1887

Chapter 3 : Capsules

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Capsules, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap03-2.gif

Abstract:

Recent years have seen a renewed interest in the characterization of the capsular polysaccharides of and many other bacteria. Many of the recent advances described in this chapter have their roots in classic studies of that have historical significance both for the pneumococcal field and, often, for biology as a whole. Confirmation of linkage of the genes involved in capsule synthesis and the first maps of capsule loci were obtained through recombination experiments. The presence of insertion sequence (IS) elements and nonfunctional genes (or gene fragments) is a common finding in the capsule loci, as already noted for the type 3 locus and the cryptic type 33F locus in type 37 strains. The essential nature of the capsule in virulence was established in early studies of , as described in the chapter. A role for capsule in colonization was demonstrated using the type 2 and type 3 strains that contain defined mutations in the capsule loci and in . Among clinical isolates of different capsular serotypes, levels of complement activation and deposition, as well as phagocytosis, vary in in vitro assays. As has long been the case, the capsules will continue to serve as paradigms for studies of virulence factors, immune responses, and polysaccharide biochemistry.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3

Key Concept Ranking

Bacterial Cell Wall
0.4431563
Restriction Fragment Length Polymorphism
0.4092549
0.4431563
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Repeating units of capsule structures. Capsule types for which the complete nucleotide sequence of the capsule locus has been published are shown. Where possible, the expected biological repeating unit is shown, based on initiation with glucose. The alternate glucose may be used in capsules containing more than one glucose. AATGal, 2-acetamido-4-amino-2,4,6-trideoxy--galactose; FucNAc, -acetylfucosamine; Gal, galactose; Glc, glucose; GlcNAc, -acetylglucosamine; GlcUA, glucuronic acid; Gly, glycerol; ManNAc, -acetylmannosamine; OAc, acetate; Rha, rhamnose; Rib, ribitol. References for chemical repeating units are as in reference 107.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Capsule genetic loci. The loci are shown for capsule types for which the complete nucleotide sequences have been published. For most loci, genes were named alphabetically in the order in which they occurred in the locus. Therefore, similarly named genes may not be homologous. Open boxes indicate type-specific genes, which encode glycosyltransferases, nucleotide sugar biosynthetic enzymes, and epimerases. Similarly shaded boxes are homologous. Sequences in parentheses are mutated compared to their respective homologs. The flanking gene in the downstream common region was originally identified as ( ) and later designated ( ) due to an apparent allelic difference between the two genes. However, and are the same; it is only in the type 3 locus that the gene is altered. , , and in the type 3 locus are also referred to as , , and , respectively ( ). in the type 3 locus is homologous to in the other loci. The type 4, 6B, and 18C genes were named according to the bacterial polysaccharide gene nomenclature system ( ) and are not referred to by the designations. For clarity, designations are shown here for the upstream common sequences and the TDP-Rha biosynthetic genes in these loci. The remainder of the letters are from the original designations. Differences in the - and -encoded polymerases are responsible for the different linkages in the polysaccharides ( ). Symbols: , conserved common sequences; , class I common sequences; , class II common sequences; and , initiating glycosyltransferases not homologous to class I or II; , Wzy homolog, putative polymerase; , Wzx homolog, putative flippase; , TDP-Rha biosynthesis. Classes of common sequences are based on reference 79. Arrows indicate putative or known transcription start sites and, where demonstrated, length of transcript. Some of the many IS elements and repetitive sequences (R) are indicated. Maps are derived from references , and .

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Block-type (Wzy-dependent) synthesis. The repeat unit is for type 14. Functions for the glycosyltransferases CpsE, CpsG, CpsI, and CpsJ have been experimentally determined in the type 14 system ( ). CpsL and CpsH are the type 14 Wzx and Wzy homologs, respectively. PGM and GalU are the cellular enzymes and are not capsule specific. Functions of proteins in parentheses have not been experimentally demonstrated in the system. PGM, GalU, CpsG, CpsI, and CpsJ are located in the cytoplasm, whereas CpsE, CpsL, and CpsH are membrane associated. Following transfer of the chain, the lipid- P-P is hydrolyzed to lipid-P and recycled to the cytoplasmic face of the membrane.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Biosynthetic pathways for (A) dTDP-Rha synthesis in type 19F ( ) and (B) type 3 synthesis ( ). The type 3 synthase (Cps3S) is located in the membrane.

