1887

Chapter 15 : Attachment and Invasion of the Respiratory Tract

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Attachment and Invasion of the Respiratory Tract, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap15-2.gif

Abstract:

The description of the patient with lobar pneumococcal pneumonia is considered one of the classics of medicine. The history and physical findings usually establish the diagnosis of pneumonia. The major effect of different genetic backgrounds of animals on the course of infection has been particularly apparent in mice. CbpA is the most abundant of the choline-binding proteins and functions as an adhesin in the upper and lower respiratory tract. Of these, PAFr and epithelium derived C3 play essential roles in pneumococcal interactions with cells in the lung that lead to progression from pneumonia to bacteremia and meningitis. In leukopenic animals, the bacterial load in the lung increases but there is no decrease in the incidence of bacteremia, indicating that events in this stage of consolidation are sufficient to lead to invasion without the effects of leukocytes. In vitro studies have demonstrated that invasion of alveolar cells involves recognition of PAFr by pneumococci. Using COS cells transfected with components of the PAFr, it has been shown that the presence of PAFr is necessary for pneumococcal invasion. This choline-dependent invasion mechanism appears to apply to a large number of respiratory pathogens. Pneumococcal pneumonia is very common and causes a dramatic clinical picture due to intense inflammation in the lung.

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15

Key Concept Ranking

Cell Wall Components
0.49321687
Tumor Necrosis Factor
0.4823769
Bacterial Cell Wall
0.4767607
Toll-Like Receptor 2
0.4552771
0.49321687
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagnosis of pneumonia. (A) Chest X ray. Bilateral lower lobe (R > L) airspace disease in a 14-year-old-boy with sudden onset of fever and cough. (B) Top, axial contrast-enhanced CT through the lung bases and filmed with lung windows demonstrates patchy bilateral lower lobe air space disease (R > L). There are no associated pleural effusions. Bottom, axial contrast-enhanced CT through the mid-chest and filmed with mediastinal windows demonstrates a right hilar lymph node (arrow). (Images courtesy of S. Kaste, St. Jude Children's Research Hospital.) (C) Sputum Gram stain. Gram-positive cocci are visible in meshwork of sputum and cellular debris. (Image courtesy of R. Hayden, St. Jude Children's Research Hospital.)

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model for the inflammatory response to cell wall in the lung. In the alveolar space, pneumococcal cell wall (PCW) (shown as layers of peptidoglycan decorated by projecting choline-containing teichoic acids) interacts with two different signaling pathways. The choline on the teichoic acid binds to PAFr that initiates bacterial uptake into vacuoles supported by the scaffold protein β arrestin and activation of Erk kinases ( ). The peptidoglycan portion bound to a soluble peptidoglycan recognition protein (for example, lipopolysaccharidebinding protein [LBP] [ ]) is presented to toll-like receptor 2 (TLR2). TLR2 also binds lipoteichoic acid ( ), and TLR4 has been found to bind pneumolysin ( ). Engagement of TLRs elicits production of TNF (shown in inset by immunostaining) and IL-1, resulting in separation of epithelial cells and accumulation of a serous exudate in alveoli.

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic domain structure of CbpA. Domains labeled A, R1, and R2 contain multiple repeats of the classical leucine zipper heptad repeat that is found in coiled-coil proteins. PPP is a proline-rich region, and TMH is a putative transmembrane α-helix that serves as a signal sequence for secretion. Ten repeats of the choline-binding motif are found within the C-terminal choline-binding domain (CBD). (Annotated from the TIGR4 sequence.)

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Kinetics of events during progression of pneumococcal pneumonia. Bacterial multiplication proceeds unimpeded during the stages of engorgement and red hepatization, peaking at 36 h in the stage of grey hepatization. Bacteremia is a result of pneumococcal adherence to and invasion of alveolar cells. The edema characteristic of engorgement arises from cell-wall induced signaling in epithelial cells and activation of the alternative pathway of the complement cascade by cell wall. Cytokines begin to appear in bronchoalveolar lavage fluid in the first few hours of engorgement but do not reach a maximum until the phase of red hepatization (18 to 24 h). At this stage, the activated endothelium expresses tissue factor forming a platform for procoagulant activity, and the cytolytic activity of pneumolysin is prominent. During the stage of grey hepatization, polymorphonuclear leukocytes (PLN) are recruited and begin to control pneumococcal multiplication. Complement activation by pneumolysin aids in this clearance. The outcome of the infection depends at least in part on the ability of the host to withstand the inflammation associated with bacterial death (i.e., tipping point).

