1887

Chapter 11 : Mechanisms of Carriage

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mechanisms of Carriage, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap11-2.gif

Abstract:

is one of many closely related oral streptococci of the mitis phylogenetic group that colonize the human oro- and nasopharynx. Recently, experimental carriage studies performed in healthy adults have offered the prospect of utilizing the natural host to further investigate this fundamental aspect of pneumococcal biology. Surface molecules that have been shown to function as adhesins to human epithelial cells include phosphorylcholine (ChoP) and CbpA. ChoP, an otherwise unusual prokaryotic structural component, is common to several other genera residing primarily in the upper respiratory tract, such as , , , and . The expression of a surface-attached hyaluronidase (a hyaluronate lyase), Hyl, which could facilitate spread through a matrix of hyaluronan, a major polysaccharide component of host connective tissues, suggests that such a strategy may contribute to pneumococcal pathogenesis. Adherence to host structures may be particularly problematic for an encapsulated organism like the pneumococcus. Some degree of encapsulation appears to be essential for colonization, although even small amounts of capsular polysaccharide effectively block attachment to host cells. A final consideration is that pneumococcal infection frequently occurs in the setting of a recent or concurrent upper respiratory infection from common viruses.

Citation: Weiser J. 2004. Mechanisms of Carriage, p 169-182. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch11

Key Concept Ranking

Complement System
0.4809153
Viruses
0.45618406
Two-Component Signal Transduction Systems
0.4321483
0.4809153
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816537.chap11
1. Andersson, B.,, J. Dahmen,, T. Frejd,, H. Leffler,, G. Magnusson,, G. Noori,, and C. S. Eden. 1983. Identification of an active dissaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. J. Exp. Med. 158: 559 570.
2. Andoh, A.,, Y. Fujiyama,, T. Kimura,, H. Uchihara,, H. Sakumoto,, H. Okabe,, and T. Bamba. 1997. Molecular characterization of complement components (C3, C4, and factor B) in human saliva. J. Clin. Immunol. 17: 404 407.
3. Angel, C.,, M. Ruzek,, and M. Hostetter. 1994. Degradation of C3 by Streptococcus pneumoniae. J. Infect. Dis. 170: 600 608.
4. Balachandran, P.,, A. Brooks-Walter,, A. Virolainen-Julkunen,, S. Hollingshead,, and D. Briles. 2002. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 70: 2526 2534.
5. Barthelson, R.,, A. Mobasseri,, D. Zopf,, and P. Simon. 1998. Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect. Immun. 66: 1439 1444.
6. Bergmann, S.,, M. Rohde,, G. Chhatwal,, and S. Hammerschmidt. 2001. α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40: 1273 1287.
7. Berry, A.,, R. Lock,, and J. Paton. 1996. Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli. J. Bacteriol. 178: 4854 4860.
8. Bouchet, V.,, D. Hood,, J. Li,, J. Brisson,, G. Randle,, A. Martin,, Z. Li,, R. Goldstein,, E. Schweda,, S. Pelton,, J. Richards,, and E. Moxon. 2003. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc. Natl. Acad. Sci. USA 100: 8898 8903.
9. Briles, D. E.,, E. Ades,, J. C. Paton,, J. S. Sampson,, G. M. Carlone,, R. C. Huebner,, A. Virolainen,, E. Swiatlo,, and S. K. Hollingshead. 2000. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 68: 796 800.
10. Brooks-Walter, A.,, D. E. Briles,, and S. K. Hollingshead. 1999. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 67: 6533 6542.
11. Brown, J.,, S. Gilliland,, and D. Holden. 2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40: 572 585.
12. Brown, J. S.,, S. M. Gilliland,, J. Ruiz-Albert,, and D. W. Holden. 2002. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70: 4389 4398.
13. Brown, J. S.,, T. Hussell,, S. M. Gilliland,, D. W. Holden,, J. C. Paton,, M. R. Ehrenstein,, M. J. Walport,, and M. Botto. 2002. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl. Acad. Sci. USA 99: 16969 16974.