Citation: Yother J. 2004. Capsules, p 30-48. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap3
1. Abeyta, M.,, G. G. Hardy,, and J. Yother. 2003. Genetic alteration of capsule type but not PspA type affects accessibility to surface-bound complement and surface antigens in Streptococcus pneumoniae. Infect. Immun. 71: 218 225.
2. Alloway, J. L. 1932. The transformation in vitro of R pneumococci into S forms of different specific types by the use of filtered pneumococcal extracts. J. Exp. Med. 55: 91 99.
3. Arrecubieta, C.,, E. Garcia,, and R. Lopez. 1995. Sequence and transcriptional analysis of a DNA region involved in the production of capsular polysaccharide in Streptococcus pneumoniae type 3. Gene 167: 1 7.
4. Arrecubieta, C.,, R. Lopez,, and E. Garcia. 1994. Molecular characterization of cap3A, a gene from the operon required for the synthesis of the capsule of Streptococcus pneumoniae type 3: sequencing of mutations responsible for the unencapsulated phenotype and localization of the capsular cluster on the pneumococcal chromosome. J. Bacteriol. 176: 6375 6383.
5. Arrecubieta, C.,, R. Lopez,, and E. Garcia. 1996. Type 3-specific synthase of Streptococcus pneumoniae (Cap3B) directs type 3 polysaccharide biosynthesis in Escherichia coli and in pneumococcal strains of different serotypes. J. Exp. Med. 184: 449 455.
6. Ashbaugh, C. D.,, S. Albertí,, and M. R. Wessels. 1998. Molecular analysis of the capsule gene region of group A streptococcus: the hasAB genes are sufficient for capsule expression. J. Bacteriol. 180: 4955 4959.
7. Austrian, R. 1981. Pneumococcus: the first one hundred years. Rev. Infect. Dis. 3: 183 189.
8. Austrian, R.,, and H. P. Bernheimer. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. I. Properties of a pneumococcus manifesting binary capsulation. J. Exp. Med. 110: 571 584.
9. Austrian, R.,, H. P. Bernheimer,, E. E. B. Smith,, and G. T. Mills. 1959. Simultaneous production of two capsular polysaccharides by pneumococcus. II. The genetic and biochemical basis of binary capsulation. J. Exp. Med. 110: 585 602.
10. Avery, O. T.,, and R. Dubos. 1931. The protective action of a specific enzyme against type III pneumococcus infection in mice. J. Exp. Med. 54: 73 89.
11. Avery, O. T.,, C. M. MacLeod,, and M. Mc- Carty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus Type III. J. Exp. Med. 79: 137 158.
12. Avery, O. T.,, and H. J. Morgan. 1925. Immunological reactions of the isolated carbohydrate and protein of pneumococcus. J. Exp. Med. 42: 347 353.
13. Barnes, D. M.,, S. Whittier,, P. H. Gilligan,, S. Soares,, A. Tomasz,, and F. W. Henderson. 1995. Transmission of multidrug-resistant serotype 23F Streptococcus pneumoniae in group day care: evidence suggesting capsular transformation of the resistant strain in vivo. J. Infect. Dis. 171: 890 896.
14. Bender, M. H.,, R. T. Cartee,, and J. Yother. 2003. Positive correlation between tyrosine phosphorylation of CpsD and capsular polysaccharide production in Streptococcus pneumoniae. J. Bacteriol. 185: 6057 6066.
15. Bender, M. H.,, and J. Yother. 2001. CpsB is a modulator of capsule-associated tyrosine kinase activity in Streptococcus pneumoniae. J. Biol. Chem. 276: 47966 47974.
