1887

Chapter 25 : Vaccine-Induced Immunity to Pneumococcal Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Vaccine-Induced Immunity to Pneumococcal Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap25-2.gif

Abstract:

A consensus of the importance of the bacterial capsule for protective immunity has prevailed from very early on, based on the serotype specificity of the first whole-cell vaccines and soon after that on the protective immunity observed after vaccination with the purified polysaccharide. The evidence of serotype-specific protection against bacteremia in immunocompetent adults, starting approximately 2 weeks after a single dose of the polysaccharide vaccine, is unequivocal based on both clinical trials before vaccine licensure and the subsequent experience with the wide use of the polysaccharide vaccine. Pneumococcal pneumonia was believed to be a major cause of illness and even death in these populations. However, a vaccine effect could not be seen in either of the trials with respect to overall or serotype-specific pneumococcal pneumonia or pneumonia-associated deaths. In view of the importance of pneumonia for children in developing countries, it is regrettable that further studies to confirm or refute these findings have not been conducted in the face of a lack of funding and an expectation of an improved vaccine. In recent studies in Finland almost every child has been shown to have had at least one episode, and many several, of otitis media before the age of 2 years, with pneumococci present in the purulent middle ear fluid in 30% of these cases. The major study to test the protective efficacy of the 7-valent conjugate vaccine was carried out in California, within the framework of the large health insurance plan of Kaiser Permanente.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25

Key Concept Ranking

Lower Respiratory Tract Infections
0.49107665
Pneumococcal Conjugate Vaccine
0.40605468
0.49107665
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of COLOR PLATE 1
COLOR PLATE 1

[chapter 2] Venn diagrams of BlastP comparisons of different genomes. The genomes compared in panel A are strain TIGR4, strain 2603 V/R (GBS), and strain SF370 (GAS). Numbers in the intersections represent genes shared in the respective species-to-species (A) or strain-to-strain (B) comparison. The colors represent the genome used as the query in each case. Numbers vary slightly depending on the query because of gene duplications in some strains or species. A BlastP e-value cutoff of 10e was used in each case.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 2
COLOR PLATE 2

[chapter 2] Circular representation of the genomic content of 13 diverse strains compared to the TIGR4 strain genome through CGH on a preliminary microarray. The cDNA microarray consisted of amplicons representing 1,954 of the 2,326 genes from the sequenced strain TIGR4. Results for the competitive hybridization between TIGR4 DNA labeled with Cy3 and the DNA from a single strain labeled with Cy5 are shown in each of the circles. Genes are either (i) present in test strain (white), (ii) absent from test strain (shown in blue for Cy3/Cy5 ratios of 5 to 10 or red for Cy3/Cy5 ratios of more than 10), or (iii) not present on the array and not analyzed (182 genes, 8% of total) (also left in white, so as to focus the discussion on those genes for which a test was performed but no orthologs were detected). The two outermost circles are the predicted genes on the forward and reverse strands, color coded by functional category. The third circle is the analysis; of atypical nucleotide composition; the most atypical regions are displayed in green. The fourth circle is the GC skew analysis; positive values are indicated in yellow, and negative values are in cyan. The next circles on the left diagram correspond to strains MA through MG (outer circle to inner circle). The circles on the right diagram correspond to strains MI through MN.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 3
COLOR PLATE 3

[chapter 5] Structural model of PLY showing the four domains of the proteins and the conserved undecapeptide loop. The region involved in complement activation is marked. The model is based on reference 74.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 4
COLOR PLATE 4

[chapter 6] Predicted structural organization of LytA and its Ch-binding domain. (A) Physicochemical studies suggest the organization of a LytA dimer having four subdomains per monomer, two (N1 and N2) located N terminally and two (C1 and C2) located C terminally. Reprinted from the (69) with permission of the publisher. (B) Stereo ribbon diagram of the dimeric C-LytA with β-strand assignments. The two monomers are differently colored (yellow and cyan). Reprinted from the (14) with permission of the publisher. (C) Ch-binding sites. , ribbon diagram of the C-LytA dimer inscribed into the molecular surface. , stereo diagram of one Ch-binding site where choline is highlighted in orange. Reprinted from (15) with permission of the publisher.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 5
COLOR PLATE 5

[chapter 8] Clonal complexes within the pneumococcal population represented in the MLST database. All isolates in the pneumococcal MLST database (as of September 2003) were displayed as a single eBURST diagram (a population snapshot [17a]). Clusters of linked STs correspond to clonal complexes; single STs differ from all other STs in the population at two or more loci. The areas of the circles representing the individual STs indicate the prevalence of each ST in the current database; STs in blue are the predicted founders of the clonal complex, and those in yellow are founders of subgroups within the clonal complex (17a). For clarity, ST numbers are not shown, except for ST81.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 6
COLOR PLATE 6

[chapter 15] Progression of pneumonia followed by in vivo imaging. Xenogen Imaging System was used to follow the spread of luciferase-bearing pneumococci introduced intranasally. Bacteria descended into the lung by 24 h, spread from one lung to the other by 48 h, and then spread to the bloodstream by 72 h.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 7
COLOR PLATE 7

[chapter 15] Histopathology of three stages of consolidation. Hematoxylin and eosin staining of sections of lung representing the indicated stages of consolidation progressing from engorgement to red to grey hepatization. (Images courtesy of S. Dixon, St. Jude Children's Research Hospital.)