14. Cundell, D.,, C. Gerard,, I. Idanpaan- Heikkila,, E. Tuomanen,, and N. Gerard. 1996. PAF receptor anchors Streptococcus pneumoniae to activated human endothelial cells. Adv. Exp. Med. Biol. 416: 89 94.
15. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Idanpaan-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435 438.
16. Cundell, D. R.,, and E. I. Tuomanen. 1994. Receptor specificity of adherence of Streptococcus pneumoniae to human type II pneumocytes and vascular endothelial cells in vitro. Microb. Pathog. 17: 361 374.
17. Dagan, R.,, N. Givon-Lavi,, O. Zamir,, M. Sikuler-Cohen,, L. Guy,, J. Janco,, P. Yagupsky,, and D. Fraser. 2002. Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care centers. J. Infect. Dis. 185: 927 936.
18. Dagan, R.,, M. Muallem,, R. Melamed,, O. Leroy,, and P. Yagupsky. 1997. Reduction of pneumococcal nasopharyngeal carriage in early infancy after immunization with tetravalent pneumococcal vaccines conjugated to either tetanus toxoid or diphtheria toxoid. Pediatr. Infect. Dis. J. 16: 1060 1064.
19. Davies, J.,, I. Carlstedt,, A.-K. Nilsson,, A. Hakansson,, H. Sabharwal,, L. van Alphen,, M. van Ham,, and C. Svanborg. 1995. Binding of Haemophilus influenzae to purified mucins from the human respiratory tract. Infect. Immun. 63: 2485 2492.
20. de Saizieu, A.,, C. Gardes,, N. Flint,, C. Wagner,, M. Kamber,, T. Mitchell,, W. Keck,, K. Amrein,, and R. Lange. 2000. Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J. Bacteriol. 182: 4696 4703.
21. Echenique, J.,, and M. Trombe. 2001. Competence repression under oxygen limitation through the two-component MicAB signal-transducing system in Streptococcus pneumoniae and involvement of the PAS domain of MicB. J. Bacteriol. 183: 4599 4608.
22. Eskola, J.,, T. Kilpi,, A. Palmu,, J. Jokinen,, J. Haapakoski,, E. Herva,, A. Takala,, H. Kayhty,, P. Karma,, A. Kohberger,, G. Siber,, P.H. Makela, and the Finnish Otitis Media Study Group. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344: 403 409.
23. Estabrook, M. M.,, J. M. Griffiss,, and G. A. Jarvis. 1997. Sialylation of Neisseria meningitidis lipooligosaccharide inhibits serum bactericidal activity masking lacto- N-neotraose. Infect. Immun. 65: 4436 4444.
24. Fan, X.,, H. Goldfine,, E. Lysenko,, and J. Weiser. 2001. The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Mol. Microbiol. 41: 1029 1036.
25. Fan, X.,, C. D. Pericone,, E. Lysenko,, H. Goldfine,, and J. N. Weiser. 2003. Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Mol. Microbiol. 50: 537 548.
26. Fischer, W.,, T. Behr,, R. Hartmann,, K. C. J. Peter,, and H. Egge. 1993. Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur. J. Biochem. 215: 851 857.
27. Gorter, A.,, P. Hiemstra,, S. de Bentzmann,, S. van Wetering,, J. Dankert,, and L. van Alphen. 2000. Stimulation of bacterial adherence by neutrophil defensins varies among bacterial species but not among host cell types. FEMS Immunol. Med. Microbiol. 28: 105 111.
28. Gould, J.,, and J. Weiser. 2001. Expression of C-reactive protein in the human respiratory tract. Infect. Immun. 69: 1747 1754.
29. Gould, J.,, and J. Weiser. 2002. The inhibitory effect of C-reactive protein on bacterial phosphorylcholine-platelet activating factor receptor mediated adherence is blocked by surfactant J. Infect. Dis. 186: 361 371.
