470 511.
29. Cywes, C.,, and M. R. Wessels. 2001. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414: 648 652.
30. Cywes, C.,, I. Stamenkovic,, and M. R. Wessels. 2000. CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J. Clin. Invest. 106: 995 1002.
31. Darnell, J. E. 1998. STATs and gene regulation. Science 277: 1630 1635.
32. Davies, H. D.,, A. McGeer,, B. Schwartz,, K. Green,, D. Cann,, A. E. Simor,, and D. E. Low. 1996. Invasive group A streptococcal infections in Ontario, Canada. N. Engl. J. Med. 335: 547 554.
33. Davis, L.,, M. M. Baig,, and E. M. Ayoub. 1979. Properties of extracellular neuraminidase produced by group A Streptococcus. Infect. Immun. 24: 780 786.
34. D’Costa, S. S.,, T. G. Romer,, and M. D. P. Boyle. 2000. Analysis of expression of a cytosolic enzyme on the surface of Streptococcus pyogenes. Biochem. Biophys. Res. Commun. 278: 826 832.
35. Demuth, D. R.,, E. E. Golub,, and D. Malamud. 1990. Streptococcal-host interactions. J. Biol. Chem. 265: 7120 7126.
36. Dohrman, A.,, S. Miyata,, M. Gallup,, J.-D. Li,, C. Chapelin,, A. Coste,, E. Escudier,, J. Nadel,, and A. Bashir. 1998. Mucin gene (MUC 2 and MUC 5AC) up-regulation by gram-positive and gram-negative bacteria. Biochim. Biophys. Acta 1406: 251 259.
37. Dombek, P. E.,, D. Cue,, J. Sedgewick,, H. Lam,, S. Ruschkowski,, B. B. Finlay,, and P. P. Cleary. 1999. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol. Microbiol. 31: 859 870.
38. Doring, G.,, H. Obernessen,, K. Botzenhart,, B. Flehmig,, N. Hoiby,, and A. Hofmann. 1983. Proteases of Pseudomonas aeruginosa in patients with cystic fibrosis. J. Infect. Dis. 147: 744 750.
39. Drubin, D. G.,, and W. J. Nelson. 1996. Origins of polarity. Cell 84: 335 344.
40. Dudani, A. K.,, C. Cummings,, S. Hashemi,, and P. R. Ganz. 1993. Isolation of a novel 45 kDa plasminogen receptor from human endothelial cells. Thromb. Res. 69: 185 196.
41. Ferretti, J. J.,, W. M. McShan,, D. Ajdic,, D. J. Savic,, G. Savic,, K. Lyon,, C. Primeaux,, S. Sezate,, A. N. Suvorov,, S. Kenton,, H. S. Lai,, S. P. Lin,, Y. Qian,, H. G. Jia,, F. Z. Najar,, Q. Ren,, H. Zhu,, L. Song,, J. White,, X. Yuan,, S.W. Clifton,, B. A. Roe,, and R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658 4663.
42. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276: 718 725.
43. Forstner, G. 1995. Signal transduction, packaging and secretion of mucins. Annu. Rev. Physiol. 57: 585 605.
44. Freyer, D.,, M. Weih,, J. R. Weber,, W. Burger,, P. Scholz,, R. Manz,, A. Zeigenhorn,, C. Angstwurm,, and U. Dirnagl. 1996. Pneumococcal cell wall components induce nitric oxide synthase and TNF-alpha in astroglial-enriched cultures. Glia 16: 1 6.
45. Frick, I.-M.,, K. L. Crossin,, G. M. Edelman,, and L. Bjorck. 1995. Protein H—a bacterial surface protein with affinity for both immunoglobulin and fibronectin type III domains. EMBO J. 14: 1674 1679.
46. Gallo, K. A.,, and G. L. Johnson. 2002. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat. Rev. Mol. Cell Biol. 3: 663 671.
47. Garcia, R. C.,, D. R. Cundell,, E. I. Tuomanen,, L. F. Kolakowski,, C. Gerard,, and N. P. Gerard. 1995. The role of N-glycosylation for functional expression of the human platelet-activating factor receptor. Glycosylation is required for efficient membrane trafficking. J. Biol. Chem. 270: 25178 25184.
48. Geelen, S.,, C. Bhattacharyya,, and E. Tuomanen. 1992. Induction of procoagulant activity on human endothelial cells by Streptococcus pneumoniae. Infect. Immun. 60: 4179 4183.
