1887

Chapter 12 : Inflammation and Host Defense

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Inflammation and Host Defense, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap12-2.gif

Abstract:

To detect potential harmful microorganisms, higher eukaryotes have evolved two types of systems, i.e., innate immunity and adaptive immunity. Monocytes and macrophage express both CD14 and Toll-like receptors (TLRs) on their surfaces. Polymorphonuclear cells were shown to express CD14 and at least TLR2. Peptidoglycan-recognizing proteins (PGRPs) are a new family of pathogen-associated molecular pattern (PAMP)-recognizing molecules that are conserved from insects to mammals. PGRPs have several attributed functions, including direct antimicrobial activity or triggering the production of antimicrobial molecules, signaling via the TLR system, and peptidoglycan degradation. The major and most conserved constituent of the envelope of gram-positive organisms is peptidoglycan. One possible explanation is the dissimilar natures of the bacterial components used. Lipopolysaccharide (LPS) is made of noncovalently linked glycolipid subunits that are emulsified by plasma lipoproteins and lipopolysaccharide-binding protein (LBP), which presents them to the cell receptor CD14. The inflammatory activity might also depend on other constraints, including the secondary structure of the components and/or the stereochemistry of their amino acid constituents. Mesodiaminopimelic acid is a precursor of L-lysine. Therefore, it is tempting to make the provocative speculation that gram-positive animal colonizers have evolved an L-lysine peptidoglycan in order be less well detected by innate immunity. The constant inflammatory response to bacterial surface component might be profitable. As far as disease is concerned, the real problem might not be so much the ability of the host to recognize bacterial intruders as much as the capacity of pathogens to escape early recognition by innate immunity.

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12

Key Concept Ranking

Cell Wall Components
0.42171147
Bacterial Cell Wall
0.4102775
0.42171147
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagram presenting the pneumococcal peptidoglycan and the sites of hydrolysis of naturally occurring -acetylmuramic--alanine amidase (amidase) and muramidase (glycosidase), respectively. Mature pneumococci usually do not contain the terminal -alanine. It is noteworthy that numerous bacteria, including both grampositive and gram-negative genera, contain mesodiaminopimelic acid or even ornithine instead of lysine in position 3 of the stem peptide. G, -acetylglucosamine; M, -acetylmuramic acid. The two first (gray) circles hooked to M represent -alanine and -isoglutamine. The third (white) circle represents -lysine. The fourth (black) circle represents the penultimate -alanine. (Reproduced with permission from reference .)

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Assembly of the bacterial cell wall and production of penicillin-induced soluble peptidoglycan. Cell wall precursor disaccharide-pentapeptides are translocated through the plasma membrane and processed by membrane-anchored penicillin-binding proteins (PBP). High-molecular-weight PBPs ensure both a transglycosidase function (upper curved arrow) that elongates the glycan chain and a transpeptidase activity (lower curved arrow) that transfers the peptide bond of the penultimate -alanine (penultimate closed circle) to a diamino acid acceptor at position 3 of the stem peptide (open circle; lysine or lysine-bound glycine side chains in the case of ). Subinhibitory concentrations of penicillin block transpeptidation (see lower curved arrow) but not transglycosylation. As a result, large uncross-linked glycan chains, i.e., soluble peptidoglycan (A), are released in the supernatant. Polymeric soluble peptidoglycan can be hydrolyzed by muramidase (see Fig. 1 ) to disaccharide-pentapeptide subunits (B). Muramyl-dipeptide (C) containing only -acetylmuramic acid and the two first amino acids -alanine and -isoglutamate (or isoglutamine) is the simplest common structure of all bacterial peptidoglycans. Details are as in Fig. 1 . The bars linking Llysines and -alanines represent the pentaglycine side chain typical of staphylococcal peptidoglycan. (Reproduced with permission from reference .)