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap15
1. Alexander, J.,, A. Berry,, J. Paton,, J. Rubins,, P. Andrew,, and T. Mitchell. 1998. Amino acid changes affecting the activity of pneumolysin alter the behaviour of pneumococci in pneumonia. Microb. Pathog. 24: 167 174.
2. Austrian, R. 1986. Some aspects of the pneumococcal carrier state. J. Antimicrob. Chemother. 18(Suppl. A): 35 45.
3. Austrian, R.,, and J. Gold. 1964. Pneumococcal bacteremia and especial reference to bacteremic pneumococcal pneumonia. Ann. Intern. Med. 60: 759 776.
4. Balachandran, P.,, A. Brooks-Walter,, A. Virolainen- Julkunen,, S. Hollingshead,, and D. Briles. 2002. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 70: 2526 2534.
5. Barthelson, R.,, A. Mobasseri,, D. Zopf,, and P. Simon. 1998. Adherence of Streptococcus pneumoniae to respiratory epithelial cells is inhibited by sialylated oligosaccharides. Infect. Immun. 66: 1439 1444.
6. Bartlett, J.,, and L. Mundy. 1995. Community acquired pneumonia. N. Engl. J. Med. 333: 1618 1623.
7. Bergeron, Y.,, N. Ouellet,, A. Deslauriers,, M. Simard,, M. Olivier,, and M. Bergeron. 1998. Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect. Immun. 66: 912 922.
8. Berry, A.,, J. Yother,, D. Briles,, D. Hansman,, and J. Paton. 1989. Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae>. Infect. Immun. 57: 2037 2042.
9. Blake, F.,, M. Howard,, and W. Hull. 1935. Artificial pneumothorax in the treatment of lobar pneumonia. JAMA 105: 1489 1503.
10. Brandt, J.,, C. Wong,, S. Mihm,, J. Robers,, J. Smith,, E. Brewer,, R. Thiagarajan,, and B. Warady. 2002. Invasive pneumococcal disease and hemolytic uremic syndrome. Pediatrics 110: 371 376.
11. Briles, D.,, M. Crain,, B. Gray,, C. Forman,, and J. Yother. 1992. A strong association between capsular type and mouse virulence among human isolates of Streptococcus pneumoniae. Infect. Immun. 60: 111 116.
12. Brock, S.,, P. McGraw,, P. Wright,, and J. J. Crowe. 2002. The human polymeric immunoglobulin receptor facilitates invasion of epithelial cells by Streptococcus pneumoniae in a strain-specific and cell type-specific manner. Infect. Immun. 70: 5091 5095.
13. Brooks-Walter, A.,, D. Briles,, and S. Hollingshead. 1999. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reative antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 67: 6533 6542.
14. Buckingham, S.,, M. King,, and M. Miller. 2003. Incidence and etiologies of complicated parapneumonic effusions in children, 1996-2001. Pediatr. Infect. Dis. J. 22: 499 504.
15. Butler, J.,, S. Bosshardt,, M. Phelan,, S. Moroney,, M. Tondella,, M. Farley,, A. Schuchat,, and B. Fields. 2003. Classical and latent class analysis evaluation of sputum PCR and urine antigen testing for diagnosis of pneumococcal pneumonia in adults. J. Infect. Dis. 187: 1416 1423.
16. Byington, C.,, L. Spencer,, and T. Johnson. 2002. An epidemiological investigation of a sustained high rate of pediatric parapneumonic empyema: risk factors and microbiological associations. Clin. Infect. Dis. 34: 434 440.
17. Cabellos, C.,, D. E. MacIntyre,, M. Forrest,, M. Burroughs,, S. Prasad,, and E. Tuomanen. 1992. Differing roles of platelet-activating factor during inflammation of the lung and subarachnoid space. J. Clin. Investig. 90: 612 618.
18. Coonrod, J.,, and K. Yoneda. 1982. Complement and opsonins in alveolar secretions and serum of rats with pneumonia due to Streptococcus pneumoniae. Rev. Infect. Dis. 3: 310 322.
19. Cundell, D.,, N. Gerard,, C. Gerard,, I. Idanpaan-Heikkila,, and E. Tuomanen. 1995. Streptococcus pneumoniae anchors to activated eukaryotic cells by the receptor for platelet activating factor. Nature 377: 435 438.
20. Cundell, D.,, and E. Tuomanen. 1994. Receptor specificity of adherence of Streptococcus pneumoniae to human type II pneumocytes and vascular endothelial cells in vitro. Microb. Pathog. 17: 361 374.
21. Cundell, D.,, J. Weiser,, J. Shen,, A. Young,, and E. Tuomanen. 1995. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect. Immun. 63: 757 761.
22. Dallaire, F.,, N. Ouellet,, Y. Bergeron,, V. Turmel,, M. Gauthier,, M. Simard,, and M. Bergeron. 2001. Microbiological and inflammatory factors associated with the development of pneumococcal pneumonia. J. Infect. Dis. 184: 292 300.
23. Dave, S.,, A. Brooks-Walter,, M. Pangburn,, and L. McDaniel. 2001. PspC, a pneumococcal surface protein, binds human factor H. Infect. Immun. 69: 3435 3437.