16. Bernheimer, H. P.,, and I. E. Wermundsen. 1972. Homology in capsular transformations in Pneumococcus. Mol. Gen. Genet. 116: 68 83.
17. Bernheimer, H. P.,, and I. E. Wermundsen. 1969. Unstable binary capsulated transformants in pneumococcus. J. Bacteriol. 98: 1073 1079.
18. Bernheimer, H. P.,, I. E. Wermundsen,, and R. Austrian. 1968. Mutation in pneumococcus type 3 affecting multiple cistrons concerned with the synthesis of capsular polysaccharide. J. Bacteriol. 96: 1099 1102.
19. Branconier, J. H.,, and H. Odeberg. 1982. Granulocyte phagocytosis and killing of virulent and avirulent serotypes of Streptococcus pneumoniae. J. Lab. Clin. Med. 100: 279 287.
20. Briles, D. E.,, M. J. Crain,, B. M. Gray,, C. Forman,, and J. Yother. 1992. Strong association between capsular type and virulence for mice among human isolates of Streptococcus pneumoniae. Infect. Immun. 60: 111 116.
21. Briles, D. E.,, M. Nahm,, K. Schoroer,, J. Davie,, P. Baker,, J. Kearney,, and R. Barletta. 1981. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J. Exp. Med. 153: 694 705.
22. Brown, E. J.,, K. A. Joiner,, R. M. Cole,, and M. Berger. 1983. Localization of complement component 3 on Streptococcus pneumoniae: anticapsular antibody causes complement deposition on the pneumococcal capsule. Infect. Immun. 39: 403 409.
23. Caimano, M. J.,, G. G. Hardy,, and J. Yother. 1998. Capsule genetics in Streptococcus pneumoniae and a possible role for transposition in the generation of the type 3 locus. Microb. Drug Resist. 4: 11 23.
24. Campbell, J. A.,, G. J. Davies,, V. Bulone,, and B. Henrissat. 1997. A classification of nucleotide- diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929 942.
25. Cartee, R. T.,, W. T. Forsee,, J. W. Jensen,, and J. Yother. 2001. Expression of the Streptococcus pneumoniae type 3 synthase in Escherichia coli: assembly of type 3 polysaccharide on a lipid primer. J. Biol. Chem. 276: 48831 48839.
26. Cartee, R. T.,, W. T. Forsee,, J. S. Schutzbach,, and J. Yother. 2000. Mechanism of type 3 capsular polysaccharide synthesis in Streptococcus pneumoniae. J. Biol. Chem. 275: 3907 3914.
27. Centers for Disease Control and Prevention. 1997. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mortal. Wkly. Rep. 46: 124.
28. Chaffin, D.,, S. Beres,, H. Yim,, and C. Rubens. 2000. The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. J. Bacteriol. 182: 4466 4477.
29. Charnock, S. J.,, B. Henrissat,, and G. J. Davies. 2001. Three-dimensional structures of UDP-sugar glycosyltransferases illuminate the biosynthesis of plant polysaccharides. Plant Physiol. 125: 527 531.
30. Cieslewicz, M. J.,, D. L. Kasper,, Y. Wang,, and M. R. Wessels. 2001. Functional analysis in the Ia group B Streptococcus of a cluster of genes involved in extracellular polysaccharide production by diverse species of streptococci. J. Biol. Chem. 276: 139 146.
31. Coffey, T. J.,, M. Daniels,, M. C. Enright,, and B. G. Spratt. 1999. Serotype 14 variants of the Spanish penicillin-resistant serotype 9V clone of Streptococcus pneumoniae arose by large recombinational replacements of the cpsA-pbp1a region. Microbiology 145: 2023 2031.
32. Coffey, T. J.,, C. G. Dowson,, M. Daniels,, J. Zhou,, C. Martin,, B. G. Spratt,, and J. M. Musser. 1991. Horizontal transfer of multiple penicillin-binding protein genes, and capsular biosynthetic genes, in natural populations of Streptococcus pneumoniae. Mol. Microbiol. 5: 2255 2260.
