1887

Chapter 3 : Capsules

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Capsules, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap03-2.gif

Abstract:

Recent years have seen a renewed interest in the characterization of the capsular polysaccharides of and many other bacteria. Many of the recent advances described in this chapter have their roots in classic studies of that have historical significance both for the pneumococcal field and, often, for biology as a whole. Confirmation of linkage of the genes involved in capsule synthesis and the first maps of capsule loci were obtained through recombination experiments. The presence of insertion sequence (IS) elements and nonfunctional genes (or gene fragments) is a common finding in the capsule loci, as already noted for the type 3 locus and the cryptic type 33F locus in type 37 strains. The essential nature of the capsule in virulence was established in early studies of , as described in the chapter. A role for capsule in colonization was demonstrated using the type 2 and type 3 strains that contain defined mutations in the capsule loci and in . Among clinical isolates of different capsular serotypes, levels of complement activation and deposition, as well as phagocytosis, vary in in vitro assays. As has long been the case, the capsules will continue to serve as paradigms for studies of virulence factors, immune responses, and polysaccharide biochemistry.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3

Key Concept Ranking

Bacterial Cell Wall
0.4431563
Restriction Fragment Length Polymorphism
0.4092549
0.4431563
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Repeating units of capsule structures. Capsule types for which the complete nucleotide sequence of the capsule locus has been published are shown. Where possible, the expected biological repeating unit is shown, based on initiation with glucose. The alternate glucose may be used in capsules containing more than one glucose. AATGal, 2-acetamido-4-amino-2,4,6-trideoxy--galactose; FucNAc, -acetylfucosamine; Gal, galactose; Glc, glucose; GlcNAc, -acetylglucosamine; GlcUA, glucuronic acid; Gly, glycerol; ManNAc, -acetylmannosamine; OAc, acetate; Rha, rhamnose; Rib, ribitol. References for chemical repeating units are as in reference 107.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Capsule genetic loci. The loci are shown for capsule types for which the complete nucleotide sequences have been published. For most loci, genes were named alphabetically in the order in which they occurred in the locus. Therefore, similarly named genes may not be homologous. Open boxes indicate type-specific genes, which encode glycosyltransferases, nucleotide sugar biosynthetic enzymes, and epimerases. Similarly shaded boxes are homologous. Sequences in parentheses are mutated compared to their respective homologs. The flanking gene in the downstream common region was originally identified as ( ) and later designated ( ) due to an apparent allelic difference between the two genes. However, and are the same; it is only in the type 3 locus that the gene is altered. , , and in the type 3 locus are also referred to as , , and , respectively ( ). in the type 3 locus is homologous to in the other loci. The type 4, 6B, and 18C genes were named according to the bacterial polysaccharide gene nomenclature system ( ) and are not referred to by the designations. For clarity, designations are shown here for the upstream common sequences and the TDP-Rha biosynthetic genes in these loci. The remainder of the letters are from the original designations. Differences in the - and -encoded polymerases are responsible for the different linkages in the polysaccharides ( ). Symbols: , conserved common sequences; , class I common sequences; , class II common sequences; and , initiating glycosyltransferases not homologous to class I or II; , Wzy homolog, putative polymerase; , Wzx homolog, putative flippase; , TDP-Rha biosynthesis. Classes of common sequences are based on reference 79. Arrows indicate putative or known transcription start sites and, where demonstrated, length of transcript. Some of the many IS elements and repetitive sequences (R) are indicated. Maps are derived from references , and .

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Block-type (Wzy-dependent) synthesis. The repeat unit is for type 14. Functions for the glycosyltransferases CpsE, CpsG, CpsI, and CpsJ have been experimentally determined in the type 14 system ( ). CpsL and CpsH are the type 14 Wzx and Wzy homologs, respectively. PGM and GalU are the cellular enzymes and are not capsule specific. Functions of proteins in parentheses have not been experimentally demonstrated in the system. PGM, GalU, CpsG, CpsI, and CpsJ are located in the cytoplasm, whereas CpsE, CpsL, and CpsH are membrane associated. Following transfer of the chain, the lipid- P-P is hydrolyzed to lipid-P and recycled to the cytoplasmic face of the membrane.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Biosynthetic pathways for (A) dTDP-Rha synthesis in type 19F ( ) and (B) type 3 synthesis ( ). The type 3 synthase (Cps3S) is located in the membrane.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap3
1. Abeyta, M.,, G. G. Hardy,, and J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility to surface-bound complement and surface antigens in Streptococcus pneumoniae. Infect. Immun. 71:218225.
