Chapter 11 : Mechanisms of Carriage

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mechanisms of Carriage, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap11-2.gif


is one of many closely related oral streptococci of the mitis phylogenetic group that colonize the human oro- and nasopharynx. Recently, experimental carriage studies performed in healthy adults have offered the prospect of utilizing the natural host to further investigate this fundamental aspect of pneumococcal biology. Surface molecules that have been shown to function as adhesins to human epithelial cells include phosphorylcholine (ChoP) and CbpA. ChoP, an otherwise unusual prokaryotic structural component, is common to several other genera residing primarily in the upper respiratory tract, such as , , , and . The expression of a surface-attached hyaluronidase (a hyaluronate lyase), Hyl, which could facilitate spread through a matrix of hyaluronan, a major polysaccharide component of host connective tissues, suggests that such a strategy may contribute to pneumococcal pathogenesis. Adherence to host structures may be particularly problematic for an encapsulated organism like the pneumococcus. Some degree of encapsulation appears to be essential for colonization, although even small amounts of capsular polysaccharide effectively block attachment to host cells. A final consideration is that pneumococcal infection frequently occurs in the setting of a recent or concurrent upper respiratory infection from common viruses.

Citation: Weiser J. 2004. Mechanisms of Carriage, p 169-182. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch11

Key Concept Ranking

Complement System
Two-Component Signal Transduction Systems
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Andersson, B.,, J. Dahmen,, T. Frejd,, H. Leffler,, G. Magnusson,, G. Noori,, and C. S. Eden. 1983. Identification of an active dissaccharide unit of a glycoconjugate receptor for pneumococci attaching to human pharyngeal epithelial cells. J. Exp. Med. 158:559570.
2. Andoh, A.,, Y. Fujiyama,, T. Kimura,, H. Uchihara,, H. Sakumoto,, H. Okabe,, and T. Bamba. 1997. Molecular characterization of complement components (C3, C4, and factor B) in human saliva. J. Clin. Immunol. 17:404407.
3. Angel, C.,, M. Ruzek,, and M. Hostetter. 1994. Degradation of C3 by Streptococcus pneumoniae. J. Infect. Dis. 170:600608.
4. Balachandran, P.,, A. Brooks-Walter,, A. Virolainen-Julkunen,, S. Hollingshead,, and D. Briles. 2002. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 70:25262534.
5. Barthelson, R.,, A. Mobasseri,, D. Zopf,, and P. Simon. 1998. Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect. Immun. 66: 14391444.
6. Bergmann, S.,, M. Rohde,, G. Chhatwal,, and S. Hammerschmidt. 2001. α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol. 40:12731287.
7. Berry, A.,, R. Lock,, and J. Paton. 1996. Cloning and characterization of nanB, a second Streptococcus pneumoniae neuraminidase gene, and purification of the NanB enzyme from recombinant Escherichia coli. J. Bacteriol. 178:48544860.
8. Bouchet, V.,, D. Hood,, J. Li,, J. Brisson,, G. Randle,, A. Martin,, Z. Li,, R. Goldstein,, E. Schweda,, S. Pelton,, J. Richards,, and E. Moxon. 2003. Host-derived sialic acid is incorporated into Haemophilus influenzae lipopolysaccharide and is a major virulence factor in experimental otitis media. Proc. Natl. Acad. Sci. USA 100:88988903.
9. Briles, D. E.,, E. Ades,, J. C. Paton,, J. S. Sampson,, G. M. Carlone,, R. C. Huebner,, A. Virolainen,, E. Swiatlo,, and S. K. Hollingshead. 2000. Intranasal immunization of mice with a mixture of the pneumococcal proteins PsaA and PspA is highly protective against nasopharyngeal carriage of Streptococcus pneumoniae. Infect. Immun. 68:796800.
10. Brooks-Walter, A.,, D. E. Briles,, and S. K. Hollingshead. 1999. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 67:65336542.
11. Brown, J.,, S. Gilliland,, and D. Holden. 2001. A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Mol. Microbiol. 40:572585.
12. Brown, J. S.,, S. M. Gilliland,, J. Ruiz-Albert,, and D. W. Holden. 2002. Characterization of Pit, a Streptococcus pneumoniae iron uptake ABC transporter. Infect. Immun. 70:43894398.