33. Coffey, T. J.,, M. C. Enright,, M. Daniels,, J. K. Morona,, R. Morona,, W. Hryniewicz,, J. C. Paton,, and B. G. Spratt. 1998. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol. 27: 73 83.
34. Crater, D. L.,, and I. van de Rijn. 1995. Hyaluronic acid synthesis operon ( has) expression in group A streptococci. J. Biol. Chem. 270: 18452 18458.
35. Dagan, R.,, M. Muallem,, R. Melamed,, O. Leroy,, and P. Yagupsky. 1997. Reduction of pneumococcal nasopharyngeal carriage in early infancy after immunization with tetravalent pneumococcal vaccines conjugated to either tetanus toxoid or diphtheria toxoid. Pediatr. Infect. Dis. J. 16: 1060 1064.
36. Dawson, M. H.,, and R. H. P. Sia. 1931. In vitro transformation of pneumococcal types. I. A technique for inducing transformation of pneumococcal types in vitro. J. Exp. Med. 54: 681 699.
37. Deng, L.,, D. L. Kasper,, T. P. Krick,, and M. R. Wessels. 2000. Characterization of the linkage between the type III capsular polysaccharide and the bacterial cell wall of group B Streptococcus. J. Biol. Chem. 275: 7497 7504.
38. Dillard, J. P.,, M. W. Vandersea,, and J. Yother. 1995. Characterization of the cassette containing genes for type 3 capsular polysaccharide biosynthesis in Streptococcus pneumoniae. J. Exp. Med. 181: 973 983.
39. Dillard, J. P.,, and J. Yother. 1994. Genetic and molecular characterization of capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 3. Mol. Microbiol. 12: 959 972.
40. Enright, M. C.,, and B. G. Spratt. 1998. A multilocus sequence typing scheme for Streptococcus pneumoniae: identification of clones associated with serious invasive disease. Microbiology 144: 3049 3060.
41. Ephrussi-Taylor, H. 1949. Additive effects of certain transforming agents from some variants of pneumococcus. J. Exp. Med. 89: 399 424.
42. Ephrussi-Taylor, H. 1951. Genetic aspects of transformations of pneumococci. Cold Spring Harbor Symp. Quant. Biol. 16: 445 456.
43. Eyre, J. W.,, and J. W. Washbourn. 1897. Resistant forms of the pneumococcus. J. Pathol. Bacteriol. 4: 394 400.
44. Fine, D. P. 1975. Pneumococcal type-associated variability in alternate complement pathway activation. Infect. Immun. 12: 772 778.
45. Forsee, W. T.,, R. T. Cartee,, and J. Yother. 2000. Biosynthesis of type 3 capsular polysaccharide in Streptococcus pneumoniae: enzymatic chain release by an abortive translocation process. J. Biol. Chem. 275: 25972 25978.
46. Garcia, E.,, P. Garcia,, and R. Lopez. 1993. Cloning and sequencing of a gene involved in the synthesis of the capsular polysaccharide of Streptococcus pneumoniae type 3. Mol. Gen. Genet. 239: 188 195.
47. Giebink, G. S.,, J. Verhoef,, P. K. Peterson,, and P. G. Quie. 1977. Opsonic requirements for phagocytosis of Streptococcus pneumoniae types VI, XVIII, XXIII, and XXV. Infect. Immun. 18: 291 297.
48. Gordon, D. L.,, G. M. Johnson,, and M. K. Hostetter. 1986. Ligand-receptor interactions in the phagocytosis of virulent Streptococcus pneumoniae by polymorphonuclear leukocytes. J. Infect. Dis. 154: 619 626.
49. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27: 113 159.
50. Guidolin, A.,, J. K. Morona,, R. Morona,, D. Hansman,, and J. C. Paton. 1994. Nucleotide sequence analysis of genes essential for capsular polysaccharide biosynthesis in Streptococcus pneumoniae type 19F. Infect. Immun. 62: 5384 5396.