24. Deutsch, J.,, M. Salman,, and S. Rottem. 1995. An unusual polar lipid from the cell membrane of Mycoplasma fermentans. Eur. J. Biochem. 227: 897 902.
25. Doerschuk, C. M.,, R. K. Winn,, H. O. Coxson,, and J. M. Harlan. 1990. CD18-dependent and -independent mechanisms of neutrophil emigration in the pulmonary and systemic microcirculation of rabbits. J. Immunol. 144: 2327 2333.
26. Dominguez, J.,, S. Blanco,, C. Rodrigo,, M. ZAzuara,, N. Galí,, A. Mainou,, A. Esteve,, A. Castellví,, C. Prat,, L. Matas,, and V. Ausina. 2003. Usefulness of urinary antigen detection by an immunochomatographic test for diagnosis of pneumococcal pneumonia in children. J. Clin. Microbiol. 41: 2161 2163.
27. Dowell, S.,, B. Kupronis,, E. R. Zell,, and D. Shay. 2000. Mortality from pneumonia in children in the United States, 1939 through 1996. N. Engl. J. Med. 342: 1399 1407.
28. Duane, P.,, J. Rubins,, H. Weisel,, and E. Janoff. 1993. Identification of hydrogen peroxide as a Streptococcus pneumoniae toxin for rat alveolar epithelial cells. Infect. Immun. 61: 4392 4397.
29. Duthy, T. G.,, R. J. Ormsby,, E. Giannakis,, A. D. Ogunniyi,, U. H. Stroeher,, J. C. Paton,, and D. L. Gordon. 2002. The human complement regulator factor H binds pneumococcal surface protein PspC via short consensus repeats 13 to 15. Infect. Immun. 70: 5604 5611.
30. Dworkin, M. S.,, J. W. Ward,, D. L. Hanson,, J. L. Jones,, J. E. Kaplan, and Adolescent Spectrum of HIV Disease Project. 2001. Pneumococcal disease among human immunodeficiency virus-infected persons: incidence, risk factors, and impact of vaccination. Clin. Infect. Dis. 32: 794 800.
31. Falguera, M.,, A. Lopez,, A. Nogues,, J. Porcel,, and M. Rubio-Caballero. 2002. Evaluation of the PCR method for detection of Streptococcus pneumoniae DNA in pleural fluid samples. Chest 122: 2212 2216.
32. Feldman, C.,, R. Anderson,, R. Cockeran,, T. Mitchell,, P. Cole,, and R. Wilson. 2002. The effects of pneumolysin and hydrogen peroxide, alone and in combination, on human ciliated epithelium in vitro. Respir. Med. 96: 580 585.
33. Feldman, C.,, T. J. Mitchell,, P. W. Andrew,, G. J. Boulnois,, R. C. Read,, H. C. Todd,, P. J. Cole,, and R. Wilson. 1990. The effect of Streptococcus pneumoniae pneumolysin on human respiratory epithelium in vitro. Microb. Pathog. 9: 275 284.
34. Fernandez-Sabe, N.,, R. Carratala,, B. Roson,, J. Dorca,, R. Verdaguer,, F. Manresa,, and F. Gudiol. 2003. Community acquired pneumonia in very elderly patients: causative organisms, clinical characteristics, and outcomes. Medicine (Baltimore) 82: 159 169.
35. Field, M.,, M. Shaffer,, J. Enders,, and C. Drinker. 1937. The distribution in the blood and lymph of pneumococcus type III injected intravenously in rabbits, and the effect of treatment with specific antiserum on the infection of the lymph. J. Exp. Med. 65: 469 485.
36. Fillion, I.,, N. Ouellet,, M. Simard,, Y. Bergeron,, S. Sato,, and M. Bergeron. 2001. Role of chemokines and formyl peptides in pneumococcal pneumonia-induced monocyte/ macrophage recruitment. J. Immunol. 166: 7353 7361.
37. Fine, M.,, M. Smith,, and C. Carson. 1994. Efficacy of pneumococcal vaccination in adults: a meta-analysis of randomized clinical controlled trials. Arch. Intern. Med. 154: 2666 2677.
38. Francis, K. P.,, J. Yu,, C. Bellinger-Kawahara,, D. Joh,, M. J. Hawkinson,, G. Xiao,, T. F. Purchio,, M. G. Caparon,, M. Lipsitch,, and P. R. Contag. 2001. Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infect. Immun. 69: 3350 3358.
39. Freyer, D.,, R. Manz,, A. Ziegenhorn,, M. Weih,, K. Angstwurm,, W. Docke,, A. Meisel,, R. Schumann,, G. Schonfelder,, U. Dirnagl,, and J. Weber. 1999. Cerebral endothelial cells release TNFa after stimulation with cell walls of Streptococcus pneumoniae and regulate iNOS and ICAM-1 expression via autocrine loops. J. Immunol. 163: 4308 4314.
40. Garcia Rodriguez, C.,, D. R. Cundell,, E. I. Tuomanen,, L. F. Kolakowski, Jr., C. Gerard, and N. P. Gerard. 1995. The role of Nglycosylation for functional expression of the human platelet-activating factor receptor. Glycosylation is required for efficient membrane trafficking. J. Biol. Chem. 270: 25178 25184.
41. Geelen, S.,, C. Bhattacharyya,, and E. Tuomanen. 1992. Induction of procoagulant activity on human endothelial cells by Streptococcus pneumoniae. Infect. Immun. 60: 4179 4183.