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 8
COLOR PLATE 8

[chapter 15] Model of pneumococcal invasion into alveolar epithelial cells. Pneumococci adhere to glycoconjugates on the surfaces of epithelial cells. A second step is required to initiate uptake and transcytosis. In the lung, the second step involves the interaction of choline on the cell wall and CbpA with PAFr. The molecular details of this event are as yet unclear but pneumococci and PAFr colocalize during invasion of type II alveolar cells in vitro. Subsequent to PAFr ligation, bacteria are taken up into a clathrin-coated vesicle that recruits the cytosolic scaffold protein β arrestin. The vesicle then moves across the cell from the apical to basolateral surface. Internalized bacteria do not escape the vesicles. In vitro, bilayers of epithelial and endothelial cells can be crossed by pneumococci in about 9 h.

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 9
COLOR PLATE 9

[chapter 16] Gram stain of CSF from a patient with meningitis. A large number of leukocytes surrounded by gram-positive diplococci have accumulated in the fluid. Note that in the fluid environment, few bacteria are effectively phagocytosed. (Photo courtesy of E. Halle, Charité Hospital, Berlin, Germany.)

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of COLOR PLATE 10
COLOR PLATE 10

[chapter 18] (a) Antibiotic consumption among the Jewish and Bedouin children <5 years of age in southern Israel, expressed by prescription per 1,000 individuals per year. The data for the Jewish children include all prescriptions in the city of Beer-Sheva for the largest health maintenance organization covering approximately 60% of all children; for the Bedouin children, the data are derived from all prescriptions for the two largest pediatric primary care centers. (b) Proportion of all penicillin-nonsusceptible (Pen-R) middle ear fluid isolated obtained during the years 1998 to 2002 (from children with acute otitis media) that were dually resistant to penicillin and macrolides. (c) Actual and predicted proportions of resistance among invasive isolates derived from population-based surveillance in eight sites around the United States covering approximately 21 million people (81). The symbols represent the actual proportions of strains resistant to both erythromycin and penicillin (●), penicillin only (▄), and erythromycin only (▲). These lines represent the predicted proportions of strains resistant to both erythromycin and penicillin (solid), penicillin alone (dashed) and erythromycin only (dotted).