51. Hall, L. M.,, R. A. Whiley,, B. Duke,, R. C. George,, and A. Efstratiou. 1996. Genetic relatedness within and between serotypes of Streptococcus pneumoniae from the United Kingdom: analysis of multilocus enzyme electrophoresis, pulsed-field gel electrophoresis, and antimicrobial resistance patterns. J. Clin. Microbiol. 34: 853 859.
52. Hardy, G. G.,, M. J. Caimano,, and J. Yother. 2000. Capsule biosynthesis and basic metabolism in Streptococcus pneumoniae are linked through the cellular phosphoglucomutase. J. Bacteriol. 182: 1854 1863.
53. Hardy, G. G.,, A. D. Magee,, C. L. Ventura,, M. J. Caimano,, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69: 2309 2317.
54. Havarstein, L. S.,, G. Coomaraswamy,, and D. A. Morrison. 1995. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92: 11140 11144.
55. Henrichsen, J. 1995. Six newly recognized types of Streptococcus pneumoniae. J. Clin. Microbiol. 33: 2759 2762.
56. Henriques, B.,, M. Kalin,, A. Ortqvist,, B. Olsson Liljequist,, M. Almela,, T. J. Marrie,, M. A. Mufson,, A. Torres,, M. A. Woodhead,, S. B. Svenson,, and G. Kallenius. 2000. Molecular epidemiology of Streptococcus pneumoniae causing invasive disease in 5 countries. J. Infect. Dis. 182: 833 839.
57. Hostetter, M. K. 1986. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J. Infect. Dis. 153: 682 693.
58. Iannelli, F.,, B. J. Pearce,, and G. Pozzi. 1999. The type 2 capsule locus of Streptococcus pneumoniae. J. Bacteriol. 181: 2652 2654.
59. Jiang, S.-M.,, L. Wang,, and P. R. Reeves. 2001. Molecular characterization of Streptococcus pneumoniae type 4, 6B, 8, and 18C capsular polysaccharide gene clusters. Infect. Immun. 69: 1244 1255.
60. Keenleyside, W. J.,, and C. Whitfield. 1996. A novel pathway of O-polysaccharide biosynthesis in Salmonella enterica serovar Borreze. J. Biol. Chem. 271: 28581 28592.
61. Kelly, T.,, J. P. Dillard,, and J. Yother. 1994. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect. Immun. 62: 1813 1819.
62. Kim, J. O.,, and J. N. Weiser. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J. Infect. Dis. 177: 368 377.
63. Knecht, J. C.,, G. Schiffman,, and R. Austrian. 1970. Some biological properties of Pneumococcus type 37 and the chemistry of its capsular polysaccharide. J. Exp. Med. 132: 475 487.
64. Kolkman, M. A.,, B. A. van der Zeijst,, and P. J. Nuijten. 1998. Diversity of capsular polysaccharide synthesis gene clusters in Streptococcus pneumoniae. J. Biochem. (Tokyo) 123: 937 945.
65. Kolkman, M. A.,, B. A. van der Zeijst,, and P. J. Nuijten. 1997. Functional analysis of glycosyltransferases encoded by the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae serotype 14. J. Biol. Chem. 272: 19502 19508.
66. Kolkman, M. A.,, W. Wakarchuk,, P. J. Nuijten,, and B. A. van der Zeijst. 1997. Capsular polysaccharide synthesis in Streptococcus pneumoniae serotype 14: molecular analysis of the complete cps locus and identification of genes encoding glycosyltransferases required for the biosynthesis of the tetrasaccharide subunit. Mol. Microbiol. 26: 197 208.
67. Kruse, W.,, and S. Pansini. 1891. Untersuchungen uber den Diplococcus pneumoniae und verwandte Streptokokken. Z. Hyg. Infektionskr. 11: 279 280.