42. Gorter, A.,, P. Hiemstra,, S. de Bentzmann,, S. van Wetering,, J. Dankert,, and L. van Alphen. 2000. Stimulation of bacterial adherence by neutrophil defensins varies among bacterial species but not among host cell types. FEMS Immunol. Med. Microbiol. 28: 105 111.
43. Gosink, K.,, E. Mann,, C. Guglielmo,, E. Tuomanen,, and R. Masure. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun. 68: 5690 5695.
44. Gould, J.,, and J. Weiser. 2002. The inhibitory effect of C-reactive protein on bacterial phosphorylcholine platelet-activating factor receptor-mediated adherence is blocked by surfactant. J. Infect. Dis. 186: 361 371.
45. Gray, B.,, G. Converse,, and H. Killon. 1980. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage and infection during the first 24 months of life. J. Infect. Dis. 142: 923 933.
46. Gray, B. M.,, and H. C. Dillon, Jr. 1986. Clinical and epidemiologic studies of pneumococcal infection in children. Pediatr. Infect. Dis. 5: 201 207.
47. Hakansson, A.,, A. Kidd,, G. Wadell,, H. Sabharwal,, and C. Svanborg. 1994. Adenovirus infection enhances in vitro adherence of Streptococcus pneumoniae. Infect. Immun. 62: 2707 2714.
48. Hamburger, M.,, and O. Robertson. 1940. Studies of the pathogenesis of experimental pneumococcus pneumonia in the dog. J. Exp. Med. 72: 261 274.
49. Hammerschmidt, S.,, S. Talay,, P. Brandtzaeg,, and G. Chhatwal. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25: 1113 1124.
50. Hammerschmidt, S.,, M. Tillig,, S. Wolff,, J. Vaerman,, and G. Chhatwal. 2000. Species-specific binding of human secretory component to SpsA protein of Streptococcus pneumoniae via a hexapeptide motif. Mol. Microbiol. 36: 726 736.
51. Hand, W.,, and J. Cantey. 1974. Antibacterial mechanisms of the lower respiratory tract. I. Immunoglobulin synthesis and secretion. J. Clin. Investig. 53: 354 362.
52. Harford, C.,, V. Leidler,, and M. Hara. 1948. Effect of the lesion due to influenza virus on the resistance of mice to inhaled pneumococci. J. Exp. Med. 86: 53 68.
53. Hava, D.,, and A. Camilli. 2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45: 1389 1405.
54. Hava, D.,, C. Hemsley,, and A. Camilli. 2003. Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J. Bacteriol. 185: 413 421.
55. Heffron, R. 1939. Pneumonia. Commonwealth Fund, New York, N.Y..
56. Hermann, C.,, I. Spreitzer,, N. Schroeder,, S. Morath,, M. Lehner,, W. Fischer,, C. Schutt,, R. Schumann,, and T. Hartung. 2002. Cytokine induction by purified lipoteichoic acids from various bacterial species—role of LBP, sCD14, CD14 and failure to induce IL-12 and subsequent IFN release. Eur. J. Immunol. 32: 541 551.
57. Heumann, D.,, C. Barras,, A. Severin,, M. P. Glauser,, and A. Tomasz. 1994. Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 62: 2715 2721.
58. Hirst, R.,, H. Yesilkaya,, E. Clitheroe,, A. Rutman,, N. Dufty,, T. Mitchell,, C. O’- Callaghan,, and P. Andrew. 2002. Sensitivities of human monocytes and epithelial cells to pneumolysin are different. Infect. Immun. 70: 1017 1022.
59. Hord, J.,, R. Byrd,, L. Stowe,, B. Windsor,, and K. Smith-Whitley. 2002. Streptococcus pneumoniae sepsis and meningitis during the penicillin prophylaxis era in children with sickle cell disease. J. Pediatr. Hematol. Oncol. 24: 470 472.
60. Iannelli, F.,, M. Oggioni,, and G. Pozzi. 2002. Allelic variation in the highly polymorphic locus pspC of Streptococcus pneumoniae. Gene 284: 63 71.
61. Idanpaan-Heikkila, I.,, P. Simon,, C. Cahill,, K. Sokol,, and E. Tuomanen. 1997. Oligosaccharides interfere with the establishment and progression of experimental pneumococcal pneumonia. J. Infect. Dis. 176: 704 712.
62. Jarva, H.,, R. Janulczyk,, J. Hellwage,, P. Zipfel,, L. Bjorck,, and S. Meri. 2002. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus- encoded Hic protein that binds short consensus repeats 8-11 of factor H. J. Immunol. 168: 1886 1894.
63. Jounblat, R.,, A. Kadioglu,, T. J. Mitchell,, and P. W. Andrew. 2003. Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect. Immun. 71: 1813 1819.
64. Kadioglu, A.,, N. Gingles,, K. Grattan,, A. Kerr,, T. Mitchell,, and P. Andrew. 2000. Host cellular immune response to pneumococcal lung infection in mice. Infect. Immun. 68: 492 501.
65. Kerr, A.,, J. Irvine,, J. Search,, N. Gingles,, A. Kadioglu,, P. Andrew,, W. McPheat,, C. Booth,, and T. Mitchell. 2002. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect. Immun. 70: 1547 1557.