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap25
1. American Academy of Pediatrics, Committee on Infectious Diseases. 2000. Policy statement: recommendations for the prevention of pneumococcal infections, including the use of pneumococcal conjugate vaccine (Prevnar), pneumococcal polysaccharide vaccine, and antibiotic prophylaxis. Pediatrics 106: 362326.
2. Anttila, M.,, J. Eskola,, H. Åhman,, and H. Käyhty. 1999. Differences in the avidity of antibodies evoked by four different pneumococcal conjugate vaccines in early childhood. Vaccine 17: 1970 1977.
3. Austrian, R. 1981. Some observations on the pneumococcus and on a current status of pneumococcal disease and its prevention. Rev. Infect. Dis. 3(Suppl.): 1 17.
4. Austrian, R.,, R. M. Douglas,, G. Schiffman,, A. M. Coetzee,, H. J. Koornhof,, S. D. Hayden- Smith,, and R. D. W. Reid. 1976. Prevention of pneumococcal pneumonia by vaccination. Trans. Assoc. Am. Phys. 89: 184 194.
5. Avery, O. T.,, and W. F. Goebel. 1931. Chemo-immunological studies on conjugated carbohydrate-proteins. V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III pneumococcus with foreign protein. J. Exp. Med. 54: 437 447.
6. Barbour, M. L. 1996. Conjugate vaccines and the carriage of Haemophilus influenzae type b. Emerg. Infect. Dis. 2: 176 182.
7. Black, R. E.,, S. S. Morris,, and J. Bryce. 2003. Where and why are 10 million children dying every year? Lancet 361: 2226 2234.
8. Black, S.,, H. Shinefield,, B. Fireman,, E. Lewis,, P. Ray,, J. R. Hansen,, L. Elvin,, K. M. Ensor,, J. Hackell,, G. Siber,, F. Malinoski,, D. Madore,, I. Chang,, R. Kohberger,, W. Watson,, R. Austrian,, K. Edwards, and Northern California Kaiser Permanente Vaccine Study Center Group. 2000. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J. 19: 187 195.
9. Black, S. B.,, H. R. Shinefield,, S. Ling,, J. Hansen,, B. Fireman,, D. Spring,, J. Noyes,, E. Lewis,, P. Ray,, J. Lee,, and J. Hackell. 2002. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr. Infect. Dis. J. 21: 810 815.
10. Bolan, G.,, C. V. Broome,, R. R. Facklam,, B. D. Plikaytis,, D. W. Fraser,, and W. F. Schlech III. 1986. Pneumococcal vaccine efficacy in selected populations in the United States. Ann. Intern. Med. 104: 1 6.
11. Breiman, R. F.,, D. W. Keller,, M. A. Phelan,, D. H. Sniadack,, D. S. Stephens,, D. Rimland,, M. M. Farley,, A. Schuchat,, and A. L. Reingold. 2000. Evaluation of effectiveness of the 23-valent pneumococcal capsular polysaccharide vaccine for HIV-infected patients. Arch. Intern. Med. 160: 2633 2638.
12. Broome, C. V.,, R. R. Facklam,, and D. W. Fraser. 1980. Pneumococcal disease after pneumococcal vaccination: an alternative method to estimate the efficacy of pneumococcal vaccine. N. Engl. J. Med. 303: 549 552.
13. Brueggemann, A. B.,, D. T. Griffiths,, E. Meats,, T. Peto,, D. W. Crook,, and B. G. Spratt. 2003. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. J. Infect. Dis. 187: 1424 1432.
14. Butler, J. C.,, R. F. Breiman,, J. F. Campbell,, H. B. Lipman,, C. V. Broome,, and R. R. Facklam. 1993. Pneumococcal polysaccharide vaccine efficacy. An evaluation of current recommendations. JAMA 270: 1826 1831.
15.Centers for Disease Control and Prevention. 1997. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mortal. Wkly. Rep. 46: 124.
16. Choo, S.,, Q. Zhang,, L. Seymour,, S. Akhtar,, and A. Finn. 2000. Primary and booster salivary antibody responses to a 7-valent pneumococcal conjugate vaccine in infants. J. Infect. Dis. 182: 1260 1263.
17. Concepcion, N. F.,, and C. E. Frasch. 2001. Pneumococcal type 22f polysaccharide absorption improves the specificity of a pneumococcalpolysaccharide enzyme-linked immunosorbent assay. Clin. Diagn. Lab. Immunol. 8: 266 272.
18. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Idänpään-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377: 435 438.
19. Cundell, D. R.,, J. N. Weiser,, J. Shen,, A. Young,, and E. I. Tuomanen. 1995. Relationship between colonial morphology and adherence of Streptococcus pneumoniae. Infect. Immun. 63: 757 761.
20. Dagan, R.,, R. Melamed,, M. Muallem,, L. Piglansky,, D. Greenberg,, O. Abramson,, P. M. Mendelman,, N. Bohidar,, and P. Yagupsky. 1996. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J. Infect. Dis. 174: 1271 1278.