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Molecular structures of one inactive and two active internal fragments of the pneumococcal peptidoglycan. Pneumococcal peptidoglycan was solubilized with amidase, subjected to high-pressure liquid chromatography fractionation, and analyzed by a combination of mass spectrometry, amino acid determination, and TNF-releasing activity on human PBMCs. The TNF-triggering activity is expressed as the minimal concentration of wall materials required to increase the release of TNF by ≥10 times over background. The stem-peptide dimer was poorly active (>0.1 µg/ml), whereas the two stem-peptide trimers were almost as active (0.01 to 0.001 mg/ml) as LPS. (Reproduced with permission from reference .)

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Possible structural constraints ensuring high TNF-releasing activity of peptidoglycan of gram-positive organisms. On the left side, soluble peptidoglycan is a large multimer (triplets times n) that is not more inflammatory than whole insoluble peptidoglycan. Hydrolyzing soluble peptidoglycan to disaccharide-pentapeptide results in complete loss of TNF release. On the right side, trimers of pneumococcal stem peptides are the minimal structures conferring high TNF-triggering activity. Shorter structures are inactive, and larger polymers are less active in a weight-to-weight ratio. Thus, trimeric stem peptides might be the most active complexes, whether they are cross-linked via glycan bonds, as in soluble peptidoglycan, or peptide bonds, as in pneumococcal stem peptides. Circles highlight the peptide structures. Details are as in Fig. 1 . (Reproduced with permission from reference .)

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Stem peptides are highly unstable structures. The diagram depicts a simple stem peptide with the four-carbon side chain of the diamino acid lysine implicated in peptide cross-links (right) and the multiple possible planar and axial rotations of this very side chain, as well as the amino acids in the stem peptide. Cross-linkage to a second or a third stem peptide may limit free movement to a certain extent, but not enough to stabilize the structure in a fixed position. (Reproduced with permission from reference .)