66. Kim, J.,, and J. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177: 368 377.
67. Kline, B. 1917. Experimental study of organization in lobar pneumonia. J. Exp. Med. 26: 239 248.
68. Kline, B.,, and M. Winternitz. 1915. Studies on experimental pneumonia in rabbits. VIII. Intra vitam staining in experimental pneumonia, and the circulation in the pneumonic lung. J. Exp. Med. 21: 311 319.
69. Kostrzynska, M.,, and T. Wadstrom. 1992. Binding of laminin, type IV collagen, and vitronectin by Streptococcus pneumoniae. Zentbl. Bakteriol. 277: 80 83.
70. Krivan, H. C.,, D. D. Roberts,, and V. Ginsburg. 1988. Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNacB1-4Gal found in some glycolipids. Proc. Natl. Acad. Sci. USA 85: 6157 6161.
71. Laennec, R. 1932. A Treatise on the Diseases of the Chest and on Mediate Auscultation. SS & Wm Wood, New York, N.Y..
72. Lauw, F.,, J. Branger,, S. Florquin,, P. Speelman,, S. Van Deventer,, S. Akira,, and T. van der Poll. 2002. IL-18 improves the early antimicrobial host response to pneumococcal pneumonia. J. Immunol. 168: 372 378.
73. Linder, T.,, R. Dandiles,, D. Lime,, and T. DeMaria. 1994. Effect of intranasal inoculation of Streptococcus pneumoniae on the structure of the surface carbohydrates of the chinchilla eustachian tube and middle ear mucosa. Microb. Pathog. 16: 435 441.
74. Loosli, C. 1940. Pathogenesis and pathology of lobar pneumonia. Lancet i: 49 54.
75. Louria, D.,, H. Blumenfeld,, J. Ellis,, E. Kilbourne,, and D. Rogers. 1959. Studies on influenza in the pandemic of 1957-58. II. Pulmonary complications of influenza. J. Clin. Investig. 38: 213 265.
76. MacCallum, W. 1925. Textbook of Pathology. W. B. Saunders, Philadelphia, Pa..
77. Madsen, M.,, Y. Lebenthal,, Q. Cheng,, B. Smith,, and M. Hostetter. 2000. A pneumococcal protein that elicits interleukin-8 from pulmonary epithelial cells. J. Infect. Dis. 181: 1330 1336.
78. Malley, R.,, P. Henneke,, S. Morse,, M. Cieslewicz,, M. Lipsitch,, C. Thompson,, E. Kurt-Jones,, J. Paton,, M. Wessels,, and D. Golenbock. 2003. Recognition of pneumolysin by Toll-like receptor 4 confers resistance to pneumococcal infection. Proc. Natl. Acad. Sci. USA 100: 1966 1971.
79. Marrie, T.,, H. Durant,, and L. Yates. 1989. Community-acquired pneumonia requiring hospitalization. Rev. Infect. Dis. 11: 568.
80. McAvin, J. C.,, P. A. Reilly,, R. M. Roudabush,, W. J. Barnes,, A. Salmen,, G. W. Jackson,, K. Beninga,, A. Astorga,, F. K. McCleskey,, W. B. Huff,, D. Niemeyer,, and K. L. Lohman. 2001. Sensitive and specific method for rapid identification of Streptococcus pneumoniae using real-time fluorescence PCR. J. Clin. Microbiol. 39: 3446 3451.
81. McCullers, J.,, and E. Tuomanen. 2001. Molecular pathogenesis of pneumococcal pneumonia. Front. Biosci. 6: 877 889.
82. McCullers, J.,, and K. Bartmess. 2003. Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J. Infect. Dis. 187: 1000 1009.
83. McCullers, J.,, and J. Rehg. 2002. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor. J. Infect. Dis. 186: 341 350.
84. Melby, K.,, G. Toews,, and A. Pierce. 1985. Pulmonary elastase activity in response to Streptococcus pneumoniaeand Pseudomonas aeruginosa. Am. Rev. Respir. Dis. 131: 559 563.
85. Mileski, W.,, J. Harlan,, C. Rice,, and R. Winn. 1990. Streptococcus pneumoniae-stimulated macrophages induce neutrophils to emigrate by a CD18-independent mechanism of adherence. Circ. Shock 31: 259 267.
86. Mohler, J.,, E. Azoulay-Dupuis,, C. Amory- Rivier,, J. Mazoit,, J. Bedos,, V. Rieux,, and P. Moine. 2003. Streptococcus pneumoniae strain-dependent lung inflammatory responses in a murine model of pneumococcal pneumonia. Intensive Care Med. 29: 808 816.
87. Mold, C.,, K. Edwards,, and H. Gewura. 1982. Binding of C-reactive protein to bacteria. Infect. Immun. 38: 392 395.
88. Mold, C.,, B. Rodic-Polic,, and T. Du Clos. 2002. Protection from Streptococcus pneumoniae infection by C reactive protein and natural antibody requires complement but not Fc gamma receptors. J. Immunol. 168: 6375 6381.
89. Murdoch, C.,, R. Read,, Q. Zhang,, and A. Finn. 2002. Choline binding protein A of Streptococcus pneumoniae elicits chemokine production and expression of intercellular adhesion molecule 1 (CD54) by human alveolar epithelial cells. J. Infect. Dis. 186: 1253 1260.
90. Murdoch, D. 2003. Nucleic acid amplification tests for the diagnosis of pneumonia. Clin. Infect. Dis. 36: 1162 1170.