49. Gendler, S. J.,, and A. P. Spicer. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57: 607 634.
50. Ghosh, S.,, M. J. May,, and E. B. Kopp. 1998. NF-kappaB and Rel proteins: evolutionary conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225 260.
51. Giannakis, E.,, T. S. Jokiranta,, R. J. Ormsby,, T.G. Duthy,, D. A. Male,, D. Christiansen,, V. A. Fischetti,, C. Bagley,, B. E. Loveland,, and D. L. Gordon. 2002. Identification of the streptococcal M protein-binding site on membrane cofactor protein (CD46). J. Immunol. 168: 4585 4592.
52. Graham, M. G.,, L. M. Smoot,, C. A. Lux Migliaccio,, K. Virtaneva,, D. E. Sturdevant,, S. F. Porcella,, M. J. Federle,, G. J. Adams,, J. R. Scott,, and J. M. Musser. 2002. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 99: 13855 13860.
53. Guzman, C. A.,, E. Domann,, M. Rohde,, D. Bruder,, A. Darji,, S. Weiss,, J. Wehland,, T. Chakraborty,, and K. N. Timmis. 1997. Apoptosis of mouse dendritic cells is triggered by listerolysin, the major virulence determinant of Listeria monocytogenes. Mol. Microbiol. 20: 119 126.
54. Hanski, E.,, and M. Caparon. 1992. Protein F, a fibronectin-binding protein, is an adhesin of the group A Streptococcus, Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 89: 6172 6176.
55. Henneke, P.,, O. Takeuchi,, J. A. van Strijp,, H. K. Guttormsen,, J. A. Smith,, A. B. Schromm,, T. A. Espevik,, S. Akira,, V. Nizet,, D. L. Kasper,, and D. T. Golenbock. 2001. Novel engagement of CD14 and multiple toll-like receptors by group B streptococci. J. Immunol. 167: 7069 7076.
56. Hermann, C.,, I. Spreitzer,, N. Schroeder,, S. Morath,, M. Lehner,, W. Fischer,, C. Schutt,, R. Schumann,, and T. Hartung. 2002. Cytokine induction by purified lipoteichoic acids from various bacterial species-role of LBP, sCD14, CD14 and failure to induce TL-12 and subsequent IFN release. Eur. J. Immunol. 32: 551.
57. Herwald, H.,, H. Cramer,, M. Morgelin,, W. Russell,, U. Sollenberg,, A. Norrby-Teglund,, H. Flodgaard,, L. Lindbom,, and L. Bjorck. 2004. M protein, a classical bacterial virulence determinant, forms complexes with fibrinogen that induce vascular leakage. Cell 116: 367 379.
58. Hilbi, H.,, J. E. Moss,, D. Hersh,, Y. Chen,, J. Arondel,, S. Banerjee,, R. A. Flavell,, J. Yuan,, P. J. Sansonetti,, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273: 32895 32900.
59. Hilkens, J.,, M. J. L. Ligtengerg,, H. L. Vos,, and S. V. Litvinov. 1992. Cell membrane-associated mucins and their adhesion-modulating property. Trends Biol. Sci. 17: 359 363.
60. Hopkin, K. 1997. Spools, switches, or scaffolds: how might histones regulate transcription? J. NIH Res. 9: 34 37.
61. Hultgren, S. J.,, S. Abraham,, M. Caparon,, P. Falk,, J. W. St. Geme III, and S. Normack. 1993. Pilus and nonpilus bacterial adhesions: assembly and function in cell regulation. Cell 73: 887 901.
62. Hynes, R. O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11 25.
63. Hytonen, J.,, S. Haataja,, P. Isomaki,, and J. Finne. 2000. Identification of a novel glycoprotein-binding activity in Streptococcus pyogenes regulated by the mga gene. Microbiology 146: 31 39.
64. Hytonen, J.,, S. Haataja,, and J. Finne. 2003. Streptococcus pyogenes glycoprotein-binding strepadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase. Infect. Immun. 71: 784 793.
65. Iseberg, R. R. 1991. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 252: 934 938.
66. Iseberg, R. R.,, and G. T. V. Nhieu. 1994. Binding and internalization of microorganisms by integrin receptors. Trends Microbiol. 2: 10 14.