2. Alloway, J. L. 1932. The transformation in vitro of R pneumococci into S forms of different specific types by the use of filtered pneumococcal extracts. J. Exp. Med. 55:9199.
3. Arrecubieta, C.,, E. Garcia,, and R. Lopez. 1995. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167:17.
4. Arrecubieta, C.,, R. Lopez,, and E. Garcia. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176:63756383.
5. Arrecubieta, C.,, R. Lopez,, and E. Garcia. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med. 184:449455.
6. Ashbaugh, C. D.,, S. Albertí,, and M. R. Wessels. 1998. Molecular analysis of the capsule gene region of group A streptococcus: the hasAB genes are sufficient for capsule expression. J. Bacteriol. 180:49554959.
7. Austrian, R. 1981. Pneumococcus: the first one hundred years. Rev. Infect. Dis. 3:183189.
8. Austrian, R.,, and H. P. Bernheimer. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. I. Properties of a pneumococcus manifesting binary capsulation. J. Exp. Med. 110:571584.
9. Austrian, R.,, H. P. Bernheimer,, E. E. B. Smith,, and G. T. Mills. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical basis of binary capsulation. J. Exp. Med. 110:585602.
10. Avery, O. T.,, and R. Dubos. 1931. The protective action of a specific enzyme against type III pneumococcus infection in mice. J. Exp. Med. 54:7389.
11. Avery, O. T.,, C. M. MacLeod,, and M. Mc- Carty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type III. J. Exp. Med. 79:137158.
12. Avery, O. T.,, and H. J. Morgan. 1925. Immunological reactions of the isolated carbohydrate and protein of pneumococcus. J. Exp. Med. 42:347353.
13. Barnes, D. M.,, S. Whittier,, P. H. Gilligan,, S. Soares,, A. Tomasz,, and F. W. Henderson. 1995. Transmission of multidrug-resistant serotype 23F Streptococcus pneumoniae in group day care: evidence suggesting capsular transformation of the resistant strain in vivo. J. Infect. Dis. 171:890896.
14. Bender, M. H.,, R. T. Cartee,, and J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185:60576066.
15. Bender, M. H.,, and J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276:4796647974.
16. Bernheimer, H. P.,, and I. E. Wermundsen. 1972. Homology in capsular transformations in Pneumococcus. Mol. Gen. Genet. 116: 6883.
17. Bernheimer, H. P.,, and I. E. Wermundsen. 1969. Unstable binary capsulated transformants in pneumococcus. J. Bacteriol. 98:10731079.
18. Bernheimer, H. P.,, I. E. Wermundsen,, and R. Austrian. 1968. Mutation in pneumococcus type 3 affecting multiple cistrons concerned with the synthesis of capsular polysaccharide. J. Bacteriol. 96:10991102.
19. Branconier, J. H.,, and H. Odeberg. 1982. Granulocyte phagocytosis and killing of virulent and avirulent serotypes of Streptococcus pneumoniae. J. Lab. Clin. Med. 100:279287.
20. Briles, D. E.,, M. J. Crain,, B. M. Gray,, C. Forman,, and J. Yother. 1992. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect. Immun. 60:111116.
21. Briles, D. E.,, M. Nahm,, K. Schoroer,, J. Davie,, P. Baker,, J. Kearney,, and R. Barletta. 1981. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 153:694705.
22. Brown, E. J.,, K. A. Joiner,, R. M. Cole,, and M. Berger. 1983. Localization of complement component 3 on Streptococcus pneumoniae: anticapsular antibody causes complement deposition on the pneumococcal capsule. Infect. Immun. 39:403409.
23. Caimano, M. J.,, G. G. Hardy,, and J. Yother. 1998. Capsule genetics in Streptococcus pneumoniae and a possible role for transposition in the generation of the type 3 locus. Microb. Drug Resist. 4:1123.
24. Campbell, J. A.,, G. J. Davies,, V. Bulone,, and B. Henrissat. 1997. A classification of nucleotide- diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326:929942.