30. Gundel, M. 1933. Bakteriologische und Epidemiologische Untersuchungen über die Besiedlung der oberen Atmungswege Gesunder mit Pneumokokken. Z. Hyg. Infektionskr. 114: 659 704.
31. Gwaltney, J. J.,, M. Sande,, R. Austrian,, and J. Hendley. 1975. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S. pneumoniae to incidence of colds and serum antibody. J. Infect. Dis. 132: 62 68.
32. Hakansson, A.,, A. Kidd,, G. Wadell,, H. Sabharwal,, and C. Svanborg. 1994. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect. Immun. 62: 2707 2714.
32a.. Hakansson, A.,, H. Roche,, S. Mirza,, L. S. McDaniel,, A. Brooks-Walter,, and D. E. Briles. 2001. Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect. Immun. 69: 3372 3381.
33. Hammerschmidt, S.,, G. Bethe,, P. H. Remane,, and G. S. Chhatwal. 1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect. Immun. 67: 1683 1687.
34. Hammerschmidt, S.,, S. R. Talay,, P. Brandtzaeg,, and G. S. Chhatwal. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25: 1113 1124.
35. Hammerschmidt, S.,, M. Tillig,, S. Wolff,, J. Vaerman,, and G. Chhatwal. 2000. Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol. 36: 726 736.
36. Holmes, A.,, R. McNab,, K. Millsap,, M. Rohde,, S. Hammerschmidt,, J. Mawdsley,, and H. Jenkinson. 2001. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol. 41: 1395 1408.
37. Hood, D.,, K. Makepeace,, M. Deadman,, R. Rest,, P. Thibault,, A. Martin,, J. Richards,, and E. Moxon. 1999. Sialic acid in the lipopolysaccharide of Haemophilus influenzae: strain distribution, influence on serum resistance and structural characterization. Mol. Microbiol. 33: 679 692.
38. Hummell, D. S.,, A. J. Swift,, A. Tomasz,, and J. A. Winkelstein. 1985. Activation of the alternative complement pathway by pneumococcal lipoteichoic acid. Infect. Immun. 47: 384 387.
39. Imlay, J.,, and S. Linn. 1988. DNA damage and oxygen radical toxicity. Science 240: 1302 1309.
40. Janulczyk, R.,, F. Iannelli,, A. Sjöholm,, G. Pozzi,, and L. Björck. 2000. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem. 275: 37257 37263.
41. Jedrzejas, M.,, L. Mello,, B. de Groot,, and S. Li. 2002. Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. J. Biol. Chem. 277: 28287 28297.
42. Johnson, S. E.,, J. K. Dykes,, D. L. Jue,, J. S. Sampson,, G. M. Carlone,, and E. W. Ades. 2002. Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesin a. J. Infect. Dis. 185: 489 496.
43. Kim, J.,, and J. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177: 368 377.
44. Krivan, H. C.,, D. D. Roberts,, and V. Ginsberg. 1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA 85: 6157 6161.
45. Lipsitch, M.,, J. Dykes,, S. Johnson,, E. Ades,, J. King,, D. Briles,, and G. Carlone. 2000. Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine 18: 2895 2901.
46. Magee, A.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69: 3755 3761.
47. Malley, R.,, P. Henneke,, S. Morse,, M. Cieslewicz,, M. Lipsitch,, C. Thompson,, E. Kurt-Jones,, J. Paton,, M. Wessels,, and D. Golenbock. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100: 1966 1971.
48. Mbelle, N.,, R. Huebner,, A. Wasas,, A. Kimura,, I. Chang,, and K. Klugman. 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180: 1171 1176.
49. McCool, T. L.,, T. R. Cate,, G. Moy,, and J. N. Weiser. 2002. The immune response to pneumococcal proteins during experimental human carriage. J. Exp. Med. 195: 359 365.
50. McCool, T. L.,, T. R. Cate,, E. I. Tuomanen,, P. Adrian,, T. J. Mitchell,, and J. N. Weiser. 2003. Serum immunoglobulin G response to candidate vaccine antigens during experimental human pneumococcal colonization. Infect. Immun. 71: 5724 5732.