67. Jadoun, J.,, V. Ozeri,, E. Burstein,, E. Skutelsky,, E. Hanski,, and S. Sela. 1998. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelia cells. J. Infect. Dis. 178: 147 158.
68. Jaffe, J.,, S. Natanson-Yaron,, M. G. Caparon,, and E. Hanski. 1996. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21: 373 384.
69. Jin, H.,, Y. P. Song,, and V. Pancholi. 2004. Urokinase plasminogen activator receptor (uPAr/CD87) is a receptor for group A streptococcal surface dehydrogenase (SDH) on the surface of human pharyngeal cells: identification of ligand-receptor binding regions, abstr. B-378, p. 99. Abstr. 104th Annu. Meet. Am. Soc. Microbiol. 2004. American Society for Microbiology, Washington, D.C.
70. Kantor, F. S. 1965. Fibrinogen precipitating by streptococcal M protein. I. Identity of the reactants and stoichiometry of the reaction. J. Exp. Med. 121: 849 859.
71. Kehoe, M. A., 1994. Cell-wall-associated proteins in gram-positive bacteria, p. 217 261. In J.-M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier Science, New York, N.Y.
72. Kemp, K.,, H. Bruunsgaard,, P. Skinhoj,, and P. B. Klarlund. 2002. Pneumococcal infections in humans are associated with increased apoptosis and trafficking of type 1 cytokine-producing T cells. Infect. Immun. 70: 5019 5025.
73. Kerr, A. R.,, X. Q. Wei,, P. W. Andrew,, and T. J. Mitchell. 2004. Nitric oxide exerts distinct effects in local and systemic infections with Streptococcus pneumoniae. Microb. Pathog. 36: 303 310.
74. Klinger, J.,, B. Tandler,, C. Kiedtke,, and T. Boat. 1984. Proteinases of Pseudomonas aeruginosa evoke mucins release by tracheal epithelium. J. Clin. Invest. 74: 1669 1678.
75. Kobayashi, S. D.,, K. R. Braughton,, A. R. Whitney,, J. M. Voyich,, T. G. Schwan,, J. M. Musser,, and F. R. DeLeo. 2003. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl. Acad. Sci. USA 100: 10948 10953.
76. Koedel, U.,, B. Angele,, T. Rupprecht,, H. Wagner,, A. Roggenkamp,, H. W. Pfister,, and C. J. Kirschning. 2003. Toll-like receptor 2 participates in mediation of immune response in experimental pneumococcal meningitis. J. Immunol. 170: 438 444.
77. Kotb, M.,, A. Norrby-Teglund,, A. McGeer,, H. El Sherbini,, M. T. Dorak,, A. Khurshid,, K. Green,, J. Peeples,, J. Wade,, G. Thomson,, B. Schwartz,, and D. E. Low. 2002. An immunogenetic and molecular basis for differences in outcomes of invasive group A streptococcal infections. Nat. Med. 8: 1398 1404.
78. Kreikemeyer, B.,, K. S. McIver,, and A. Podbielski. 2003. Virulence factors regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol. 11: 224 232.
79. Levitzki, A.,, and A. Gazit. 1995. Tyrosine kinase inhibition: an approach to drug development. Science 267: 1782 1788.
80. Lieberman, D.,, S. Livnat,, F. Schlaeffer,, A. Porath,, S. Horowitz,, and R. Levy. 1997. IL-1beta and IL-6 in community- acquired pneumonia: bacteremic pneumococcal pneumonia versus Mycoplasma pneumoniae pneumonia. Infection 25: 90 94.
81. Livinov, S. V.,, and J. Hilkens. 1993. The epithelial sialomucin, episialin, is sialylated during recycling. J. Biol. Chem. 268: 21364 21371.
82. Luger, K.,, A. W. Mader,, R. K. Richmond,, D. F. Sargent,, and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8A resolution. Nature 389: 251 260.
83. Lukomski, S.,, E. H. Burns Jr,, P. R. Wyde,, A. Podbielski,, J. Rurangirwa,, D. K. Moore-Poveda,, and J. M. Musser. 1998. Genetic inactivation of an extracellular cysteine protease (SpeB) expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun. 66: 771 776.
84. Madden, J. C.,, N. Ruiz,, and M. Caparon. 2001. Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in Gram-positive bacteria. Cell 104: 143 152.
85. Mahadevan, L. C.,, A. C. Willis,, and M. J. Barratt. 1991. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65: 775 783.