25. Cartee, R. T.,, W. T. Forsee,, J. W. Jensen,, and J. Yother. 2001. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli: assembly of type 3 polysaccharide on a lipid primer. J. Biol. Chem. 276:4883148839.
26. Cartee, R. T.,, W. T. Forsee,, J. S. Schutzbach,, and J. Yother. 2000. Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J. Biol. Chem. 275:39073914.
27.Centers for Disease Control and Prevention. 1997. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mortal. Wkly. Rep. 46:124.
28. Chaffin, D.,, S. Beres,, H. Yim,, and C. Rubens. 2000. The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. J. Bacteriol. 182:44664477.
29. Charnock, S. J.,, B. Henrissat,, and G. J. Davies. 2001. Three-dimensional structures of UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. Plant Physiol. 125:527531.
30. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang,, and M. R. Wessels. 2001. Functional analysis in the Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276:139146.
31. Coffey, T. J.,, M. Daniels,, M. C. Enright,, and B. G. Spratt. 1999. Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology 145:20232031.
32. Coffey, T. J.,, C. G. Dowson,, M. Daniels,, J. Zhou,, C. Martin,, B. G. Spratt,, and J. M. Musser. 1991. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol. Microbiol. 5:22552260.
33. Coffey, T. J.,, M. C. Enright,, M. Daniels,, J. K. Morona,, R. Morona,, W. Hryniewicz,, J. C. Paton,, and B. G. Spratt. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol. 27:7383.
34. Crater, D. L.,, and I. van de Rijn. 1995. Hyaluronic acid synthesis operon (has) expression in group A streptococci. J. Biol. Chem. 270:1845218458.
35. Dagan, R.,, M. Muallem,, R. Melamed,, O. Leroy,, and P. Yagupsky. 1997. Reduction of pneumococcal nasopharyngeal carriage in early infancy after immunization with tetravalent pneumococcal vaccines conjugated to either tetanus toxoid or diphtheria toxoid. Pediatr. Infect. Dis. J. 16:10601064.
36. Dawson, M. H.,, and R. H. P. Sia. 1931. In vitro transformation of pneumococcal types. I. A technique for inducing transformation of pneumococcal types in vitro. J. Exp. Med. 54:681699.
37. Deng, L.,, D. L. Kasper,, T. P. Krick,, and M. R. Wessels. 2000. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275:74977504.
38. Dillard, J. P.,, M. W. Vandersea,, and J. Yother. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181:973983.
39. Dillard, J. P.,, and J. Yother. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol. Microbiol. 12:959972.
40. Enright, M. C.,, and B. G. Spratt. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144:30493060.
41. Ephrussi-Taylor, H. 1949. Additive effects of certain transforming agents from some variants of pneumococcus. J. Exp. Med. 89:399424.
42. Ephrussi-Taylor, H. 1951. Genetic aspects of transformations of pneumococci. Cold Spring Harbor Symp. Quant. Biol. 16:445456.
43. Eyre, J. W.,, and J. W. Washbourn. 1897. Resistant forms of the pneumococcus. J. Pathol. Bacteriol. 4:394400.
44. Fine, D. P. 1975. Pneumococcal type-associated variability in alternate complement pathway activation. Infect. Immun. 12:772778.
45. Forsee, W. T.,, R. T. Cartee,, and J. Yother. 2000. Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae: enzymatic chain release by an abortive translocation process. J. Biol. Chem. 275:2597225978.
46. Garcia, E.,, P. Garcia,, and R. Lopez. 1993. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol. Gen. Genet. 239:188195.
47. Giebink, G. S.,, J. Verhoef,, P. K. Peterson,, and P. G. Quie. 1977. Opsonic requirements for phagocytosis of Streptococcus pneumoniae types VI, XVIII, XXIII, and XXV. Infect. Immun. 18:291297.
48. Gordon, D. L.,, G. M. Johnson,, and M. K. Hostetter. 1986. Ligand-receptor interactions in the phagocytosis of virulent Streptococcus pneumoniae by polymorphonuclear leukocytes. J. Infect. Dis. 154:619626.
49. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27:113159.
50. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62:53845396.
51. Hall, L. M.,, R. A. Whiley,, B. Duke,, R. C. George,, and A. Efstratiou. 1996. Genetic relatedness within and between serotypes of Streptococcus pneumoniae from the United Kingdom: analysis of multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, and antimicrobial resistance patterns. J. Clin. Microbiol. 34: 853859.