51. McCullers, J.,, and K. Bartmess. 2003. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J. Infect. Dis. 187: 1000 1009.
52. McCullers, J.,, and J. Rehg. 2002. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J. Infect. Dis. 186: 341 350.
53. Muller-Graf, C.,, A. Whatmore,, S. King,, K. Trzcinski,, A. Pickerill,, N. Doherty,, J. Paul,, D. Griffiths,, D. Crook,, and C. Dowson. 1999. Population biology of Streptococcus pneumoniae isolated from oropharyngeal carriage and invasive disease. Microbiology 145: 3283 3293.
54. Musher, D. 2003. How contagious are common respiratory tract infections? N. Engl. J. Med. 348: 1256 1266.
55. Musher, D.,, J. Groover,, M. Reichler,, F. Riedo,, B. Schwartz,, D. Watson,, R. Baughn,, and R. Breiman. 1997. Emergence of antibody to capsular polysaccharides of Streptococcus pneumoniae during outbreaks of pneumonia: association with nasopharyngeal colonization. Clin. Infect. Dis. 24: 441 446.
56. Paster, B.,, S. Boches,, J. Galvin,, R. Ericson,, C. Lau,, V. Levanos,, A. Sahasrabudhe,, and F. Dewhirst. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 3770 3783.
57. Pericone, C.,, D. Bae,, M. Shchepetov,, T. McCool,, and J. Weiser. 2002. Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumoniae. J. Bacteriol. 184: 4392 4399.
58. Pericone, C. D.,, K. Overweg,, P. W. M. Hermans,, and J. N. Weiser. 2000. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 68: 3990 3997.
59. Qiu, J.,, G. P. Brackee,, and A. G. Plaut. 1996. Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by comparative study of ape serum IgAs as substrate. Infect. Immun. 64: 933 937.
60. Ring, A.,, J. N. Weiser,, and E. I. Tuomanen. 1998. Pneumococcal penetration of the blood-brain barrier: molecular analysis of a novel re-entry path. J. Clin. Investig. 102: 347 360.
61. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25: 819 829.
62. Schroder, N.,, S. Morath,, C. Alexander,, L. Hamann,, T. Hartung,, U. Zahringer,, U. Gobel,, J. Weber,, and R. Schumann. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide- binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278: 15587 15594.
63. Sebert, M. E.,, L. M. Palmer,, M. Rosenberg,, and J. N. Weiser. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70: 4059 4067.
64. Serino, L.,, and M. Virji. 2000. Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol. Microbiol. 35: 1550 1559.
65. Shakhnovich, E.,, S. King,, and J. Weiser. 2002. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect. Immun. 70: 7161 7164.
66. Smith, B.,, and M. Hostetter. 2000. C3 as substrate for adhesion of Streptococcus pneumoniae. J. Infect. Dis. 182: 497 508.
67. Soininen, A.,, H. Pursiainen,, T. Kilpi,, and H. Kayhty. 2001. Natural development of antibodies to pneumococcal capsular polysaccharides depends on the serotype: association with pneumococcal carriage and acute otitis media in young children. J. Infect. Dis. 184: 569 576.
68. Spellerberg, B.,, D. R. Cundell,, J. Sandros,, B. J. Pearce,, I. Idanpaan-Heikkila,, C. Rosenow,, and H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19: 803 813.
69. Swords, W. E.,, B. A. Buscher,, K. Ver Steeg Ii,, A. Preston,, W. A. Nichols,, J. N. Weiser,, B. W. Gibson,, and M. A. Apicella. 2000. Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol. Microbiol. 37: 13 27.
70. Szalai, A. J.,, A. Agrawal,, T. J. Greenhough,, and J. E. Volanakis. 1997. C-reactive protein. Immunol. Res. 16: 127 136.
71. Szalai, A. J.,, D. E. Briles,, and J. E. Volanakis. 1995. Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J. Immunol. 155: 2557 2563.