21. Dagan, R.,, R. Melamed,, O. Zamir,, and O. Leroy. 1997. Safety and immunogenicity of tetravalent pneumococcal vaccines containing 6B, 14, 19F and 23F polysaccharides conjugated to either tetanus toxoid or diphtheria toxoid in young infants and their boosterability by native polysaccharide antigens. Pediatr. Infect. Dis. J. 16: 1053 1059.
22. Daum, R. S.,, D. Hogerman,, M. B. Rennels,, K. Bewley,, F. Malinoski,, E. Rothstein,, K. Reisinger,, S. Block,, H. Keyserling,, and M. Steinhoff. 1997. Infant immunization with pneumococcal CRM197 vaccines: effect of saccharide size on immunogenicity and interactions with simultaneously administered vaccines. J. Infect. Dis. 176: 445 455.
23. Dick, W. E.,, and M. Beurret. 1989. Glycoconjugates of Bacterial Carbohydrate Antigens, vol. 10. S. Karger Ab, Basel, Switzerland.
24. Douglas, R. M.,, D. Hansman,, H. B. Miles,, and J. C. Paton. 1986. Pneumococcal carriage and type-specific antibody. Failure of a 14-valent vaccine to reduce carriage in healthy children. Am. J. Dis. Child. 140: 1183 1185.
25. Ekwurzel, G. M.,, J. S. Simmons,, L. I. Dublin,, and L. D. Felton. 1938. Studies on immunizing substances in pneumococci. VIII. Report on field tests to determine the prophylactic value of pneumococcus antigen. Public Health Rep. 53: 1877 1893.
26. Eskola, J.,, T. Kilpi,, A. Palmu,, J. Jokinen,, J. Haapakoski,, E. Herva,, A. Takala,, H. Käyhty,, P. Karma,, R. Kohberger,, G. Siber,, and P. H. Mäkelä. 2001. Efficacy of a pneumococcal conjugate vaccine against acute otitis media. N. Engl. J. Med. 344: 403 409.
27. Fedson, D. S. 1997. Pneumococcal vaccination: four issues for Western Europe. Biologicals 25: 215 219.
28. Fedson, D. S.,, J. A. Scott,, and G. Scott. 1999. The burden of pneumococcal disease among adults in developed and developing countries: what is and is not known. Vaccine 17( Suppl. 1): S11 S18.
29. Feikin, D. R.,, C. M. Elie,, M. B. Goetz,, J. L. Lennox,, G. M. Carlone,, S. Romero-Steiner,, P. Holder,, W. A. O’Brien,, C. G. Whitney,, J. Butler,, and R. F. Breiman. 2002. Randomized trial of the quantitative and functional antibody responses to a 7-valent pneumococcal conjugate vaccine among HIV-infected adults. Vaccine 20: 545 553.
30. Fireman, B.,, S. B. Black,, H. R. Shinefield,, J. Lee,, E. Lewis,, and P. Ray. 2003. Impact of the pneumococcal conjugate vaccine on otitis media. Pediatr. Infect. Dis. J. 22: 10 16.
31. French, N.,, M. Moore,, R. Haikala,, H. Käyhty,, and C. F. Gilks. A case control study to investigate serological correlates of clinical failure of 23-valent pneumococcal vaccine in HIV-1-infected Ugandan adults. J. Infect. Dis., in press.
32. French, N.,, J. Nakiyingi,, L. M. Carpenter,, E. Lugada,, C. Watera,, K. Moi,, M. Moore,, D. Antvelink,, D. Mulder,, E. N. Janoff,, J. Whitworth,, and C. F. Gilks. 2000. 23-valent pneumococcal polysaccharide vaccine in HIV-1- infected Ugandan adults: double-blind, randomised and placebo controlled trial. Lancet 355: 2106 2111.
33. Gaillat, J.,, D. Zmirou,, M. R. Mallaret,, D. Rouhan,, J. P. Bru,, J. P. Stahl,, P. Delormas,, and M. Micoud. 1985. Clinical trial of an antipneumococcal vaccine in elderly subjects living in institutions. Rev. Epidemiol. Sante Publique 33: 437 444. (In French.)
34. Hausdorff, W. P.,, J. Bryant,, C. Kloek,, P. R. Paradiso,, and G. R. Siber. 2000. The contribution of specific pneumococcal serogroups to different disease manifestations: implications for conjugate vaccine formulation and use, part II. Clin. Infect. Dis. 30: 122 140.
35. Hausdorff, W. P.,, J. Bryant,, P. R. Paradiso,, and G. R. Siber. 2000. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin. Infect. Dis. 30: 100 121.
36. Herva, E.,, J. Luotonen,, M. Timonen,, M. Sibakov,, P. Karma,, and P. H. Mäkelä. 1980. The effect of polyvalent pneumococcal polysaccharide vaccine on nasopharyngeal and nasal carriage of Streptococcus pneumoniae. Scand. J. Infect. Dis. 12: 97 100.
37. Honkanen, P. O.,, T. Keistinen,, L. Miettinen,, E. Herva,, U. Sankilampi,, E. Läärä,, M. Leinonen,, S. L. Kivelä,, and P. H. Mäkelä. 1999. Incremental effectiveness of pneumococcal vaccine on simultaneously administered influenza vaccine in preventing pneumonia and pneumococcal pneumonia among persons aged 65 years or older. Vaccine 17: 2493 2500.
38. Hostetter, M. K. 1986. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J. Infect. Dis. 153: 682 693.