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap12
1. Alexander, C.,, and E. T. Rietschel. 2001. Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 7:167202.
2. Balows, A.,, H. G. Trueper,, M. Dworkin,, W. Harper,, and K. H. Schleifer. 1992. The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y..
3. Barton, G. M.,, and R. Medzhitov. 2003. Toll-like receptor signaling pathways. Science 300:15241525.
4. Beutler, B.,, and E. T. Rietschel. 2003. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3:169176.
5. Bhakdi, S.,, T. Klonisch,, P. Nuber,, and W. Fischer. 1991. Stimulation of monokine production by lipoteichoic acids. Infect. Immun. 59:46144620.
6. Bochud, P. Y.,, F. Moser,, P. Erard,, F. Verdon,, J. P. Studer,, G. Villard,, A. Cosendai,, M. Cotting,, F. Heim,, J. Tissot,, Y. Strub,, M. Pazeller,, L. Saghafi,, A. Wenger,, D. Germann,, L. Matter,, J. Bille,, L. Pfister,, and P. Francioli. 2001. Community-acquired pneumonia. A prospective outpatient study. Medicine (Baltimore) 80:7587.
7. Born, T. L.,, and J. S. Blanchard. 1999. Structure/ function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr. Opin. Chem. Biol. 3:607613.
8. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Valvano,, S. J. Foster,, T. W. Mak,, G. Nunez,, and N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4:702707.
9. Chiba, H.,, S. Pattanajitvilai,, H. Mitsuzawa,, Y. Kuroki,, A. Evans,, and D. R. Voelker. 2003. Pulmonary surfactant proteins A and D recognize lipid ligands on Mycoplasma pneumoniae and markedly augment the innate immune response to the organism. Chest 123:426S.
10. Christophides, G. K.,, E. Zdobnov,, C. Barillas-Mury,, E. Birney,, S. Blandin,, C. Blass,, P. T. Brey,, F. H. Collins,, A. Danielli,, G. Dimopoulos,, C. Hetru,, N. T. Hoa,, J. A. Hoffmann,, S. M. Kanzok,, I. Letunic,, E. A. Levashina,, T. G. Loukeris,, G. Lycett,, S. Meister,, K. Michel,, L. F. Moita,, H. M. Muller,, M. A. Osta,, S. M. Paskewitz,, J. M. Reichhart,, A. Rzhetsky,, L. Troxler,, K. D. Vernick,, D. Vlachou,, J. Volz,, C. von Mering,, J. Xu,, L. Zheng,, P. Bork,, and F. C. Kafatos. 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298:159165.
11. Cossart, P.,, and R. Jonquieres. 2000. Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc. Natl. Acad. Sci. USA 97:50135015.
12. Cossart, P.,, J. Pizarro-Cerda,, and M. Lecuit. 2003. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol. 13:2331.
13. Cottagnoud, P.,, C. M. Gerber,, P. A. Majcherczyk,, F. Acosta,, M. Cottagnoud,, K. Neftel,, P. Moreillon,, and M. G. Tauber. 2003. The stereochemistry of the amino acid side chain influences the inflammatory potential of muramyl dipeptide in experimental meningitis. Infect. Immun. 71:36633666.
14. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Idanpaan-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435438.
15. de Gans, J.,, and D. van de Beek. 2002. Dexamethasone in adults with bacterial meningitis. N. Engl. J. Med. 347:15491556.
16. Deininger, S.,, A. Stadelmaier,, S. von Aulock,, S. Morath,, R. R. Schmidt,, and T. Hartung. 2003. Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J. Immunol. 170:41344138.
17. Dixon, M. S.,, C. Golstein,, C. M. Thomas,, E. A. van Der Biezen,, and J. D. Jones. 2000. Genetic complexity of pathogen perception by plants: the example of Rcr3, a tomato gene required specifically by Cf-2. Proc. Natl. Acad. Sci. USA 97:88078814.
18. Dmitriev, B. A.,, F. V. Toukach,, K. J. Schaper,, O. Holst,, E. T. Rietschel,, and S. Ehlers. 2003. Tertiary structure of bacterial murein: the scaffold model. J. Bacteriol. 185:34583468.
19. Dokter, W. H.,, A. J. Dijkstra,, S. B. Koopmans,, A. B. Mulder,, B. K. Stulp,, M. R. Halie,, W. Keck,, and E. Vellenga. 1994. G(AnH)MTetra, a naturally occurring 1,6-anhydro muramyl dipeptide, induces granulocyte colony-stimulating factor expression in human monocytes: a molecular analysis. Infect. Immun. 62:29532957.