13. Brown, J. S.,, T. Hussell,, S. M. Gilliland,, D. W. Holden,, J. C. Paton,, M. R. Ehrenstein,, M. J. Walport,, and M. Botto. 2002. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl. Acad. Sci. USA 99:1696916974.
14. Cundell, D.,, C. Gerard,, I. Idanpaan- Heikkila,, E. Tuomanen,, and N. Gerard. 1996. PAF receptor anchors Streptococcus pneumoniae to activated human endothelial cells. Adv. Exp. Med. Biol. 416:8994.
15. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Idanpaan-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435438.
16. Cundell, D. R.,, and E. I. Tuomanen. 1994. Receptor specificity of adherence of Streptococcus pneumoniae to human type II pneumocytes and vascular endothelial cells in vitro. Microb. Pathog. 17:361374.
17. Dagan, R.,, N. Givon-Lavi,, O. Zamir,, M. Sikuler-Cohen,, L. Guy,, J. Janco,, P. Yagupsky,, and D. Fraser. 2002. Reduction of nasopharyngeal carriage of Streptococcus pneumoniae after administration of a 9-valent pneumococcal conjugate vaccine to toddlers attending day care centers. J. Infect. Dis. 185:927936.
18. Dagan, R.,, M. Muallem,, R. Melamed,, O. Leroy,, and P. Yagupsky. 1997. Reduction of pneumococcal nasopharyngeal carriage in early infancy after immunization with tetravalent pneumococcal vaccines conjugated to either tetanus toxoid or diphtheria toxoid. Pediatr. Infect. Dis. J. 16:10601064.
19. Davies, J.,, I. Carlstedt,, A.-K. Nilsson,, A. Hakansson,, H. Sabharwal,, L. van Alphen,, M. van Ham,, and C. Svanborg. 1995. Binding of Haemophilus influenzae to purified mucins from the human respiratory tract. Infect. Immun. 63:24852492.
20. de Saizieu, A.,, C. Gardes,, N. Flint,, C. Wagner,, M. Kamber,, T. Mitchell,, W. Keck,, K. Amrein,, and R. Lange. 2000. Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J. Bacteriol. 182:46964703.
21. Echenique, J.,, and M. Trombe. 2001. Competence repression under oxygen limitation through the two-component MicAB signal-transducing system in Streptococcus pneumoniae and involvement of the PAS domain of MicB. J. Bacteriol. 183:45994608.
22. Eskola, J.,, T. Kilpi,, A. Palmu,, J. Jokinen,, J. Haapakoski,, E. Herva,, A. Takala,, H. Kayhty,, P. Karma,, A. Kohberger,, G. Siber,, P.H. Makela, and the Finnish Otitis Media Study Group. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344:403409.
23. Estabrook, M. M.,, J. M. Griffiss,, and G. A. Jarvis. 1997. Sialylation of Neisseria meningitidis lipooligosaccharide inhibits serum bactericidal activity masking lacto-N-neotraose. Infect. Immun. 65:44364444.
24. Fan, X.,, H. Goldfine,, E. Lysenko,, and J. Weiser. 2001. The transfer of choline from the host to the bacterial cell surface requires glpQ in Haemophilus influenzae. Mol. Microbiol. 41:10291036.
25. Fan, X.,, C. D. Pericone,, E. Lysenko,, H. Goldfine,, and J. N. Weiser. 2003. Multiple mechanisms for choline transport and utilization in Haemophilus influenzae. Mol. Microbiol. 50: 537548.
26. Fischer, W.,, T. Behr,, R. Hartmann,, K. C. J. Peter,, and H. Egge. 1993. Teichoic acid and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. A reinvestigation of teichoid acid (C polysaccharide). Eur. J. Biochem. 215:851857.
27. Gorter, A.,, P. Hiemstra,, S. de Bentzmann,, S. van Wetering,, J. Dankert,, and L. van Alphen. 2000. Stimulation of bacterial adherence by neutrophil defensins varies among bacterial species but not among host cell types. FEMS Immunol. Med. Microbiol. 28:105111.
28. Gould, J.,, and J. Weiser. 2001. Expression of C-reactive protein in the human respiratory tract. Infect. Immun. 69:17471754.
29. Gould, J.,, and J. Weiser. 2002. The inhibitory effect of C-reactive protein on bacterial phosphorylcholine-platelet activating factor receptor mediated adherence is blocked by surfactant J. Infect. Dis. 186:361371.