68. Langvad-Nielson, A. 1944. Change of capsule in the pneumococcus. Acta Pathol. Microbiol. Scand. 21: 362 369.
69. Llull, D.,, E. García,, and R. López. 2001. Tts, a processive β-glucosyltransferase of Streptococcus pneumoniae, directs the synthesis of the branched type 37 capsular polysaccharide in pneumococcus and other gram-positive species. J. Biol. Chem. 276: 21053 21061.
70. Llull, D.,, R. Lopez,, E. Garcia,, and R. Munoz. 1998. Molecular structure of the gene cluster responsible for the synthesis of the polysaccharide capsule of Streptococcus pneumoniae type 33F. Biochim. Biophys. Acta 1443: 217 224.
71. Llull, D.,, R. Munoz,, R. Lopez,, and E. Garcia. 1999. A single gene (tts) located outside the cap locus directs the formation of Streptococcus pneumoniae type 37 capsular polysaccharide. Type 37 pneumococci are natural, genetically binary strains. J. Exp. Med. 190: 241 251.
72. MacLeod, C. M.,, and M. R. Krauss. 1953. Control by factors distinct from the S transforming principle of the amount of capsular polysaccharide produced by type III pneumococci. J. Exp. Med. 97: 767 771.
73. Magee, A. D.,, and J. Yother. 2001. Requirement for capsule in colonization by Streptococcus pneumoniae. Infect. Immun. 69: 3755 3761.
74. Mäkelä, P.,, and B. A. D. Stocker. 1969. Genetics of polysaccharide biosynthesis. Annu. Rev. Genet. 3: 291 322.
75. Mills, G. T.,, and E. B. Smith. 1962. Biosynthetic aspects of capsule formation in the pneumococcus. Br. Med. Bull. 18: 27 30.
76. Mollerach, M.,, R. Lopez,, and E. Garcia. 1998. Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J. Exp. Med. 188: 2047 2056.
77. Morona, J.,, R. Morona,, D. C. Miller,, and J. C. Paton. 2003. Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J. Bacteriol. 185: 3009 3019.
78. Morona, J. K.,, D. C. Miller,, T. J. Coffey,, C. J. Vindurampulle,, B. G. Spratt,, R. Morona,, and J. C. Paton. 1999. Molecular and genetic characterization of the capsule biosynthetic locus of Streptococcus pneumoniae type 23F. Microbiology 145: 781 789.
79. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Analysis of the 5′ portion of the type 19A capsule locus identifies two classes of cpsC, cpsD, and cpsE genes in Streptococcus pneumoniae. J. Bacteriol. 181: 3599 3605.
80. Morona, J. K.,, R. Morona,, and J. C. Paton. 1997. Characterization of the locus encoding the Streptococcus pneumoniae type 19F capsular polysaccharide biosynthetic pathway. Mol. Microbiol. 23: 751 763.
81. Morona, J. K.,, R. Morona,, and J. C. Paton. 1999. Comparative analysis of capsular biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19. J. Bacteriol. 181: 5355 5364.
82. Morona, J. K.,, J. C. Paton,, D. C. Miller,, and R. Morona. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol. Microbiol. 35: 1431 1442.
83. Munoz, R.,, R. Lopez,, M. de Frutos,, and E. Garcia. 1999. First molecular characterization of a uridine diphosphate galacturonate 4- epimerase: an enzyme required for capsular biosynthesis in Streptococcus pneumoniae type 1. Mol. Microbiol. 31: 703 713.
84. Muñoz, R.,, M. Mollerach,, R. Lopez,, and E. Garcia. 1999. Characterization of the type 8 capsular gene cluster of Streptococcus pneumoniae. J. Bacteriol. 181: 6214 6219.
85. Muñoz, R.,, M. Mollerach,, R. Lopez,, and E. Garcia. 1997. Molecular organization of the genes required for the synthesis of type 1 polysaccharide of Streptococcus pneumoniae: formation of binary encapsulated pneumococci and identification of cryptic dTDP-rhamnose biosynthesis genes. Mol. Microbiol. 25: 79 92.