39. Jackson, L. A.,, K. M. Neuzil,, O. Yu,, P. Benson,, W. E. Barlow,, A. L. Adams,, C. A. Hanson,, L. D. Mahoney,, D. K. Shay,, and W. W. Thompson. 2003. Effectiveness of pneumococcal polysaccharide vaccine in older adults. N. Engl. J. Med. 348: 1747 1755.
40. Jaffar, S.,, A. Leach,, P. G. Smith,, F. Cutts,, and B. Greenwood. 2003. Effects of misclassification of causes of death on the power of a trial to assess the efficacy of a pneumococcal conjugate vaccine in The Gambia. Int. J. Epidemiol. 32: 430 436.
41. Jodar, L.,, J. Butler,, G. Carlone,, R. Dagan,, D. Goldblatt,, H. Käyhty,, K. Klugman,, B. Plikaytis,, G. Siber,, R. Kohberger,, I. Chang,, and T. Cherian. 2003. Serological criteria for evaluation and licensure of new pneumococcal conjugate vaccine formulations for use in infants. Vaccine 21: 3265 3272.
42. Jokinen, J.,, H. Åhman,, T. Kilpi,, P. H. Mäkelä,, and H. Käyhty. The concentration of anti-pneumococcal antibodies as a correlate of protection: an application to acute otitis media. J. Infect. Dis., in press.
43. Karjalainen, H.,, M. Koskela,, J. Luotonen,, E. Herva,, and P. Sipilä. 1990. Antibodies against Streptococcus pneumoniae, Haemophilus influenzae and Branhamella catarrhalis in middle ear effusion during early phase of acute otitis media. Acta Oto-Laryngol. 109: 111 118.
44. Karma, P.,, J. Pukander,, M. Sipilä,, M. Timonen,, S. Pöntynen,, E. Herva,, P. Grönroos,, and H. Mäkelä. 1985. Prevention of otitis media in children by pneumococcal vaccination. Am. J. Otolaryngol. 6: 173 184.
45. Karstaedt, A. S.,, M. Khoosal,, and H. H. Crewe-Brown. 2001. Pneumococcal bacteremia in adults in Soweto, South Africa, during the course of a decade. Clin. Infect. Dis. 33: 610 614.
46. Kaufman, P. 1947. Pneumonia in old age. Active immunization against pneumonia with pneumococcus polysaccharide, results of a six year study. Arch. Intern. Med. 79: 518 531.
47. Kauppi, M.,, L. Saarinen,, and H. Käyhty. 1993. Anti-capsular polysaccharide antibodies reduce nasopharyngeal colonization by Haemophilus influenzae type b in infant rats. J. Infect. Dis. 167: 365 371.
48. Käyhty, H.,, H. Åhman,, P. R. Rönnberg,, R. Tillikainen,, and J. Eskola. 1995. Pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine is immunogenic in infants and children. J. Infect. Dis. 172: 1273 1278.
49. Kilpi, T.,, H. Åhman,, J. Jokinen,, K. S. Lankinen,, A. Palmu,, H. Savolainen,, M. Grönholm,, M. Leinonen,, T. Hovi,, J. Eskola,, H. Käyhty,, N. Bohidar,, J. C. Sadoff,, and P. H. Mäkelä. 2003. Protective efficacy of a second pneumococcal conjugate vaccine against pneumococcal acute otitis media in infants and children: randomized, controlled trial of a 7-valent pneumococcal polysaccharide-meningococcal outer membrane protein complex conjugate vaccine in 1666 children. Clin. Infect. Dis. 37: 1155 1164.
50. Kilpi, T.,, E. Herva,, T. Kaijalainen,, R. Syrjänen,, and A. K. Takala. 2001. Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr. Infect. Dis. J. 20: 654 662.
51. Kim, J. O.,, S. Romero-Steiner,, U. B. Sorensen,, J. Blom,, M. Carvalho,, S. Barnard,, G. Carlone,, and J. N. Weiser. 1999. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae. Infect. Immun. 67: 2327 2333.
52. Klugman, K. P.,, S. A. Madhi,, R. E. Huebner,, R. Kohberger,, N. Mbelle,, and N. Pierce. 2003. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N. Engl. J. Med. 349: 1341 1348.
53. Koivula, I.,, M. Sten,, M. Leinonen,, and P. H. Mäkelä. 1997. Clinical efficacy of pneumococcal vaccine in the elderly: a randomized, single- blind population-based trial. Am. J. Med. 103: 281 290.
54. Kroon, F. P.,, J. T. van Dissel,, E. Ravensbergen,, P. H. Nibbering,, and R. van Furth. 1999. Antibodies against pneumococcal polysaccharides after vaccination in HIV-infected individuals: 5-year follow-up of antibody concentrations. Vaccine 18: 524 530.
55. Lipsitch, M. 2001. Interpreting results from trials of pneumococcal conjugate vaccines: a statistical test for detecting vaccine-induced increases in carriage of nonvaccine serotypes. Am. J. Epidemiol. 154: 85 92.
56. MacLeod, M.,, R. G. Hodges,, M. Heidelberger,, and W. G. Bernhard. 1945. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J. Exp. Med. 82: 445 465.
57. Mäkelä, P. H.,, H. Käyhty,, T. Leino,, K. Auranen,, H. Peltola,, N. Ekström,, and J. Eskola. 2003. Long-term persistence of immunity after immunisation with Haemophilus influenzae type b conjugate vaccine. Vaccine 22: 287 292.