30. Gundel, M. 1933. Bakteriologische und Epidemiologische Untersuchungen über die Besiedlung der oberen Atmungswege Gesunder mit Pneumokokken. Z. Hyg. Infektionskr. 114:659704.
31. Gwaltney, J. J.,, M. Sande,, R. Austrian,, and J. Hendley. 1975. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of S. pneumoniae to incidence of colds and serum antibody. J. Infect. Dis. 132:6268.
32. Hakansson, A.,, A. Kidd,, G. Wadell,, H. Sabharwal,, and C. Svanborg. 1994. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect. Immun. 62:27072714.
32a.. Hakansson, A.,, H. Roche,, S. Mirza,, L. S. McDaniel,, A. Brooks-Walter,, and D. E. Briles. 2001. Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect. Immun. 69:33723381.
33. Hammerschmidt, S.,, G. Bethe,, P. H. Remane,, and G. S. Chhatwal. 1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect. Immun. 67:16831687.
34. Hammerschmidt, S.,, S. R. Talay,, P. Brandtzaeg,, and G. S. Chhatwal. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25:11131124.
35. Hammerschmidt, S.,, M. Tillig,, S. Wolff,, J. Vaerman,, and G. Chhatwal. 2000. Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol. 36:726736.
36. Holmes, A.,, R. McNab,, K. Millsap,, M. Rohde,, S. Hammerschmidt,, J. Mawdsley,, and H. Jenkinson. 2001. The pavA gene of Streptococcus pneumoniae encodes a fibronectin-binding protein that is essential for virulence. Mol. Microbiol. 41:13951408.
37. Hood, D.,, K. Makepeace,, M. Deadman,, R. Rest,, P. Thibault,, A. Martin,, J. Richards,, and E. Moxon. 1999. Sialic acid in the lipopolysaccharide of Haemophilus influenzae: strain distribution, influence on serum resistance and structural characterization. Mol. Microbiol. 33:679692.
38. Hummell, D. S.,, A. J. Swift,, A. Tomasz,, and J. A. Winkelstein. 1985. Activation of the alternative complement pathway by pneumococcal lipoteichoic acid. Infect. Immun. 47: 384387.
39. Imlay, J.,, and S. Linn. 1988. DNA damage and oxygen radical toxicity. Science 240:13021309.
40. Janulczyk, R.,, F. Iannelli,, A. Sjöholm,, G. Pozzi,, and L. Björck. 2000. Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J. Biol. Chem. 275:3725737263.
41. Jedrzejas, M.,, L. Mello,, B. de Groot,, and S. Li. 2002. Mechanism of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Structures of complexes with the substrate. J. Biol. Chem. 277:2828728297.
42. Johnson, S. E.,, J. K. Dykes,, D. L. Jue,, J. S. Sampson,, G. M. Carlone,, and E. W. Ades. 2002. Inhibition of pneumococcal carriage in mice by subcutaneous immunization with peptides from the common surface protein pneumococcal surface adhesin a. J. Infect. Dis. 185:489496.
43. Kim, J.,, and J. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177:368377.
44. Krivan, H. C.,, D. D. Roberts,, and V. Ginsberg. 1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcβ1-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA 85:61576161.
45. Lipsitch, M.,, J. Dykes,, S. Johnson,, E. Ades,, J. King,, D. Briles,, and G. Carlone. 2000. Competition among Streptococcus pneumoniae for intranasal colonization in a mouse model. Vaccine 18:28952901.
46. Magee, A.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69:37553761.
47. Malley, R.,, P. Henneke,, S. Morse,, M. Cieslewicz,, M. Lipsitch,, C. Thompson,, E. Kurt-Jones,, J. Paton,, M. Wessels,, and D. Golenbock. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100:19661971.
48. Mbelle, N.,, R. Huebner,, A. Wasas,, A. Kimura,, I. Chang,, and K. Klugman. 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180:11711176.
49. McCool, T. L.,, T. R. Cate,, G. Moy,, and J. N. Weiser. 2002. The immune response to pneumococcal proteins during experimental human carriage. J. Exp. Med. 195:359365.
50. McCool, T. L.,, T. R. Cate,, E. I. Tuomanen,, P. Adrian,, T. J. Mitchell,, and J. N. Weiser. 2003. Serum immunoglobulin G response to candidate vaccine antigens during experimental human pneumococcal colonization. Infect. Immun. 71:57245732.