20. Dokter, W. H.,, A. J. Dijkstra,, S. B. Koopmans,, B. K. Stulp,, W. Keck,, M. R. Halie,, and E. Vellenga. 1994. G(Anh)MTetra, a natural bacterial cell wall breakdown product, induces interleukin-1 beta and interleukin-6 expression in human monocytes. A study of the molecular mechanisms involved in inflammatory cytokine expression. J. Biol. Chem. 269:42014206.
21. Dziarski, R.,, K. A. Platt,, E. Gelius,, H. Steiner,, and D. Gupta. 2003. Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood 102:689697.
22. Dziarski, R.,, R. I. Tapping,, and P. S. Tobias. 1998. Binding of bacterial peptidoglycan to CD14. J. Biol. Chem. 273:86808690.
23. Elward, K.,, and P. Gasque. 2003. “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol. Immunol. 40:8594.
24. Fan, X.,, F. Stelter,, R. Menzel,, R. Jack,, I. Spreitzer,, T. Hartung,, and C. Schutt. 1999. Structures in Bacillus subtilis are recognized by CD14 in a lipopolysaccharide binding protein-dependent reaction. Infect. Immun. 67:29642968.
25. Fillion, I.,, N. Ouellet,, M. Simard,, Y. Bergeron,, S. Sato,, and M. G. Bergeron. 2001. Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/macrophage recruitment. J. Immunol. 166:73537361.
26. Fischer, W. 1997. Pneumococcal lipoteichoic and teichoic acid. Microb. Drug Resist. 3:309325.
27. Freyer, D.,, R. Manz,, A. Ziegenhorn,, M. Weih,, K. Angstwurm,, W. D. Docke,, A. Meisel,, R. R. Schumann,, G. Schonfelder,, U. Dirnagl,, and J. R. Weber. 1999. Cerebral endothelial cells release TNF-alpha after stimulation with cell walls of Streptococcus pneumoniae and regulate inducible nitric oxide synthase and ICAM-1 expression via autocrine loops. J. Immunol. 163:43084314.
28. Garcia-Bustos, J.,, and A. Tomasz. 1990. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin- resistant pneumococci. Proc. Natl. Acad. Sci. USA 87:54155419.
29. Garcia-Bustos, J. F.,, B. T. Chait,, and A. Tomasz. 1987. Structure of the peptide network of pneumococcal peptidoglycan. J. Biol. Chem. 262:1540015405.
30. Girardin, S. E.,, I. G. Boneca,, L. A. Carneiro,, A. Antignac,, M. Jehanno,, J. Viala,, K. Tedin,, M. K. Taha,, A. Labigne,, U. Zahringer,, A. J. Coyle,, P. S. DiStefano,, J. Bertin,, P. J. Sansonetti,, and D. J. Philpott. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:15841587.
31. Girardin, S. E.,, I. G. Boneca,, J. Viala,, M. Chamaillard,, A. Labigne,, G. Thomas,, D. J. Philpott,, and P. J. Sansonetti. 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278:88698872.
32. Girardin, S. E.,, L. H. Travassos,, M. Herve,, D. Blanot,, I. G. Boneca,, D. J. Philpott,, P. J. Sansonetti,, and D. Mengin-Lecreulx. 2003. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278:4170241708.
33. Gupta, D.,, T. N. Kirkland,, S. Viriyakosol,, and R. Dziarski. 1996. CD14 is a cell-activating receptor for bacterial peptidoglycan. J. Biol. Chem. 271:2331023316.
34. Han, S. H.,, J. H. Kim,, M. Martin,, S. M. Michalek,, and M. H. Nahm. 2003. Pneumococcal lipoteichoic acid (LTA) is not as potent as staphylococcal LTA in stimulating Toll-like receptor 2. Infect. Immun. 71:55415548.
35. Hanahan, D. J. 1986. Platelet activating factor: a biologically active phosphoglyceride. Annu. Rev. Biochem. 55:483509.
36. Heine, H.,, and E. Lien. 2003. Toll-like receptors and their function in innate and adaptive immunity. Int. Arch. Allergy Immunol. 130:180192.
37. Heumann, D.,, C. Barras,, A. Severin,, M. P. Glauser,, and A. Tomasz. 1994. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62:27152721.
38. Hoffmann, J. A.,, F. C. Kafatos,, C. A. Janeway,, and R. A. Ezekowitz. 1999. Phylogenetic perspectives in innate immunity. Science 284:13131318.
39. Honda, Z.,, M. Nakamura,, I. Miki,, M. Minami,, T. Watanabe,, Y. Seyama,, H. Okado,, H. Toh,, K. Ito,, T. Miyamoto,, and T. Shimizu. 1991. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349:342346.