86. Nesin, M.,, M. Ramirez,, and A. Tomasz. 1998. Capsular transformation of a multidrug-resistant Streptococcus pneumoniae in vivo. J. Infect. Dis. 177: 707 713.
87. Niemeyer, D.,, and A. Becker. 2001. The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J. Bacteriol. 183: 5163 5170.
88. Ogunniyi, A. D.,, P. Giammarinaro,, and J. C. Paton. 2002. The genes encoding virulence- associated proteins and the capsule of Streptococcus pneumoniae are upregulated and differentially expressed in vivo. Microbiology 148: 2045 2053.
89. Overweg, K.,, D. Bogaert,, M. Sluijter,, J. Yother,, J. Dankert,, R. de Groot,, and P. W. Hermans. 2000. Genetic relatedness within serotypes of penicillin-susceptible Streptococcus pneumoniae isolates. J. Clin. Microbiol. 38: 4548 4553.
90. Pasteur, L. 1881. Note sur la maladie nouvelle provoquee par la salive d’un enfant mort de la rage. Bull. Acad. Med. (Paris) 10: 94 103.
91. Puyet, A.,, B. Greenberg,, and S. A. Lacks. 1990. Genetic and structural characterization of endA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol. 213: 727 738.
92. Ramirez, M.,, and A. Tomasz. 1998. Molecular characterization of the complete 23F capsular polysaccharide locus of Streptococcus pneumoniae. J. Bacteriol. 180: 5273 5278.
93. Ravin, A. W. 1960. Linked mutations borne by deoxyribonucleic acid controlling the synthesis of capsular polysaccharide in pneumococcus. Genetics 45: 1387 1403.
94. Saluja, S. K.,, and J. N. Weiser. 1995. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of BOX elements on the frequency of phenotypic variation. Mol. Microbiol. 16: 215 227.
95. Sau, S.,, N. Bhasin,, E. R. Wann,, J. C. Lee,, T. J. Foster,, and C. Y. Lee. 1997. The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143: 2395 2405.
96. Scott, J.,, A. Hall,, R. Dagan,, J. Dixon,, S. Eykyn,, A. Fenoll,, M. Hortal,, L. Jette,, J. Jorgensen,, F. Lamothe,, C. Latorre,, J. Mac- Farlane,, D. Shales,, L. Smart,, and A. Taunay. 1996. Serogroup-specific epidemiology of Streptococcus pneumoniae: association with age, sex and geography in 7,000 episodes of invasive disease. Clin. Infect. Dis. 22: 973 981.
97. Smith, E. B.,, G. T. Mills,, and H. P. Bernheimer. 1961. Biosynthesis of pneumococcal polysaccharides. I. Properties of the system synthesizing type III capsular polysaccharide. J. Biol. Chem. 236: 2179 2182.
98. Smith, E. E. B.,, and G. T. Mills. 1960. Uridine pyrophosphoglucose dehydrogenase in capsulated and non-capsulated strains of pneumococcus type I. Microbiology 22: 265 271.
99. Smith, E. E. B.,, G. T. Mills,, H. P. Bernheimer,, and R. Austrian. 1958. The formation of uridine pyrophosphoglucuronic acid from uridine pyrophosphoglucose by extracts of a noncapsulated strain of pneumococcus. Biochim. Biophys. Acta 28: 211 212.
100. Sorensen, U. B.,, J. Henrichsen,, H. C. Chen,, and S. C. Szu. 1990. Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunochemical methods. Microb. Pathog. 8: 325 334.
101. Stephens, C. G.,, R. C. Williams, Jr.,, and W. P. Reed. 1977. Classical and alternative complement pathway activation by pneumococci. Infect. Immun. 17: 296 302.
102. Stryker, L. M. 1916. Variations in the pneumococcus induced by growth in immune serum. J. Exp. Med. 24: 49 68.
103. Takala, A. K.,, J. Vuopio-Varkila,, E. Tarkka,, M. Leinonen,, and J. M. Musser. 1996. Subtyping of common pediatric pneumococcal serotypes from invasive disease and pharyngeal carriage in Finland. J. Infect. Dis. 173: 128 135.