86. Malley, R.,, P. Henneke,, S. C. Morse,, M. J. Cieslewicz,, M. Lipsitch,, C. M. Thompson,, E. Kurt-Jones,, J. C. Paton,, M. R. Wessels,, and D. T. Golenbock. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100: 1966 1971.
87. Mancuso, G.,, A. Midiri,, C. Beninati,, G. Piraino,, A. Valenti,, G. Nicocia,, D. Teti,, J. Cook,, and G. Teti. 2002. Mitogen-activated protein kinases and NF-kappa B are involved in TNF-alpha responses to group B streptococci. J. Immunol. 169: 1401 1409.
88. McIver, K. S.,, and J. R. Scott. 1997. Role of mga in growth phase regulation of virulence genes of the group A streptococcus. J. Bacteriol. 179: 5178 5187.
89. McIver, K. S.,, A. S. Heath,, and J. R. Scott. 1995. Regulation of virulence by environmental signals in group A streptococci: influence of osmolarity, temperature, gas exchange, and iron limitation of emm transcription. Infect. Immun. 63: 4540 4542.
90. Medina, E.,, D. Anders,, and G. S. Chhatwal. 2002. Induction of NF-kappaB nuclear translocation in human respiratory epithelial cells by group A streptococci. Microb. Pathog. 33: 307 313.
91. Medvedev, A. E.,, T. Flo,, R. R. Ingalls,, D. T. Golenbock,, G. Teti,, S. N. Vogel,, and T. Espevik. 1998. Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-kappaB activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J. Immunol. 160: 4535 4542.
92. Mehta, K.,, U. Sahid,, and F. Malavasi. 1996. Human CD38, a cell-surface protein with multiple function. FASEB J. 10: 1408 1417.
93. Miettinen, M.,, A. Lehtonen,, I. Julkunen,, and S. Matikainen. 2000. Lactobacilli and streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J. Immunol. 164: 3733 3740.
94. Miles, L. A.,, C. M. Dahlberg,, J. Plescia,, J. Felez,, K. Kato,, and E. F. Plow. 1991. Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30: 1682 1691.
95. Molinari, G.,, S. R. Talay,, P. Valentin-Weigand,, M. Rohde,, and G. S. Chhatwal. 1998. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect. Immun. 65: 1357 1363.
96. Molinari, G.,, M. Rohde,, C. A. Guzman,, and G. S. Chhatwal. 2000. Two distinct pathways for the invasion of Streptococcus pyogenes in non-phagocytic cells. Cell. Microbiol. 2: 145 154.
97. Mosquera, J.,, A., V. N. Katiyar, J.Coello, and B. Rodriguez-Iturbe. 1985. Neuraminidase production by streptococci from patients with glomerulonephritis. J. Infect. Dis. 151: 259 263.
98. Moss, J.,, and M. Vaughan. 1988. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv. Enzymol. 61: 303 379.
99. Muller-Alouf, H.,, J. E. Alouf,, D. Gerlach,, J.-H. Ozegowski,, C. Fitting,, and J.-M. Cavaillon. 1994. Comparative study of cytokine release by human peripheral blood mononuclear cells stimulated with Streptococcus pyogenes superantigenic erythrogenic toxins, heat-killed streptococci and lipopolysaccaride. Infect. Immun. 62: 4915 4921.
100. Nagata, S. 1997. Apoptosis by death factor. Cell 88: 355 365.
101. Nakagawa, I.,, M. Nakata,, S. Kawabata,, and S. Hamada. 2002. Cytochrome C-mediated caspase-9 activation triggers apoptosis in Streptococcus pyogenes-infected epithelial cells. Cell. Microbiol. 3: 395 405.
102. Nakagawa, I.,, K. Kurokawa,, A. Yamashita,, M. Nakata,, Y. Tomiyasu,, N. Okahashi,, S. Kawabata,, K. Yamazaki,, T. Shiba,, T. Yasunaga,, H. Hayashi,, M. Hattori,, and S. Hamada. 2003. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13: 1042 1055.
103. Natanson, C.,, W. D. Hoffman,, A. F. Suffredini,, P. Q. Eichacker,, and R. L. Danner. 1994. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann. Intern. Med. 120: 771 783.
104. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Molec. Biol. Rev. 63: 174 229.