91. Murdoch, D.,, T. Anderson,, K. Beynon,, A. Chua,, A. Fleming,, R. Laing,, G. Town,, G. Mills,, S. Chambers,, and L. Jennings. 2003. Evaluation of a PCR assay for detection of Streptococcus pneumoniae in respiratory and nonrespiratory samples from adults with community-acquired pneumonia. J. Clin. Microbiol. 41: 63 66.
92. Murdoch, D.,, R. Laing,, G. Mills,, N. Karalus,, G. Town,, S. Mirrett,, and L. Reller. 2001. Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia. J. Clin. Microbiol. 39: 3495 3498.
93. Musher, D.,, R. Mediwala,, H. Phan,, G. Chen,, and R. Baughn. 2001. Nonspecificity of assaying for IgG antibody to pneumolysin in circulating immune complexes as a means to diagnose pneumococcal pneumonia. Clin. Infect. Dis. 32: 534 538.
94. Nungester, W.,, and L. Jourdonais. 1936. Mucin as an aid in the experimental production of lobal pneumonia. J. Infect. Dis. 59: 258 265.
95. Orihuela, C. J.,, G. Gao,, M. McGee,, J. Yu,, K. P. Francis,, and E. Tuomanen. 2003. Organ- specific models of Streptococcus pneumoniae disease. Scand. J. Infect. Dis. 35: 647 652.
96. Ortqvist, A.,, J. Hedlund,, B. Wretlind,, A. Carlstrom,, and M. Kalin. 1995. Diagnostic and prognostic value of interleukin-6 and C-reactive protein in community acquired pneumonia. Scand. J. Infect. Dis. 27: 457 462.
97. Osler, W. 1897. On certain features in the prognosis of pneumonia. Am. J. Med. Sci. 113: 1 10.
98. Pallares, R.,, J. Linares,, M. Vadillo,, C. Cabellos,, F. Manresa,, P. Viladrich,, R. Martin,, and F. Gudiol. 1995. Resistance to penicillin and cephalosporins and mortality from severe pneumococcal pneumonia in Barcelona, Spain. N. Engl. J. Med. 333: 474 480.
99. Paton, J.,, A. Berry,, and R. Lock. 1997. Molecular analysis of putative pneumococcal virulence proteins. Microb. Drug Resist. 3: 1 10.
100. Pericone, C. D.,, K. Overweg,, P. M. W. Hermans,, and J. N. Weiser. 2000. Inhibitory and bactericidal effects of hydrogen peroxide production by Streptococcus pneumoniae on other inhabitants of the upper respiratory tract. Infect. Immun. 68: 3990 3997.
101. Plotkowski, M. C.,, E. Puchelle,, G. Beck,, J. Jacquot,, and C. Hannoun. 1986. Adherence of type 1 Streptococcus pneumoniae to tracheal epithelium of mice infected with influenza A/PR8 virus. Am. Rev. Respir. Dis. 134: 1040 1044.
102. Programming, N.C. Office of Statistics. 1999. Deaths and death rates for the 10 leading causes of death in specified age groups: United States, 1997. Natl. Vital Stat. Rep. 47: 27 37.
103. Rake, G. 1936. Pathogenesis of pneumococcus infection in mice following intranasal instillation. J. Exp. Med. 63: 17 37.
104. Rayner, C. F.,, A. D. Jackson,, A. Rutman,, A. Dewar,, T. J. Mitchell,, P. W. Andrew,, P. J. Cole,, and R. Wilson. 1995. Interaction of pneumolysin-sufficient and -deficient isogenic variants of Streptococcus pneumoniae with human respiratory mucosa. Infect. Immun. 63: 442 447.
105. Reisenfeld-Orn, I.,, S. Wolpe,, J. Garcia- Bustos,, M. Hoffmann,, and E. Tuomanen. 1989. Production of interleukin-1 but not tumor necrosis factor by human monocytes stimulated with pneumococcal cell surface components. Infect. Immun. 57: 1890 1893.
106. Rich, A.,, and C. McKee. 1939. The pathogenicity of avirulent pneumococci for animals deprived of leukocytes. Bull. Johns Hopkins Hosp. 64: 434 446.
107. Rijneveld, A.,, S. Florquin,, J. Branger,, P. Speelman,, S. Van Deventer,, and T. van der Poll. 2001. TNF-alpha compensates for the impaired host defense of IL-1 type 1 receptor-deficient mice during pneumococcal pneumonia. J. Immunol. 167: 5240 5246.
108. Rijneveld, A.,, F. Lauw,, M. Schultz,, S. Florquin,, A. Te Velde,, P. Speelman,, S. Van Deventer,, and T. van der Poll. 2002. The role of interferon-gamma in murine pneumococcal pneumonia. J. Infect. Dis. 185: 91 97.
109. Rijneveld, A.,, G. van den Dobbelsteen,, S. Florquin,, T. Standiford,, P. Speelman,, L. van Alphen,, and T. van der Poll. 2002. Roles of interleukin-6 and macrophage inflammatory protein-2 in pneumolysin-induced lung inflammation in mice. J. Infect. Dis. 185: 123 126.
110. Ring, A.,, J. Weiser,, and E. Tuomanen. 1998. Pneumococcal penetration of the blood brain barrier: molecular analysis of a novel re-entry path. J. Clin. Investig. 102: 347 360.
111. Robertson, O.,, S. Woo,, S. Cheer,, and L. King. 1928. Study of the mechanism of recovery from experimental pneumococcus infection. J. Exp. Med. 47: 317 333.