52. Hardy, G. G.,, M. J. Caimano,, and J. Yother. 2000. Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J. Bacteriol. 182:18541863.
53. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69:23092317.
54. Havarstein, L. S.,, G. Coomaraswamy,, and D. A. Morrison. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92:1114011144.
55. Henrichsen, J. 1995. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33:27592762.
56. Henriques, B.,, M. Kalin,, A. Ortqvist,, B. Olsson Liljequist,, M. Almela,, T. J. Marrie,, M. A. Mufson,, A. Torres,, M. A. Woodhead,, S. B. Svenson,, and G. Kallenius. 2000. Molecular epidemiology of Streptococcus pneumoniae causing invasive disease in 5 countries. J. Infect. Dis. 182:833839.
57. Hostetter, M. K. 1986. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J. Infect. Dis. 153:682693.
58. Iannelli, F.,, B. J. Pearce,, and G. Pozzi. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol. 181:26522654.
59. Jiang, S.-M.,, L. Wang,, and P. R. Reeves. 2001. Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect. Immun. 69:12441255.
60. Keenleyside, W. J.,, and C. Whitfield. 1996. A novel pathway of O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J. Biol. Chem. 271:2858128592.
61. Kelly, T.,, J. P. Dillard,, and J. Yother. 1994. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect. Immun. 62:18131819.
62. Kim, J. O.,, and J. N. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177:368377.
63. Knecht, J. C.,, G. Schiffman,, and R. Austrian. 1970. Some biological properties of Pneumococcus type 37 and the chemistry of its capsular polysaccharide. J. Exp. Med. 132:475487.
64. Kolkman, M. A.,, B. A. van der Zeijst,, and P. J. Nuijten. 1998. Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. J. Biochem. (Tokyo) 123:937945.
65. Kolkman, M. A.,, B. A. van der Zeijst,, and P. J. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272:1950219508.
66. Kolkman, M. A.,, W. Wakarchuk,, P. J. Nuijten,, and B. A. van der Zeijst. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26:197208.
67. Kruse, W.,, and S. Pansini. 1891. Untersuchungen uber den Diplococcus pneumoniae und verwandte Streptokokken. Z. Hyg. Infektionskr. 11:279280.
68. Langvad-Nielson, A. 1944. Change of capsule in the pneumococcus. Acta Pathol. Microbiol. Scand. 21:362369.
69. Llull, D.,, E. García,, and R. López. 2001. Tts, a processive β-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in pneumococcus and other gram-positive species. J. Biol. Chem. 276:2105321061.
70. Llull, D.,, R. Lopez,, E. Garcia,, and R. Munoz. 1998. Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim. Biophys. Acta 1443:217224.
71. Llull, D.,, R. Munoz,, R. Lopez,, and E. Garcia. 1999. A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J. Exp. Med. 190:241251.
72. MacLeod, C. M.,, and M. R. Krauss. 1953. Control by factors distinct from the S transforming principle of the amount of capsular polysaccharide produced by type III pneumococci. J. Exp. Med. 97:767771.
73. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69:37553761.
74. Mäkelä, P.,, and B. A. D. Stocker. 1969. Genetics of polysaccharide biosynthesis. Annu. Rev. Genet. 3:291322.
75. Mills, G. T.,, and E. B. Smith. 1962. Biosynthetic aspects of capsule formation in the pneumococcus. Br. Med. Bull. 18:2730.
76. Mollerach, M.,, R. Lopez,, and E. Garcia. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188:20472056.
77. Morona, J.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185:30093019.
78. Morona, J. K.,, D. C. Miller,, T. J. Coffey,, C. J. Vindurampulle,, B. G. Spratt,, R. Morona,, and J. C. Paton. 1999. Molecular and genetic characterization of the capsule biosynthetic locus of Streptococcus pneumoniae type 23F. Microbiology 145:781789.
79. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Analysis of the 5′ portion of the type 19A capsule locus identifies two classes of cpsC, cpsD, and cpsE genes in Streptococcus pneumoniae. J. Bacteriol. 181:35993605.
80. Morona, J. K.,, R. Morona,, and J. C. Paton. 1997. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol. Microbiol. 23:751763.
81. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Comparative analysis of capsular biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J. Bacteriol. 181:53555364.
82. Morona, J. K.,, J. C. Paton,, D. C. Miller,, and R. Morona. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35:14311442.
83. Munoz, R.,, R. Lopez,, M. de Frutos,, and E. Garcia. 1999. First molecular characterization of a uridine diphosphate galacturonate 4- epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1. Mol. Microbiol. 31:703713.
84. Muñoz, R.,, M. Mollerach,, R. Lopez,, and E. Garcia. 1999. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J. Bacteriol. 181:62146219.
85. Muñoz, R.,, M. Mollerach,, R. Lopez,, and E. Garcia. 1997. Molecular organization of the genes required for the synthesis of type 1 polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol. 25:7992.
86. Nesin, M.,, M. Ramirez,, and A. Tomasz. 1998. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J. Infect. Dis. 177:707713.
87. Niemeyer, D.,, and A. Becker. 2001. The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J. Bacteriol. 183:51635170.
88. Ogunniyi, A. D.,, P. Giammarinaro,, and J. C. Paton. 2002. The genes encoding virulence- associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148:20452053.
89. Overweg, K.,, D. Bogaert,, M. Sluijter,, J. Yother,, J. Dankert,, R. de Groot,, and P. W. Hermans. 2000. Genetic relatedness within serotypes of penicillin-susceptible Streptococcus pneumoniae isolates. J. Clin. Microbiol. 38:45484553.
90. Pasteur, L. 1881. Note sur la maladie nouvelle provoquee par la salive d’un enfant mort de la rage. Bull. Acad. Med. (Paris) 10:94103.
91. Puyet, A.,, B. Greenberg,, and S. A. Lacks. 1990. Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol. 213:727738.
92. Ramirez, M.,, and A. Tomasz. 1998. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J. Bacteriol. 180:52735278.
93. Ravin, A. W. 1960. Linked mutations borne by deoxyribonucleic acid controlling the synthesis of capsular polysaccharide in pneumococcus. Genetics 45:13871403.
94. Saluja, S. K.,, and J. N. Weiser. 1995. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of BOX elements on the frequency of phenotypic variation. Mol. Microbiol. 16:215227.
95. Sau, S.,, N. Bhasin,, E. R. Wann,, J. C. Lee,, T. J. Foster,, and C. Y. Lee. 1997. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143:23952405.
96. Scott, J.,, A. Hall,, R. Dagan,, J. Dixon,, S. Eykyn,, A. Fenoll,, M. Hortal,, L. Jette,, J. Jorgensen,, F. Lamothe,, C. Latorre,, J. Mac- Farlane,, D. Shales,, L. Smart,, and A. Taunay. 1996. Serogroup-specific epidemiology of Streptococcus pneumoniae: association with age, sex and geography in 7,000 episodes of invasive disease. Clin. Infect. Dis. 22:973981.
97. Smith, E. B.,, G. T. Mills,, and H. P. Bernheimer. 1961. Biosynthesis of pneumococcal polysaccharides. I. Properties of the system synthesizing type III capsular polysaccharide. J. Biol. Chem. 236:21792182.
98. Smith, E. E. B.,, and G. T. Mills. 1960. Uridine pyrophosphoglucose dehydrogenase in capsulated and non-capsulated strains of pneumococcus type I. Microbiology 22:265271.
99. Smith, E. E. B.,, G. T. Mills,, H. P. Bernheimer,, and R. Austrian. 1958. The formation of uridine pyrophosphoglucuronic acid from uridine pyrophosphoglucose by extracts of a noncapsulated strain of pneumococcus. Biochim. Biophys. Acta 28:211212.
100. Sorensen, U. B.,, J. Henrichsen,, H. C. Chen,, and S. C. Szu. 1990. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb. Pathog. 8:325334.
101. Stephens, C. G.,, R. C. Williams, Jr.,, and W. P. Reed. 1977. Classical and alternative complement pathway activation by pneumococci. Infect. Immun. 17:296302.
102. Stryker, L. M. 1916. Variations in the pneumococcus induced by growth in immune serum. J. Exp. Med. 24:4968.
103. Takala, A. K.,, J. Vuopio-Varkila,, E. Tarkka,, M. Leinonen,, and J. M. Musser. 1996. Subtyping of common pediatric pneumococcal serotypes from invasive disease and pharyngeal carriage in Finland. J. Infect. Dis. 173:128135.