105. Neff, L.,, M. Zeisel,, J. Sibilia,, M. Scholler-Guinard,, J. P. Klein,, and D. Wachsmann. 2001. NF-kappaB and the MAP kinases/AP-1 pathways are both involved in interleukin-6 and interleukin-8 expression in fibroblast-like synoviocytes stimulated by protein I/II, a modulin from oral streptococci. Cell. Microbiol. 3: 703 712.
106. Norgren, M.,, A. Norrby,, and S. E. Holm. 1992. Genetic diversity in T1M1 group A streptococci in relation to clinical outcome of infection. J. Infect. Dis. 166: 1014 1020.
107. Norrby-Teglund, A.,, S. Chatellier,, D. E. Low,, A. McGeer,, K. Green,, and M. Kotb. 2000. Host variation in cytokine responses to superantigens determine the severity of invasive group A streptococcal infection. Eur. J. Immunol. 30: 3247 3255.
108. Nyberg, P.,, T. Sakai,, K. H. Cho,, M. G. Caparon,, R. Fassler,, and L. Bjorck. 2004. Interactions with fibronectin attenuate the virulence of Streptococcus pyogenes. EMBO J. 23: 2166 2174.
109. Okada, N.,, M. K. Liszewski,, J. P. Atkinson,, and M. Caparon. 1995. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of group A streptococcus. Proc. Natl. Acad. Sci. USA 92: 2489 2493.
110. Okada, N.,, M. Watarai,, V. Ozeri,, E. Hanski,, M. Caparon,, and C. Sasakawa. 1998. A matrix form of fibronectin mediates enhanced binding of Streptococcus pyogenes to host tissue. J. Biol. Chem. 272: 26978 26984.
111. Ozeri, V.,, I. Rosenshine,, D. F. Mosher,, R. Fassler,, and E. Hanski. 1998. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30: 625 637.
112. Ozeri, V.,, I. Rosenshine,, A. Ben-Ze’ev,, G. M. Bokoch,, T.-S. Jou,, and E. Hanski. 2001. De novo formation of focal complex-like structures in host cells by invading streptococci. Mol. Microbiol. 41: 561 573.
113. Pancholi, V. 2001. The regulatory role of streptococcal surface deHydrogenase (SDH) in the expression of cytokines and apoptosis related genes in group A streptococci infected human pharyngeal cells, abstr. B-177, p. 80. Abstr. 101st Annu. Meet. Am. Soc. Microbiol. 2001. American Society for Microbiology, Washington, D.C.
114. Pancholi, V.,, and G. S. Chhatwal. 2003. Housekeeping enzymes as virulence factors for pathogens. Int. J. Med. Microbiol. 293: 1 11.
115. Pancholi, V.,, and V. A. Fischetti. 1992. A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med. 176: 415 426.
116. Pancholi, V.,, and V. A. Fischetti. 1993. Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc. Natl. Acad. Sci. USA 90: 8154 8158.
117. Pancholi, V.,, and V. A. Fischetti. 1997. Identification of a glycolytic enzyme complex on the surface of group A streptococci. abstr. B-42, p. 35. Abstr. 98th Annu. Meet. Am. Soc. Microbiol. 1997. American Society for Microbiology, Washington, D.C.
118. Pancholi, V.,, and V. A. Fischetti. 1997. Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase (SDH): signal transduction between streptococci and pharyngeal cells. J. Exp. Med. 186: 1633 1643.
119. Pancholi, V.,, and V. A. Fischetti. 1998. a-Enolase, a novel strong plasmin(ogen) binding protein on the surface of pathogenic streptococci. J. Biol. Chem. 273: 14503 14515.
120. Pancholi, V.,, P. A. Fontan,, and H. Jin. 2003. Plasminogen-mediated group A streptococcal adherence to and pericellular invasion of human pharyngeal cells. Microb. Pathog. 35: 293 303.
121. Parsonnet, J. 1989. Mediators in the pathogenesis of toxic shock syndrome: overview. J. Infect. Dis. 11: 5263 5269.
122. Pellegrini, S.,, and I. Dusanter-Fourt. 1997. The structure, regulation and function of the Janus kinases (JAKs) and the signal transducers and activators of transcription (STATs). Eur. J. Biochem. 248: 615 633.
123. Pennisi, E. 1997. Opening the way to gene activity. Science 275: 155 157.
124. Perez-Casal, J.,, M. G. Caparon,, and J. R. Scott. 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J. Bacteriol. 173: 2617 2624.