40. Humphries, H. E.,, and N. J. High. 2002. The role of licA phase variation in the pathogenesis of invasive disease by Haemophilus influenzae type b. FEMS Immunol. Med. Microbiol. 34:221230.
41. Inohara, N.,, Y. Ogura,, F. F. Chen,, A. Muto,, and G. Nunez. 2001. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276:25512554.
42. Jacks-Weis, J.,, Y. Kim,, and P. P. Cleary. 1982. Restricted deposition of C3 on M+ group A streptococci: correlation with resistance to phagocytosis. J. Immunol. 128:18971902.
43. Jenni, R.,, and B. Berger-Bachi. 1998. Teichoic acid content in different lineages of Staphylococcus aureus NCTC8325. Arch. Microbiol. 170:171178.
44. Jersmann, H. P.,, C. S. Hii,, G. L. Hodge,, and A. Ferrante. 2001. Synthesis and surface expression of CD14 by human endothelial cells. Infect. Immun. 69:479485.
45. Jin, Y.,, D. Gupta,, and R. Dziarski. 1998. Endothelial and epithelial cells do not respond to complexes of peptidoglycan with soluble CD14 but are activated indirectly by peptidoglycan-induced tumor necrosis factor-alpha and interleukin- 1 from monocytes. J. Infect. Dis. 177:16291638.
46. Keller, R.,, W. Fischer,, R. Keist,, and S. Bassetti. 1992. Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids. Infect. Immun. 60:36643672.
47. Kengatharan, K. M.,, S. De Kimpe,, C. Robson,, S. J. Foster,, and C. Thiemermann. 1998. Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J. Exp. Med. 188:305315.
48. Kunz, D.,, N. P. Gerard,, and C. Gerard. 1992. The human leukocyte platelet-activating factor receptor. cDNA cloning, cell surface expression, and construction of a novel epitope- bearing analog. J. Biol. Chem. 267:91019106.
49. Kurt-Jones, E. A.,, L. Mandell,, C. Whitney,, A. Padgett,, K. Gosselin,, P. E. Newburger,, and R. W. Finberg. 2002. Role of toll-like receptor 2 (TLR2) in neutrophil activation: GMCSF enhances TLR2 expression and TLR2-mediated interleukin 8 responses in neutrophils. Blood 100:18601868.
50. Lancefield, R. C. 1962. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 89:307313.
51. Lancefield, R. C. 1957. Differentiation of group A streptococci with a common R antigen into three serological types, with special reference to the bactericidal test. J. Exp. Med. 106:525544.
52. Majcherczyk, P. A.,, H. Langen,, D. Heumann,, M. Fountoulakis,, M. P. Glauser,, and P. Moreillon. 1999. Digestion of Streptococcus pneumoniae cell walls with its major peptidoglycan hydrolase releases branched stem peptides carrying proinflammatory activity. J. Biol. Chem. 274:1253712543.
53. Majcherczyk, P. A.,, E. Rubli,, D. Heumann,, M. P. Glauser,, and P. Moreillon. 2003. Teichoic acids are not required for Streptococcus pneumoniae and Staphylococcus aureus cell walls to trigger the release of tumor necrosis factor by peripheral blood monocytes. Infect. Immun. 71:37073713.
54. Mathison, J. C.,, P. S. Tobias,, E. Wolfson,, and R. J. Ulevitch. 1992. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J. Immunol. 149:200206.
55. Mattsson, E.,, L. Verhage,, J. Rollof,, A. Fleer,, J. Verhoef,, and H. van Dijk. 1993. Peptidoglycan and teichoic acid from Staphylococcus epidermidis stimulate human monocytes to release tumour necrosis factor-alpha, interleukin-1 beta and interleukin-6. FEMS Immunol. Med. Microbiol. 7:281287.
56. Means, T. K.,, D. T. Golenbock,, and M. J. Fenton. 2000. The biology of Toll-like receptors. Cytokine Growth Factor Rev. 11:219232.
57. Medzhitov, R. 2001. CpG DNA: security code for host defense. Nat. Immunol. 2:1516.
58. Medzhitov, R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135145.
59. Medzhitov, R.,, P. Preston-Hurlburt,, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394397.
60. Meli, D. N.,, S. Christen,, S. L. Leib,, and M. G. Tauber. 2002. Current concepts in the pathogenesis of meningitis caused by Streptococcus pneumoniae. Curr. Opin. Infect. Dis. 15:253257.