58. Mäkelä, P. H.,, M. Leinonen,, J. Pukander,, and P. Karma. 1981. A study of the pneumococcal vaccine in prevention of clinically acute attacks of recurrent otitis media. Rev. Infect. Dis. 3(Suppl.): S124 S132.
59.. Mäkelä, P. H.,, and H. Käyhty. 2002. Evolution of conjugate vaccines. Expert Rev. Vaccines 1: 399 410.
60. Malley, R.,, A. M. Stack,, M. L. Ferretti,, C. M. Thompson,, and R. A. Saladino. 1998. Anticapsular polysaccharide antibodies and nasopharyngeal colonization with Streptococcus pneumoniae in infant rats. J. Infect. Dis. 178: 878 882.
61. Mbelle, N.,, R. E. Huebner,, A. D. Wasas,, A. Kimura,, I. Chang,, and K. P. Klugman. 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180: 1171 1176.
62. Mogi, G.,, S. Maeda,, T. Yoshida,, and N. Watanabe. 1976. Immunochemistry of otitis media with effusion. J. Infect. Dis. 133: 126 136.
63. Mulholland, K.,, S. Hilton,, R. Adegbola,, S. Usen,, A. Oparaugo,, C. Omosigho,, M. Weber,, A. Palmer,, G. Schneider,, K. Jobe,, G. Lahai,, S. Jaffar,, O. Secka,, K. Lin,, C. Ethevenaux,, and B. Greenwood. 1997. Randomised trial of Haemophilus influenzae type-b tetanus protein conjugate vaccine [corrected] for prevention of pneumonia and meningitis in Gambian infants. Lancet 349: 1191 1197.
64. Mulholland, K.,, O. Levine,, H. Nohynek,, and B. M. Greenwood. 1999. Evaluation of vaccines for the prevention of pneumonia in children in developing countries. Epidemiol. Rev. 21: 43 55.
65. Nichol, K. L.,, L. Baken,, J. Wuorenma,, and A. Nelson. 1999. The health and economic benefits associated with pneumococcal vaccination of elderly persons with chronic lung disease. Arch. Intern. Med. 159: 2437 2442.
66. Nieminen, T.,, H. Käyhty,, O. Leroy,, and J. Eskola. 1999. Pneumococcal conjugate vaccination in toddlers: mucosal antibody response measured as circulating antibody-secreting cells and as salivary antibodies. Pediatr. Infect. Dis. J. 18: 764 772.
67. Nuorti, J. P.,, J. C. Butler,, L. Gelling,, J. L. Kool,, A. L. Reingold,, and D. J. Vugia. 2000. Epidemiologic relation between HIV and invasive pneumococcal disease in San Francisco County, California. Ann. Intern. Med. 132: 182 190.
68. Nurkka, A.,, H. Åhman,, M. Korkeila,, V. Jäntti,, H. Käyhty,, and J. Eskola. 2001. Serum and salivary anti-capsular antibodies in infants and children immunized with the heptavalent pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J. 20: 25 33.
69. Nurkka, A.,, H. Åhman,, M. Yaich,, J. Eskola,, and H. Käyhty. 2001. Serum and salivary anticapsular antibodies in infants and children vaccinated with octavalent pneumococcal conjugate vaccines, PncD and PncT. Vaccine 20: 194 201.
70. Obaro, S.,, A. Leach,, and K. W. McAdam. 1998. Use of pneumococcal polysaccharide vaccine in children. Lancet 352: 575.
71. Obaro, S. K. 2002. The new pneumococcal vaccine. Clin. Microbiol. Infect. 8: 623 633.
72. O’Brien, K. L.,, and R. Dagan. 2003. The potential indirect effect of conjugate pneumococcal vaccines. Vaccine 21: 1815 1825.
73. O’Brien, K. L.,, L. H. Moulton,, R. Reid,, R. Weatherholtz,, J. Oski,, L. Brown,, G. Kumar,, A. Parkinson,, D. Hu,, J. Hackell,, I. Chang,, R. Kohberger,, G. Siber,, and M. Santosham. 2003. Efficacy and safety of sevenvalent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet 362: 355 361.
74. Ordman, D. 1938. Pneumococcus types in South Africa. A study of their occurrence and distribution in the population and the effect thereon of prophylactic inoculation. South African Institute of Medical Research 9: 1 28.
75. Örtqvist, Å.,, J. Hedlund,, L. A. Burman,, E. Elbel,, M. Hofer,, M. Leinonen,, I. Lindblad,, B. Sundelöf,, M. Kalin, and Swedish Pneumococcal Vaccination Study Group. 1998. Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Lancet 351: 399 403.
76. Overweg, K.,, C. D. Pericone,, G. G. Verhoef,, J. N. Weiser,, H. D. Meiring,, A. P. De Jong,, R. De Groot,, and P. W. Hermans. 2000. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect. Immun. 68: 4604 4610.
77. Parkkali, T.,, H. Käyhty,, T. Ruutu,, L. Volin,, J. Eskola,, and P. Ruutu. 1996. A comparison of early and late vaccination with Haemophilus influenzae type b conjugate and pneumococcal polysaccharide vaccines after allogeneic BMT. Bone Marrow Transplant. 18: 961 967.