125. Purushothaman, S. S.,, B. Wang,, and P. P. Cleary. 2003. M1 protein triggers a phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect. Immun. 71: 5823 5830.
126. Rakonjac, J. V.,, J. C. Robbins,, and V. A. Fischetti. 1995. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect. Immun. 63: 622 631.
127. Redlitz, A.,, B. J. Fowler,, E. F. Plow,, and L. A. Miles. 1995. The role of an enolase-related molecule in plasminogen binding to cells. Eur. J. Biochem. 227: 407 415.
128. Rijneveld, A. W.,, S. Florquin,, J. Branger,, P. Speelman,, S. J. van Deventer,, and P. T. Van Der. 2001. TNF-alpha compensates for the impaired host defense of IL-1 type I receptor-deficient mice during pneumococcal pneumonia. J. Immunol. 167: 5240 5246.
129. Rodriguez-Boulan, E.,, and W. J. Nelson. 1989. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718 725.
130. Rohde, M.,, E. Muller,, G. S. Chhatwal,, and S. R. Talay. 2003. Host cell caveolae act as an entry-port for group A streptococci. Cell. Microbiol. 5: 323 342.
131. Roth, S. Y.,, and C. D. Allis. 1996. Histone acetylation. Cell 87: 5 8.
132. Russell, S. 2004. CD46: a complement regulator and pathogen receptor that mediates links between innate and acquired immune function. Tissue Antigens 64: 111 118.
133. Ryan, P. A.,, V. Pancholi,, and V. A. Fischetti. 1998. Binding of group A streptococci to mucin and its implications in the colonization process, abstr. B-4, p. 56. Abstr. 98th Annu. Meet. Am. Soc. Microbiol. 1998. American Society for Microbiology, Washington, D.C.
134. Ryan, P. A.,, V. Pancholi,, and V. A. Fischetti. 2002. Group A streptococci bind to mucin and human pharyngeal cells through sialic acid-containing receptors. Infect. Immun. 69: 7402 7412.
135. Sajjan, S. U.,, and J. F. Forstner. 1998. Identification of the mucin-binding adhesin of Pseudomonas cepacia isolated from patients with cystic fibrosis. Infect. Immun. 60: 1434 1440.
136. Schmeck, B.,, R. Gross,, P. D. N’Guessan,, A. C. Hocke,, S. Hammerschmidt,, T. J. Mitchell,, S. Rosseau,, N. Suttorp,, and S. Hippenstiel. 2004. Streptococcus pneumoniae-induced caspase 6-dependent apoptosis in lung epithelium. Infect. Immun. 72: 4940 4947.
137. Schrager, H. M.,, S. Alberti,, C. Cywes,, G. Dougherty,, and M. R. Wessels. 1998. Hyaluronic acid capsule modulates M protein-mediated adherence and acts as a ligand for attachment of group A Streptococcus to CD44 on human keratinocytes. J. Clin. Invest. 101: 1708 1716.
138. Schroder, N. W.,, S. Morath,, C. Alexander,, L. Hamann,, T. Hartung,, U. Zahringer,, U. B. Goebel,, J. R. Weber,, and R. R. Schumann. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278: 15587 15594.
139. Schumann, R. R.,, D. Pfeil,, D. Freyer,, W. Buerger,, N. Lamping,, C. J. Kirschning,, U. B. Goebel,, and J. R. Weber. 1998. Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2, and p38 in astrocytes. Glia 22: 295 305.
140. Seger, R.,, and E. G. Krebs. 1995. The MAPK signaling cascade. FASEB J. 9: 726 735.
141. Shelburne, S. A.,, and J. M. Musser. 2004. Virulence gene expression in vivo. Curr. Opin. Microbiol. 7: 283 289.
142. Shuter, J.,, V. B. Hatcher,, and F. D. Lowy. 1998. Staphylococcus aureus binding to human nasal mucin. Infect. Immun. 64: 310 318.
143.. Siebenlist, U.,, G. Franzoso,, and K. Brown. 1994. Structure, regulation, and function of NF-κB. Annu. Rev. Cell Biol. 10: 405 455.
144. Smoot, J. C.,, K. D. Barbian,, J. J. Van Gompel,, L. M. Smoot,, M. S. Chaussee,, G. L. Sylva,, D. E. Sturdevant,, S. M. Ricklefs,, S. F. Porcella,, L. D. Parkins,, S. B. Beres,, D. S. Campbell,, T. M. Smith,, Q. Zhang,, V. Kapur,, J. A. Daly,, L. G. Veasey,, and J. M. Musser. 2002. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 99: 4668 4673.