61. Michel, T.,, J. M. Reichhart,, J. A. Hoffmann,, and J. Royet. 2001. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756759.
62. Mock, M.,, and T. Mignot. 2003. Anthrax toxins and the host: a story of intimacy. Cell Microbiol. 5:1523.
63. Moreillon, P.,, and P. A. Majcherczyk. 2003. Proinflammatory activity of cell-wall constituents from gram-positive bacteria. Scand. J. Infect. Dis. 35:632641.
64. Ozinsky, A.,, D. M. Underhill,, J. D. Fontenot,, A. M. Hajjar,, K. D. Smith,, C. B. Wilson,, L. Schroeder,, and A. Aderem. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97:1376613771.
65. Prescott, S. M.,, G. A. Zimmerman,, and T. M. McIntyre. 1990. Platelet-activating factor. J. Biol. Chem. 265:1738117384.
66. Rietschel, E. T.,, H. Brade,, O. Holst,, L. Brade,, S. Muller-Loennies,, U. Mamat,, U. Zahringer,, F. Beckmann,, U. Seydel,, K. Brandenburg,, A. J. Ulmer,, T. Mattern,, H. Heine,, J. Schletter,, H. Loppnow,, U. Schonbeck,, H. D. Flad,, S. Hauschildt,, U. F. Schade,, F. Di Padova,, S. Kusumoto,, and R. R. Schumann. 1996. Bacterial endotoxin: chemical constitution, biological recognition, host response, and immunological detoxification. Curr. Top. Microbiol. Immunol. 216:3981.
67. Rietschel, E. T.,, J. Schletter,, B. Weidemann,, V. El-Samalouti,, T. Mattern,, U. Zahringer,, U. Seydel,, H. Brade,, H. D. Flad,, S. Kusumoto,, D. Gupta,, R. Dziarski,, and A. J. Ulmer. 1998. Lipopolysaccharide and peptidoglycan: CD14-dependent bacterial inducers of inflammation. Microb. Drug Resist. 4:3744.
68. Rossjohn, J.,, R. J. Gilbert,, D. Crane,, P. J. Morgan,, T. J. Mitchell,, A. J. Rowe,, P. W. Andrew,, J. C. Paton,, R. K. Tweten,, and M. W. Parker. 1998. The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J. Mol. Biol. 284:449461.
69. Sansonetti, P. J. 2001. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks. FEMS Microbiol. Rev. 25:314.
70. Schroder, N. W.,, S. Morath,, C. Alexander,, L. Hamann,, T. Hartung,, U. Zahringer,, U. B. Gobel,, J. R. Weber,, and R. R. Schumann. 2003. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278:1558715594.
71. Schuchat, A.,, K. Robinson,, J. D. Wenger,, L. H. Harrison,, M. Farley,, A. L. Reingold,, L. Lefkowitz,, and B. A. Perkins, and the Active Surveillance Team. 1997. Bacterial meningitis in the United States in 1995. N. Engl. J. Med. 337:970976.
72. Schumann, R. R.,, D. Pfeil,, D. Freyer,, W. Buerger,, N. Lamping,, C. J. Kirschning,, U. B. Goebel,, and J. R. Weber. 1998. Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2, and p38 in astrocytes. Glia 22:295305.
73. Schwandner, R.,, R. Dziarski,, H. Wesche,, M. Rothe,, and C. J. Kirschning. 1999. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274:1740617409.
74. Takeda, K.,, T. Kaisho,, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21:335376.
75. Takehana, A.,, T. Katsuyama,, T. Yano,, Y. Oshima,, H. Takada,, T. Aigaki,, and S. Kurata. 2002. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein- LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc. Natl. Acad. Sci. USA 99:1370513710.
76. Tauber, M. G.,, H. Khayam-Bashi,, and M. A. Sande. 1985. Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcal meningitis. J. Infect. Dis. 151:528534.
77. Tauber, M. G.,, A. M. Shibl,, C. J. Hackbarth,, J. W. Larrick,, and M. A. Sande. 1987. Antibiotic therapy, endotoxin concentration in cerebrospinal fluid, and brain edema in experimental Escherichia coli meningitis in rabbits. J. Infect. Dis. 156:456462.
78. Timmerman, C. P.,, E. Mattsson,, L. Martinez- Martinez,, L. De Graaf,, J. A. Van Strijp,, H. A. Verbrugh,, J. Verhoef,, and A. Fleer. 1993. Induction of release of tumor necrosis factor from human monocytes by staphylococci and staphylococcal peptidoglycans. Infect. Immun. 61:41674172.
79. Tuomanen, E.,, B. Hengstler,, R. Rich,, M. A. Bray,, O. Zak,, and A. Tomasz. 1987. Nonsteroidal anti-inflammatory agents in the therapy for experimental pneumococcal meningitis. J. Infect. Dis. 155:985990.