112. Rosenow, C.,, P. Ryan,, J. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. Masure. 1997. Contribution of a novel choline binding protein to adherence, colonization, and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25: 819 829.
113. Rubins, J.,, D. Charboneau,, C. Fasching,, A. Berry,, J. Paton,, J. Alexander,, P. Andrew,, T. Mitchell,, and E. Janoff. 1996. Distinct role for pneumolysin’s cytotoxic and complement activities in the pathogenesis of pneumococcal pneumonia. Am. J. Respir. Crit. Care Med. 153: 1339 1346.
114. Rubins, J.,, P. Duane,, D. Charboneau,, and E. Janoff. 1992. Toxicity of pneumolysin to pulmonary endothelial cells in vitro. Infect. Immun. 60: 1740 1746.
115. Rubins, J. B.,, P. G. Duane,, D. Clawson,, D. Charboneau,, J. Young,, and D. E. Niewoehner. 1993. Toxicity of pneumolysin to pulmonary alveolar epithelial cells. Infect. Immun. 61: 1352 1358.
116. Saladino, R.,, A. Stack,, G. Fleisher,, C. Thompson,, D. Briles,, L. Kobzik,, and G. Siber. 1997. Development of a model of low-inoculum Streptococcus pneumoniae intrapulmonary infection in infant rats. Infect. Immun. 65: 4701 4704.
117. Sato, S.,, N. Ouellet,, I. Pelletier,, M. Simard,, A. Rancourt,, and M. Bergeron. 2002. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J. Immunol. 168: 1813 1822.
118. Schroeder, N.,, S. Morath,, C. Alexander,, L. Hamann,, I. Spreitzer,, T. Hartung,, U. Zahringer,, U. Goebel,, J. Weber,, and R. Schumann. 2003. Lipoteichoic acid of S. pneumoniae and S. aureus activate immune cells via toll-like receptor (TLR)-2, and not TLR-4 and MD-2. J. Biol. Chem. 278: 15587 15594.
119. Schumann, R.,, D. Pfeil,, D. Freyer,, W. Buerger,, N. Lamping,, C. Kirschning,, U. Goebel,, and J. Weber. 1998. Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) ERK-1, ERK-2, and p38 in astrocytes. Glia 22: 295 305.
120. Scott, J. A. G.,, E. L., Marston,, A. J. Hall,, and K. Marsh. 2003. Diagnosis of pneumococcal pneumonia by psaA PCR analysis of lung aspirates from adult patients in Kenya. J. Clin. Microbiol. 41: 2554 2559.
121. Sebert, M. H.,, L. M. Palmer,, M. Rosenberg,, and J. N. Weiser. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun. 70: 4059 4067.
122. Smith, B.,, and M. Hostetter. 2000. C3 as substrate for adhesion of Streptococcus pneumoniae. J. Infect. Dis. 182: 497 508.
123. Spellerberg, B.,, D. Cundell,, J. Sandros,, B. Pearce,, I. Idänpään-Heikkilä,, C. Rosenow,, and H. Masure. 1996. Pyruvate oxidase as a determinant of virulence in Streptococcus pneumoniae. Mol. Microbiol. 19: 803 813.
124. Sutliff, W.,, and T. Friedemann. 1938. A soluble edema-producing substance from the pneumococcus. J. Immunol. 34: 455 467.
125. Takashima, K.,, K. Tateda,, T. Matsumoto,, Y. Iizawa,, M. Nakao,, and K. Yamaguchi. 1997. Role of tumor necrosis factor alpha in pathogenesis of pneumococcal pneumonia in mice. Infect. Immun. 65: 257 260.
126. Talbot, U.,, A. Paton,, and J. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64: 3772 3777.
127. Tan, T.,, E. J. Mason,, E. Wald,, W. Varson,, G. Schutze,, J. Bradley,, L. Givner,, R. Yogev,, K. Kim,, and S. Kaplan. 2002. Clinical characteristics of children with complicated pneumonia caused by Streptococcus pneumoniae. Pediatrics 110: 1 6.
128. Throup, J.,, K. Koretke,, A. Bryant,, K. Ingraham,, A. Chalker,, Y. Ge,, A. Marra,, N. Wallis,, J. Brown,, D. Holmes,, M. Rosenberg,, and M. Burnham. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Micriobiol. 35: 566 576.
129. Toews, G.,, and W. Vial. 1984. The role of C5 in the polymorphonuclear leukocyte recruitment in response to Streptococcus pneumoniae. Am. Rev. Respir. Dis. 129: 82 86.
130. Tokars, J.,, M. Frank,, M. Alter,, and M. Arduino. 2002. National surveillance of dialysis-associated diseases in the United States, 2000. Semin. Dial. 15: 162 171.
131. Tong, H.,, M. McIver,, L. Fisher,, and T. DeMaria. 1999. Effect of lacto-N-neotetraose, asialoganglioside-GM1 and neuraminidase on adherence of otitis media associated serotypes of Streptococcus pneumoniae to chinchilla tracheal epithelium. Microb. Pathog. 26: 111 119.
132. Tuomanen, E. 1986. Piracy of adhesins: attachment of superinfecting pathogens to respiratory cilia by secreted adhesins of Bordetella pertussis. Infect. Immun. 54: 905 908.
133. Tuomanen, E.,, R. Austrian,, and H. Masure. 1995. The pathogenesis of pneumococcal infection. N. Engl. J. Med. 332: 1280 1284.