72. Tai, S. S.,, C. Yu,, and J. K. Lee. 2003. A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiol. Lett. 220: 303 308.
73. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. R. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
74. Tong, H.,, L. Blue,, M. James,, and T. De- Maria. 2000. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun. 68: 921 924.
75. Tong, H.,, M. James,, I. Grants,, X. Liu,, G. Shi,, and T. DeMaria. 2001. Comparison of structural changes of cell surface carbohydrates in the eustachian tube epithelium of chinchillas infected with a Streptococcus pneumoniae neuraminidase- deficient mutant or its isogenic parent strain. Microb. Pathog. 31: 309 317.
76. Tong, H.,, J. Weiser,, M. James,, and T. De- Maria. 2001. Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotypic variants of Streptococcus pneumoniae in the chinchilla model. Infect. Immun. 69: 602 606.
77. Tu, A.,, R. Fulgham,, M. McCrory,, D. Briles,, and A. Szalai. 1999. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect. Immun. 67: 4720 4724.
78. van der Flier, M.,, N. Chhun,, T. M. Wizemann,, J. Min,, J. B. McCarthy,, and E. I. Tuomanen. 1995. Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect. Immun. 63: 4317 4322.
79. Vollmer, W.,, and A. Tomasz. 2002. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect. Immun. 70: 7176 7178.
80. Wani, J.,, J. Gilbert,, A. Plaut,, and J. Weiser. 1996. Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect. Immun. 64: 3967 3974.
81. Weiser, J.,, D. Bae,, H. Epino,, S. Gordon,, M. Kapoor,, L. Zenewicz,, and M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69: 5430 5439.
82. Weiser, J.,, D. Bae,, C. Fasching,, R. Scamurra,, A. Ratner,, and E. Janoff. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100: 415 420.
83. Weiser, J.,, and E. Tuomanen,. 2002. A disease- oriented approach to the discovery of novel vaccine, p. 139 148. In B. Bloom, and P.-H. Lambert (ed.), The Vaccine Book. Academic Press, New York, N.Y.
84. Weiser, J. N., 1999. Phase variation of Streptococcus pneumoniae, p. 225 231. In V. Fischetti (ed.), Gram- Positive Pathogens. ASM Press, Washington, D.C..
85. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
86. Weiser, J. N.,, N. Pan,, K. L. McGowan,, D. Musher,, A. Martin,, and J. C. Richards. 1998. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med. 187: 631 640.
87. Weiser, J. N.,, M. Shchepetov,, and S. T. Chong. 1997. Decoration of lipopolysaccaride with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 65: 943 950.
88. Whatmore, A.,, A. Efstratiou,, A. Pickerill,, K. Broughton,, G. Woodard,, D. Sturgeon,, R. George,, and C. Dowson. 2000. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of “atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect. Immun. 68: 1374 1382.
89. Whatmore, A.,, S. King,, N. Doherty,, D. Sturgeon,, N. Chanter,, and C. Dowson. 1999. Molecular characterization of equine isolates of Streptococcus pneumoniae: natural disruption of genes encoding the virulence factors pneumolysin and autolysin. Infect. Immun. 67: 2776 2782.
90. Winkelstein, J. A.,, and A. Tomasz. 1978. Activation of the alternative complement pathway by pneumococcal cell wall teichoic acid. J. Immunol. 120: 174 178.
91. Wu, H.,, A. Virolainen,, B. Mathews,, J. King,, M. Russell,, and D. Briles. 1997. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23: 127 137.
92. Zhang, J.,, K. Mostov,, M. Lamm,, M. Nanno,, S. Shimida,, M. Ohwaki,, and E. Tuomanen. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827 837.
93. Zhang, J.-R.,, I. Idanpaan-Heikkila,, W. Fischer,, and E. Tuomanen. 1999. Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol. Microbiol. 31: 1477 1488.
94. Zhang, Y.,, A. Masi,, V. Barniak,, K. Mountzouros,, M. Hostetter,, and B. Green. 2001. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect. Immun. 69: 3827 3836.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error