80. Tuomanen, E.,, H. Liu,, B. Hengstler,, O. Zak,, and A. Tomasz. 1985. The induction of meningeal inflammation by components of the pneumococcal cell wall. J. Infect. Dis. 151:859868.
81. Tuomanen, E.,, A. Tomasz,, B. Hengstler,, and O. Zak. 1985. The relative role of bacterial cell wall and capsule in the induction of inflammation in pneumococcal meningitis. J. Infect. Dis. 151:535540.
82. van Langevelde, P.,, J. T. van Dissel,, E. Ravensbergen,, B. J. Appelmelk,, I. A. Schrijver,, and P. H. Groeneveld. 1998. Antibioticinduced release of lipoteichoic acid and peptidoglycan from Staphylococcus aureus: quantitative measurements and biological reactivities. Antimicrob. Agents Chemother. 42:30733078.
83. Wang, Z. M.,, X. Li,, R. R. Cocklin,, M. Wang,, M. Wang,, K. Fukase,, S. Inamura,, S. Kusumoto,, D. Gupta,, and R. Dziarski. 2003. Human peptidoglycan recognition protein- L is an N-acetylmuramoyl-L-alanine amidase. J. Biol. Chem. 278:4904449052.
84. Wang, Z. M.,, C. Liu,, and R. Dziarski. 2000. Chemokines are the main proinflammatory mediators in human monocytes activated by Staphylococcus aureus, peptidoglycan, and endotoxin. J. Biol. Chem. 275:2026020267.
85. Watson, D. A.,, D. M. Musher,, and J. Verhoef. 1995. Pneumococcal virulence factors and host immune responses to them. Eur. J. Clin. Microbiol. Infect. Dis. 14:479490.
86. Weber, J. R.,, D. Freyer,, C. Alexander,, N. W. Schroder,, A. Reiss,, C. Kuster,, D. Pfeil,, E. I. Tuomanen,, and R. R. Schumann. 2003. Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity 19:269279.
87. Weber, J. R.,, P. Moreillon,, and E. I. Tuomanen. 2003. Innate sensors for Gram-positive bacteria. Curr. Opin. Immunol. 15:408415.
88. Weidemann, B.,, H. Brade,, E. T. Rietschel,, R. Dziarski,, V. Bazil,, S. Kusumoto,, H. D. Flad,, and A. J. Ulmer. 1994. Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect. Immun. 62:47094715.
89. Weidemann, B.,, J. Schletter,, R. Dziarski,, S. Kusumoto,, F. Stelter,, E. T. Rietschel,, H. D. Flad,, and A. J. Ulmer. 1997. Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infect. Immun. 65:858864.
90. Weiser, J. N. 1998. Phase variation in colony opacity by Streptococcus pneumoniae. Microb. Drug Resist. 4:129135.
91. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62:25822589.
92. Werner, T.,, G. Liu,, D. Kang,, S. Ekengren,, H. Steiner,, and D. Hultmark. 2000. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97:1377213777.
93. Yoshimura, A.,, E. Lien,, R. R. Ingalls,, E. Tuomanen,, R. Dziarski,, and D. Golenbock. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163:15.
94. Yoshimura, A.,, H. Takada,, T. Kaneko,, I. Kato,, D. Golenbock,, and Y. Hara. 2000. Structural requirements of muramylpeptides for induction of Toll-like receptor 2-mediated NFkappaB activation in CHO cells. J. Endotoxin Res. 6:407410.
95. Zhang, G.,, and S. Ghosh. 2001. Toll-like receptor- mediated NF-kappaB activation: a phylogenetically conserved paradigm in innate immunity. J. Clin. Investig. 107:1319.

Tables

Generic image for table
TABLE 1

Major host molecules recognizing PAMPs

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Generic image for table
TABLE 2

Threshold bioactivities of cell wall components from different organisms tested in different models

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Generic image for table
TABLE 3

Anatomy of gram-negative and gram-positive bacteria and major conserved and strain-specific proinflammatory determinants

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12
Generic image for table
TABLE 4

Some landmark studies in understanding the structure-activity relationship of inflammation induced by walls of gram-positive organisms

Citation: Majcherczyk P, Moreillon P. 2004. Inflammation and Host Defense, p 183-200. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error