134. Tuomanen, E.,, B. Hengstler,, R. Rich,, M. Bray,, O. Zak,, and A. Tomasz. 1987. Nonsteroidal anti-inflammatory agents in the therapy of experimental pneumococcal meningitis. J. Infect. Dis. 155: 985 990.
135. Tuomanen, E.,, R. Rich,, and O. Zak. 1987. Induction of pulmonary inflammation by components of the pneumococcal cell surface. Am. Rev. Respir. Dis. 135: 869 874.
136. van der Flier, M.,, N. Chhun,, T. Wizemann,, J. Min,, J. McCarthy,, and E. Tuomanen. 1995. Adherence of Streptococcus pneumoniae to immobilized fibronectin. Infect. Immun. 63: 4317 4322.
137. van der Flier, M.,, F. Coenjaerts,, J. Kimpen,, A. Hoepelman,, and S. Geelen. 2000. Streptococcus pneumoniae induces secretion of vascular endothelial growth factor by human neutrophils. Infect. Immun. 68: 4792 4794.
138. Vollmer, W.,, and A. Tomasz. 2001. Identification of the teichoic acid phosphorylcholine esterase of Streptococcus pneumoniae. Mol. Microbiol. 39: 1610 1622.
139. Wadowsky, R.,, S. Mietzner,, D. Skoner,, W. Doyle,, and P. Fireman. 1995. Effect of experimental influenza A virus infection on isolation of Streptococcus pneumoniae and other aerobic bacteria from the oropharynges of allergic and nonallergic adult subjects. Infect. Immun. 63: 1153 1157.
140. Wagner, H.,, I. Bennett,, L. Lasagna,, L. Cluff,, M. Rosenthal,, and G. Mirick. 1956. The effect of hydrocortisone upon the course of pneumococcal pneumonia treated with penicillin. Bull. Johns Hopkins Hosp. 98: 197 215.
141. Wang, E.,, M. Simard,, N. Ouellet,, Y. Bergeron,, D. Beauchamp,, and M. Bergeron. 2002. Pathogenesis of pneumococcal pneumonia in cyclophosphamide-induced leukopenia in mice. Infect. Immun. 70: 4226 4238.
142. Weber, J. R.,, D. Freyer,, C. Alexander,, N. W. Schroder,, A. Reiss,, C. Kuster,, D. Pfeil,, E. I. Tuomanen,, and R. R. Schumann. 2003. Recognition of pneumococcal peptidoglycan, an expanded, pivotal role for LPS binding protein. Immunity 19: 269 279.
143. Weiser, J.,, R. Austrian,, P. Sreenivasan,, and H. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
144. Weiser, J.,, J. B. Goldberg,, N. Pan,, L. Wilson,, and M. Virji. 1998. The phosphorylcholine epitope undergoes phase variation on a 43-kilodalton protein in Pseudomonas aeruginosa and on pili of Neisseria meningitidis and Neisseria gonorrhoeae. Infect. Immun. 66: 4263 4267.
145. Weiser, J.,, N. Pan,, K. McGowan,, D. Musher,, A. Martin,, and J. Richards. 1998. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med. 187: 631 640.
146. Weiser, J.,, M. Shchepetov,, and S. Chong. 1997. Decoration of lipopolysaccharide with phosphorylcholine: a phase-variable characteristic of Haemophilus influenzae. Infect. Immun. 65: 943 950.
147. Williams, J. J.,, M. Pahl,, D. Kwong,, J. Zhang,, D. Hatakeyama,, K. Ahmed,, M. Naderi,, M. Kim,, and N. Vazii. 2003. Modulation of neutrophil complement receptor 3 expression by pneumococci. Clin. Sci. 104: 615 625.
148. Winkelstein, J.,, and A. Tomasz. 1978. Activation of the alternative complement pathway by pneumococcal cell wall teichoic acid. J. Immunol. 120: 174 178.
149. Winternitz, M.,, and A. Hirschfelder. 1913. Studies upon experimental pneumonia in rabbits. J. Exp. Med. 17: 657 665.
150. Wood, W. J.,, R. Smith,, and B. Watson. 1946. Studies on the mechanism of recovery in pneumococal pneumonia. IV. The mechanism of phagocytosis in the absence of antibody. J. Exp. Med. 84: 387 401.
151. Yoshimura, A.,, E. Lien,, R. Ingalls,, E. Tuomanen,, R. Dziarski,, and D. Golenbock. 1999. Recognition of gram positive bacterial cell wall components by the innate immune system occurs via toll-like receptor 2. J. Immunol. 63: 1 5.
152. Zhang, J.,, I. Idanpaan-Heikkila,, W. Fischer,, and E. Tuomanen. 1999. The pneumococcal lic D2 is involved in phosphorylcholine metabolism. Mol. Microbiol. 31: 1477 1488.
153. Zhang, J.-R.,, K. Mostov,, M. Lamm,, M. Nanno,, S. Shimida,, M. Ohwaki,, and E. Tuomanen. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102: 827 837.

Tables

Generic image for table
TABLE 1

Activities of pneumococcal cell wall in the lung

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15
Generic image for table
TABLE 2

Pulmonary virulence determinants

Citation: Tuomanen E. 2004. Attachment and Invasion of the Respiratory Tract, p 221-237. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error