78. Parkkali, T.,, M. Väkeväinen,, H. Käyhty,, T. Ruutu,, and P. Ruutu. 2001. Opsonophagocytic activity against Streptococcus pneumoniae type 19F in allogeneic BMT recipients before and after vaccination with pneumococcal polysaccharide vaccine. Bone Marrow Transplant. 27: 207 211.
79. Pneumonia Vaccine Trial Investigators’ Group. 2001. Standardization of interpretation of chest radiographs for the diagnosis of pneumonia in children. WHO/V&B/01.35. World Health Organization, Geneva, Switzerland.
80. Powers, D. C.,, E. L. Anderson,, K. Lottenbach,, and C. M. Mink. 1996. Reactogenicity and immunogenicity of a protein-conjugated pneumococcal oligosaccharide vaccine in older adults. J. Infect. Dis. 173: 1014 1018.
81. Puumalainen, T.,, R. Dagan,, T. Wuorimaa,, R. Zeta-Capeding,, M. Lucero,, J. Ollgren,, H. Käyhty,, and H. Nohynek. 2003. Greater antibody responses to an eleven valent mixed carrier diphtheria- or tetanus-conjugated pneumococcal vaccine in Filipino than in Finnish or Israeli infants. Pediatr. Infect. Dis. J. 22: 141 149.
82. Puumalainen, T.,, M. R. Zeta-Capeding,, H. Kayhty,, M. G. Lucero,, K. Auranen,, O. Leroy,, and H. Nohynek. 2002. Antibody response to an eleven valent diphtheria- and tetanus-conjugated pneumococcal conjugate vaccine in Filipino infants. Pediatr. Infect. Dis. J. 21: 309 314.
83. Rennels, M. B.,, K. M. Edwards,, H. L. Keyserling,, K. S. Reisinger,, D. A. Hogerman,, D. V. Madore,, I. Chang,, P. R. Paradiso,, F. J. Malinoski,, and A. Kimura. 1998. Safety and immunogenicity of heptavalent pneumococcal vaccine conjugated to CRM197 in United States infants. Pediatrics 101: 604 611.
84. Riley, I. D.,, F. A. Everingham,, D. E. Smith,, and R. M. Douglas. 1981. Immunisation with a polyvalent pneumococcal vaccine. Effect on respiratory mortality in children living in the New Guinea highlands. Arch. Dis. Child. 56: 354 357.
85. Riley, I. D.,, D. Lehmann,, M. P. Alpers,, T. F. Marshall,, H. Gratten,, and D. Smith. 1986. Pneumococcal vaccine prevents death from acute lower-respiratory-tract infections in Papua New Guinean children. Lancet ii: 877 881.
86. Riley, I. D.,, P. I. Tarr,, M. Andrews,, M. Pfeiffer,, R. Howard,, P. Challands,, and G. Jennison. 1977. Immunisation with a polyvalent pneumococcal vaccine. Reduction of adult respiratory mortality in a New Guinea Highlands community. Lancet i: 1338 1341.
87. Rodriguez, W. J.,, and R. H. Schwartz. 1999. Streptococcus pneumoniae causes otitis media with higher fever and more redness of tympanic membranes than Haemophilus influenzae or Moraxella catarrhalis. Pediatr. Infect. Dis. J. 18: 942 944.
88. Romero-Steiner, S.,, D. M. Musher,, M. S. Cetron,, L. B. Pais,, J. E. Groover,, A. E. Fiore,, B. D. Plikaytis,, and G. M. Carlone. 1999. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin. Infect. Dis. 29: 281 288.
89. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel cholinebinding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25: 819 829.
90. Rubins, J. B.,, M. Alter,, J. Loch,, and E. N. Janoff. 1999. Determination of antibody responses of elderly adults to all 23 capsular polysaccharides after pneumococcal vaccination. Infect. Immun. 67: 5979 5984.
91. Rubins, J. B.,, A. K. Puri,, J. Loch,, D. Charboneau,, R. MacDonald,, N. Opstad,, and E. N. Janoff. 1998. Magnitude, duration, quality, and function of pneumococcal vaccine responses in elderly adults. J. Infect. Dis. 178: 431 440.
92. Sankilampi, U.,, P. O. Honkanen,, A. Bloigu,, E. Herva,, and M. Leinonen. 1996. Antibody response to pneumococcal capsular polysaccharide vaccine in the elderly. J. Infect. Dis. 173: 387 393.
93. Sankilampi, U.,, P. O. Honkanen,, A. Bloigu,, and M. Leinonen. 1997. Persistence of antibodies to pneumococcal capsular polysaccharide vaccine in the elderly. J. Infect. Dis. 176: 1100 1104.
94. Schneerson, R.,, J. B. Robbins,, C. Chu,, A. Sutton,, W. Vann,, J. C. Vickers,, W. T. London,, B. Curfman,, M. C. Hardegree,, J. Shiloach,, and S. C. Rastogi. 1984. Serum antibody responses of juvenile and infant rhesus monkeys injected with Haemophilus influenzae type b and pneumococcus type 6A capsular polysaccharide-protein conjugates. Infect. Immun. 45: 582 591.
95. Shann, F. 1998. Pneumococcal vaccine: time for another controlled trial. Lancet 351: 1600 1601.
96.. Shapiro, E. D.,, A. T. Berg,, R. Austrian,, D. Schroeder,, V. Parcells,, A. Margolis,, R. K. Adair,, and J. D. Clemens. 1991. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N. Engl. J. Med. 325: 1453 1460.