51. McCullers, J.,, and K. Bartmess. 2003. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J. Infect. Dis. 187:10001009.
52. McCullers, J.,, and J. Rehg. 2002. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J. Infect. Dis. 186:341350.
53. Muller-Graf, C.,, A. Whatmore,, S. King,, K. Trzcinski,, A. Pickerill,, N. Doherty,, J. Paul,, D. Griffiths,, D. Crook,, and C. Dowson. 1999. Population biology of Streptococcus pneumoniae isolated from oropharyngeal carriage and invasive disease. Microbiology 145:32833293.
54. Musher, D. 2003. How contagious are common respiratory tract infections? N. Engl. J. Med. 348:12561266.
55. Musher, D.,, J. Groover,, M. Reichler,, F. Riedo,, B. Schwartz,, D. Watson,, R. Baughn,, and R. Breiman. 1997. Emergence of antibody to capsular polysaccharides of Streptococcus pneumoniae during outbreaks of pneumonia: association with nasopharyngeal colonization. Clin. Infect. Dis. 24:441446.
56. Paster, B.,, S. Boches,, J. Galvin,, R. Ericson,, C. Lau,, V. Levanos,, A. Sahasrabudhe,, and F. Dewhirst. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 37703783.
57. Pericone, C.,, D. Bae,, M. Shchepetov,, T. McCool,, and J. Weiser. 2002. Short-sequence tandem and nontandem DNA repeats and endogenous hydrogen peroxide production contribute to genetic instability of Streptococcus pneumoniae. J. Bacteriol. 184:43924399.
58. Pericone, C. D.,, K. Overweg,, P. W. M. Hermans,, and J. N. Weiser. 2000. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 68:39903997.
59. Qiu, J.,, G. P. Brackee,, and A. G. Plaut. 1996. Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by comparative study of ape serum IgAs as substrate. Infect. Immun. 64:933937.
60. Ring, A.,, J. N. Weiser,, and E. I. Tuomanen. 1998. Pneumococcal penetration of the blood-brain barrier: molecular analysis of a novel re-entry path. J. Clin. Investig. 102:347360.
61. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25:819829.
62. Schroder, N.,, S. Morath,, C. Alexander,, L. Hamann,, T. Hartung,, U. Zahringer,, U. Gobel,, J. Weber,, and R. Schumann. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide- binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278:1558715594.
63. Sebert, M. E.,, L. M. Palmer,, M. Rosenberg,, and J. N. Weiser. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70:40594067.
64. Serino, L.,, and M. Virji. 2000. Phosphorylcholine decoration of lipopolysaccharide differentiates commensal Neisseriae from pathogenic strains: identification of licA-type genes in commensal Neisseriae. Mol. Microbiol. 35:15501559.
65. Shakhnovich, E.,, S. King,, and J. Weiser. 2002. Neuraminidase expressed by Streptococcus pneumoniae desialylates the lipopolysaccharide of Neisseria meningitidis and Haemophilus influenzae: a paradigm for interbacterial competition among pathogens of the human respiratory tract. Infect. Immun. 70:71617164.
66. Smith, B.,, and M. Hostetter. 2000. C3 as substrate for adhesion of Streptococcus pneumoniae. J. Infect. Dis. 182:497508.
67. Soininen, A.,, H. Pursiainen,, T. Kilpi,, and H. Kayhty. 2001. Natural development of antibodies to pneumococcal capsular polysaccharides depends on the serotype: association with pneumococcal carriage and acute otitis media in young children. J. Infect. Dis. 184:569576.
68. Spellerberg, B.,, D. R. Cundell,, J. Sandros,, B. J. Pearce,, I. Idanpaan-Heikkila,, C. Rosenow,, and H. R. Masure. 1996. Pyruvate oxidase, as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19:803813.
69. Swords, W. E.,, B. A. Buscher,, K. Ver Steeg Ii,, A. Preston,, W. A. Nichols,, J. N. Weiser,, B. W. Gibson,, and M. A. Apicella. 2000. Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol. Microbiol. 37:1327.
70. Szalai, A. J.,, A. Agrawal,, T. J. Greenhough,, and J. E. Volanakis. 1997. C-reactive protein. Immunol. Res. 16:127136.
71. Szalai, A. J.,, D. E. Briles,, and J. E. Volanakis. 1995. Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J. Immunol. 155:25572563.