145. Steller, H. 1995. Mechanisms and genes of cellular suicide. Science 267: 1445 1449.
146. Strous, G. J.,, and J. Dekker. 1992. Mucin-type glycoproteins. Crit. Rev. Biochem. Mol. Biol. 27: 57 92.
147. Sweet, M. T.,, G. Carlson,, R. G. Cook,, D. Nelson,, and C. D. Allis. 1997. Phosphorylation of linker histones by a protein kinase A-like activity in mitotic nuclei. J. Biol. Chem. 272: 916 923.
148. Tabak, L. A. 1995. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu. Rev. Physiol. 57: 547 564.
149. Taylor-Papadimitriou, J.,, and O. J. Finn. 1997. Biology, biochemistry and immunology of carcinoma-associated mucins. Immunol. Today 18: 105 107.
150. Timpl, R.,, and J. C. Brown. 1998. The laminins. Matrix Biol. 14: 275 281.
151. Tsai, P. J.,, Y. S. Lin,, C. F. Kuo,, H. Y. Lei,, and J. J. Wu. 1999. Group A Streptococcus induces apoptosis in human epithelial cells. Infect. Immun. 67: 4334 4339.
152. Tuomanen, E.,, R. Austrian,, and H. R. Masure. 1995. Pathogenesis of pneumococcal infection. N. Engl. J. Med. 332: 1280 1284.
153. von Mering, M.,, A. Wellmer,, U. Michel,, S. Bunkowski,, A. Tlustochowska,, W. Bruck,, U. Kuhnt,, and R. Nau. 2001. Transcriptional regulation of caspases in experimental pneumococcal meningitis. Brain Pathol. 11: 282 295.
154. Voyich, J. M.,, D. E. Sturdevant,, K. R. Braughton,, S. D. Kobayashi,, B. Lei,, K. Virtaneva,, D. W. Dorward,, J. M. Musser,, and F. R. DeLeo. 2003. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 100: 1996 2001.
155. Voyich, J. M.,, K. R. Braughton,, D. E. Sturdevant,, C. Vuong,, S. D. Kobayashi,, S. F. Porcella,, M. Otto,, J. M. Musser,, and F. R. DeLeo. 2004. Engagement of the pathogen survival response used by group A Streptococcus to avert destruction by innate host defense. J. Immunol. 173: 1194 1201.
156. Wang, B.,, N. Ruiz,, A. Pentland,, and M. Caparon. 1997. Keratinocyte proinflammatory responses to adherent and nonadherent group A streptococci. Infect. Immun. 65: 2119 2126.
157. Wannamaker, L. W. 1970. Differences between streptococcal infections of the throat and of the skin. N. Engl. J. Med. 282: 23 31.
158. Wannamaker, L. W. 1970. Differences between streptococcal infections of the throat and of the skin (second of two parts). N. Engl. J. Med. 282: 78 85.
159. Wannamaker, L. W. 1973. The chains that link the throat to the heart. Circulation 48: 9 18.
160. Wick, M. J.,, J. L. Madara,, B. N. Fields,, and S. J. Normark. 1991. Molecular cross talk between epithelial cells and pathogenic microorganisms. Cell 67: 651 659.
161. Wolffe, A.,, J. Wong,, and D. Pruss. 1997. Activators and repressors: making use of chromatin to regulate transcription. Genes Cells 2: 291 302.
162. Wright, S. D.,, R. A. Ramos,, P. S. Tobias,, R. J. Ulevitch,, and J. C. Mathison. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249: 1431 1433.
163. Zychlinsky, A.,, and P. J. Sansonetti. 1997. Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol. 5: 201 204.
164. Zychlinsky, A.,, K. Thirumalai,, J. Arondel,, J. R. Cantey,, A. O. Aliprantis,, and P. Sansonetti. 1996. In vivo apoptosis in Shigella flexneri infection. Infect. Immun. 64: 5357 5365.
165. Zysk, G.,, L. Bejo,, B. K. Schneider-Wald,, R. Nau,, and H. Heinz. 2000. Induction of necrosis and apoptosis of neutrophil granulocytes by Streptococcus pneumoniae. Clin. Exp. Immunol. 122: 61 66.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error