104. Talbot, U. M.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64:37723777.
105. Tlapak-Simmons, V. L.,, E. S. Kempner,, B. A. Baggenstoss,, and P. H. Weigel. 1998. The active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecules. J. Biol. Chem. 273:2610026109.
106. Trzcinski, K.,, C. M. Thompson,, and M. Lipsitch. 2003. Construction of otherwise isogenic serotype 6B, 7F, 14, and 19F capsular variants of Streptococcus pneumoniae strain TIGR4. Appl. Environ. Microbiol. 69:73647370.
107. van Dam, J. E.,, A. Fleer,, and H. Snippe. 1990. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Leeuwenhoek 58:147.
108. van Kranenburg, R.,, J. D. Marugg,, I. I. van Swam,, N. J. Willem,, and W. M. de Vos. 1997. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24:387397.
109. van Selm, S.,, M. A. B. Kolkman,, B. A. M. van der Zeijst,, K. A. Zwaagstra,, W. Gaastra,, and J. P. M. van Putten. 2002. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148:17471755.
110. van Selm, S.,, L. M. van Cann,, M. A. Kolkman,, B. A. van der Zeijst,, and J. P. van Putten. 2003. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect. Immun. 71:61926198.
111. Waite, R. D.,, D. W. Penfold,, J. K. Struthers,, and C. G. Dowson. 2003. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149:497504.
112. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42:12231232.
113. Walter, A. W.,, V. H. Guerin,, M. W. Beattie,, H. Y. Cotler,, and H. B. Bucca. 1941. Extension of the separation of types among pneumococci: description of 17 types in addition to types 1 to 32 (Cooper). J. Immunol. 41:279.
114. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62:25822589.
115. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz,, and M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69:54305439.
116. Whitfield, C. 1995. Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol. 3:178185.
117. Whitfield, C.,, and A. Paiment. 2003. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338:24912502.
118. Wicker, L. S.,, and I. Scher. 1986. X-linked immune deficiency (xid) of CBA/N mice. Curr. Top. Microbiol. Immunol. 124:87101.
119. Winkelstein, J. A.,, A. S. Abramovitz,, and A. Tomasz. 1980. Activation of C3 via the alternative complement pathway results in fixation of C3b to the pneumococcal cell wall. J. Immunol. 124:25022506.
120. Winkelstein, J. A.,, J. J. A. Bocchini, Jr.,, and G. Schiffman. 1976. The role of the capsular polysaccharide in the activation of the alternative pathway by the pneumococcus. J. Immunol. 116:367370.
121. Winkelstein, J. A.,, and A. Tomasz. 1977. Activation of the alternative pathway by pneumococcal cell walls. J. Immunol. 118:451454.
122. Wood, W. B., Jr.,, and M. R. Smith. 1949. The inhibition of surface phagocytosis by the capsular “slime layer” of pneumococcus type III. J. Exp. Med. 90:8596.
123. Wu, H. Y.,, A. Virolainen,, B. Mathews,, J. King,, M. W. Russell,, and D. E. Briles. 1997. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23:127137.
124. Wugeditsch, T.,, A. Paiment,, J. Hocking,, J. Drummelsmith,, C. Forrester,, and C. Whitfield. 2001. Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J. Biol. Chem. 276:23612371.
125. Yother, J., 1999. Common themes in the genetics of streptococcal capsular polysaccharides, p. 161184. In J. B. Goldberg (ed.), Genetics of Bacterial Polysaccharides. CRC Press, Boca Raton, Fla.
126. Yother, J.,, K. D. Ambrose,, and M. J. Caimano. 1997. Association of a partial H-rpt element with the type 3 capsule locus of Streptococcus pneumoniae. Mol. Microbiol. 25:201204.
127. Yother, J.,, L. S. McDaniel,, and D. E. Briles. 1986. Transformation of encapsulated Streptococcus pneumoniae. J. Bacteriol. 168:14631465.
128. Zhou, L.,, F. M. Hui,, and D. A. Morrison. 1995. Characterization of IS1167, a new insertion sequence in Streptococcus pneumoniae. Plasmid 33:127138.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error