72. Tai, S. S.,, C. Yu,, and J. K. Lee. 2003. A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiol. Lett. 220:303308.
73. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. R. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498506.
74. Tong, H.,, L. Blue,, M. James,, and T. De- Maria. 2000. Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect. Immun. 68:921924.
75. Tong, H.,, M. James,, I. Grants,, X. Liu,, G. Shi,, and T. DeMaria. 2001. Comparison of structural changes of cell surface carbohydrates in the eustachian tube epithelium of chinchillas infected with a Streptococcus pneumoniae neuraminidase- deficient mutant or its isogenic parent strain. Microb. Pathog. 31:309317.
76. Tong, H.,, J. Weiser,, M. James,, and T. De- Maria. 2001. Effect of influenza A virus infection on nasopharyngeal colonization and otitis media induced by transparent or opaque phenotypic variants of Streptococcus pneumoniae in the chinchilla model. Infect. Immun. 69:602606.
77. Tu, A.,, R. Fulgham,, M. McCrory,, D. Briles,, and A. Szalai. 1999. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect. Immun. 67:47204724.
78. van der Flier, M.,, N. Chhun,, T. M. Wizemann,, J. Min,, J. B. McCarthy,, and E. I. Tuomanen. 1995. Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect. Immun. 63:43174322.
79. Vollmer, W.,, and A. Tomasz. 2002. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect. Immun. 70:71767178.
80. Wani, J.,, J. Gilbert,, A. Plaut,, and J. Weiser. 1996. Identification, cloning, and sequencing of the immunoglobulin A1 protease gene of Streptococcus pneumoniae. Infect. Immun. 64:39673974.
81. Weiser, J.,, D. Bae,, H. Epino,, S. Gordon,, M. Kapoor,, L. Zenewicz,, and M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69:54305439.
82. Weiser, J.,, D. Bae,, C. Fasching,, R. Scamurra,, A. Ratner,, and E. Janoff. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100:415420.
83. Weiser, J.,, and E. Tuomanen,. 2002. A disease- oriented approach to the discovery of novel vaccine, p. 139148. In B. Bloom, and P.-H. Lambert (ed.), The Vaccine Book. Academic Press, New York, N.Y.
84. Weiser, J. N., 1999. Phase variation of Streptococcus pneumoniae, p. 225231. In V. Fischetti (ed.), Gram- Positive Pathogens. ASM Press, Washington, D.C..
85. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62:25822589.
86. Weiser, J. N.,, N. Pan,, K. L. McGowan,, D. Musher,, A. Martin,, and J. C. Richards. 1998. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med. 187:631640.
87. Weiser, J. N.,, M. Shchepetov,, and S. T. Chong. 1997. Decoration of lipopolysaccaride with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 65:943950.
88. Whatmore, A.,, A. Efstratiou,, A. Pickerill,, K. Broughton,, G. Woodard,, D. Sturgeon,, R. George,, and C. Dowson. 2000. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: characterization of “atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect. Immun. 68:13741382.
89. Whatmore, A.,, S. King,, N. Doherty,, D. Sturgeon,, N. Chanter,, and C. Dowson. 1999. Molecular characterization of equine isolates of Streptococcus pneumoniae: natural disruption of genes encoding the virulence factors pneumolysin and autolysin. Infect. Immun. 67:27762782.
90. Winkelstein, J. A.,, and A. Tomasz. 1978. Activation of the alternative complement pathway by pneumococcal cell wall teichoic acid. J. Immunol. 120:174178.
91. Wu, H.,, A. Virolainen,, B. Mathews,, J. King,, M. Russell,, and D. Briles. 1997. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23:127137.
92. Zhang, J.,, K. Mostov,, M. Lamm,, M. Nanno,, S. Shimida,, M. Ohwaki,, and E. Tuomanen. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827837.
93. Zhang, J.-R.,, I. Idanpaan-Heikkila,, W. Fischer,, and E. Tuomanen. 1999. Pneumococcal licD2 gene is involved in phosphorylcholine metabolism. Mol. Microbiol. 31:14771488.
94. Zhang, Y.,, A. Masi,, V. Barniak,, K. Mountzouros,, M. Hostetter,, and B. Green. 2001. Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae, protects mice against intranasal pneumococcal challenge. Infect. Immun. 69: 38273836.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error