97. Shelly, M. A.,, H. Jacoby,, G. J. Riley,, B. T. Graves,, M. Pichichero,, and J. J. Treanor. 1997. Comparison of pneumococcal polysaccharide and CRM197-conjugated pneumococcal oligosaccharide vaccines in young and elderly adults. Infect. Immun. 65: 242 247.
98. Sigurdardottir, S. T.,, G. Ingolfsdottir,, K. Davidsdottir,, T. Gudnason,, S. Kjartansson,, K. G. Kristinsson,, F. Bailleux,, O. Leroy,, and I. Jonsdottir. 2002. Immune response to octavalent diphtheria- and tetanusconjugated pneumococcal vaccines is serotypeand carrier-specific: the choice for a mixed carrier vaccine. Pediatr. Infect. Dis. J. 21: 548 554.
99. Simberkoff, M. S.,, A. P. Cross,, M. Al- Ibrahamin,, A. L., Baltch,, P. J. Geiseler,, J. Nadler,, A. S. Richmond,, R. P. Smith,, G. Schiffman,, D. S. Shepard, et al. 1986. Efficacy of pneumococcal vaccine in high-risk patients. Results of a Veterans Administration Cooperative Study. N. Engl. J. Med. 315: 1318 1327.
100. Sloyer, J. L., Jr.,, V. M. Howie,, J. H. Ploussard,, G. Schiffman,, and R. B. Johnston, Jr. 1976. Immune response to acute otitis media: association between middle ear fluid antibody and the clearing of clinical infection. J. Clin. Microbiol. 4: 306 308.
101. Smit, P.,, D. Oberholzer,, S. Hayden- Smith,, H. J. Koornhof,, and M. R. Hilleman. 1977. Protective efficacy of pneumococcal polysaccharide vaccines. JAMA 238: 2613 2616.
102. Soininen, A.,, G. van den Dobbelsteen,, L. Oomen,, and H. Käyhty. 2000. Are the enzyme immunoassays for antibodies to pneumococcal capsular polysaccharides serotype specific? Clin. Diagn. Lab. Immunol. 7: 468 476.
103. Talbot, U. M.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64: 3772 3777.
104. Teele, D. W.,, J. O. Klein,, L. Bratton,, G. R. Fisch,, O. R. Mathieu,, P. J. Porter,, S. G. Starobin,, L. D. Tarlin,, R. P. Younes, and The Greater Boston Collaborative Otitis Media Study Group. 1981. Use of pneumococcal vaccine for prevention of recurrent acute otitis media in infants in Boston. Rev. Infect. Dis. 3(Suppl.): S113 S118.
105. van Alphen, L.,, P. Eijk,, H. Käyhty,, J. van Marle,, and J. Dankert. 1996. Antibodies to Haemophilus influenzae type b polysaccharide affect bacterial adherence and multiplication. Infect. Immun. 64: 995 1001.
106. van Egmond, M.,, C. A. Damen,, A. B. van Spriel,, G. Vidarsson,, E. van Garderen,, and J. G. van de Winkel. 2001. IgA and the IgA Fc receptor. Trends Immunol. 22: 205 211.
107. Watanabe, N.,, H. Yoshimura,, and G. Mogi. 1988. Induction of antigen-specific IgAforming cells in the middle ear mucosa. Arch. Otolaryngol. Head Neck Surg. 114: 758 762.
108. Weintrub, P. S.,, G. Schiffman,, J. E. Addiego, Jr.,, K. K. Matthay,, E. Vichinsky,, R. Johnson,, B. Lubin,, W. C. Mentzer,, and A. J. Ammann. 1984. Long-term follow-up and booster immunization with polyvalent pneumococcal polysaccharide in patients with sickle cell anemia. J. Pediatr. 105: 261 263.
109. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
110. Weiser, J. N.,, D. Bae,, C. Fasching,, R. W. Scamurra,, A. J. Ratner,, and E. N. Janoff. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100: 4215 4220.
111. Whitney, C. G.,, M. M. Farley,, J. Hadler,, L. H. Harrison,, N. M. Bennett,, R. Lynfield,, A. Reingold,, P. R. Cieslak,, T. Pilishvili,, D. Jackson,, R. R. Facklam,, J. H. Jorgensen,, and A. Schuchat. 2003. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N. Engl. J. Med. 348: 1737 1746.
112. Whitney, C. G.,, W. Schaffner,, and J. C. Butler. 2001. Rethinking recommendations for use of pneumococcal vaccines in adults. Clin. Infect. Dis. 33: 662 675.
113. Wuorimaa, T.,, R. Dagan,, M. Väkeväinen,, F. Bailleux,, R. Haikala,, M. Yaich,, J. Eskola,, and H. Käyhty. 2001. Avidity and subclasses of IgG after immunization of infants with an 11-valent pneumococcal conjugate vaccine with or without aluminum adjuvant. J. Infect. Dis. 184: 1211 1215.

Tables

Generic image for table
TABLE 1

Pneumococcal vaccines at the end of 2003

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25
Generic image for table
TABLE 2

Summary compilation on the efficacy of the pneumococcal, polysaccharide, and conjugate vaccines in different age groups and clinical entities

Citation: Mäkelä P, Käyhty H. 2004. Vaccine-Induced Immunity to Pneumococcal Infection, p 403-420. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error