104. Talbot, U. M.,, A. W. Paton,, and J. C. Paton. 1996. Uptake of Streptococcus pneumoniae by respiratory epithelial cells. Infect. Immun. 64: 3772 3777.
105. Tlapak-Simmons, V. L.,, E. S. Kempner,, B. A. Baggenstoss,, and P. H. Weigel. 1998. The active streptococcal hyaluronan synthases (HASs) contain a single HAS monomer and multiple cardiolipin molecules. J. Biol. Chem. 273: 26100 26109.
106. Trzcinski, K.,, C. M. Thompson,, and M. Lipsitch. 2003. Construction of otherwise isogenic serotype 6B, 7F, 14, and 19F capsular variants of Streptococcus pneumoniae strain TIGR4. Appl. Environ. Microbiol. 69: 7364 7370.
107. van Dam, J. E.,, A. Fleer,, and H. Snippe. 1990. Immunogenicity and immunochemistry of Streptococcus pneumoniae capsular polysaccharides. Antonie Leeuwenhoek 58: 1 47.
108. van Kranenburg, R.,, J. D. Marugg,, I. I. van Swam,, N. J. Willem,, and W. M. de Vos. 1997. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol. Microbiol. 24: 387 397.
109. van Selm, S.,, M. A. B. Kolkman,, B. A. M. van der Zeijst,, K. A. Zwaagstra,, W. Gaastra,, and J. P. M. van Putten. 2002. Organization and characterization of the capsule biosynthesis locus of Streptococcus pneumoniae serotype 9V. Microbiology 148: 1747 1755.
110. van Selm, S.,, L. M. van Cann,, M. A. Kolkman,, B. A. van der Zeijst,, and J. P. van Putten. 2003. Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect. Immun. 71: 6192 6198.
111. Waite, R. D.,, D. W. Penfold,, J. K. Struthers,, and C. G. Dowson. 2003. Spontaneous sequence duplications within capsule genes cap8E and tts control phase variation in Streptococcus pneumoniae serotypes 8 and 37. Microbiology 149: 497 504.
112. Waite, R. D.,, J. K. Struthers,, and C. G. Dowson. 2001. Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol. Microbiol. 42: 1223 1232.
113. Walter, A. W.,, V. H. Guerin,, M. W. Beattie,, H. Y. Cotler,, and H. B. Bucca. 1941. Extension of the separation of types among pneumococci: description of 17 types in addition to types 1 to 32 (Cooper). J. Immunol. 41: 279.
114. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
115. Weiser, J. N.,, D. Bae,, H. Epino,, S. B. Gordon,, M. Kapoor,, L. A. Zenewicz,, and M. Shchepetov. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect. Immun. 69: 5430 5439.
116. Whitfield, C. 1995. Biosynthesis of lipopolysaccharide O antigens. Trends Microbiol. 3: 178 185.
117. Whitfield, C.,, and A. Paiment. 2003. Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr. Res. 338: 2491 2502.
118. Wicker, L. S.,, and I. Scher. 1986. X-linked immune deficiency ( xid) of CBA/N mice. Curr. Top. Microbiol. Immunol. 124: 87 101.
119. Winkelstein, J. A.,, A. S. Abramovitz,, and A. Tomasz. 1980. Activation of C3 via the alternative complement pathway results in fixation of C3b to the pneumococcal cell wall. J. Immunol. 124: 2502 2506.
120. Winkelstein, J. A.,, J. J. A. Bocchini, Jr.,, and G. Schiffman. 1976. The role of the capsular polysaccharide in the activation of the alternative pathway by the pneumococcus. J. Immunol. 116: 367 370.
121. Winkelstein, J. A.,, and A. Tomasz. 1977. Activation of the alternative pathway by pneumococcal cell walls. J. Immunol. 118: 451 454.
122. Wood, W. B., Jr.,, and M. R. Smith. 1949. The inhibition of surface phagocytosis by the capsular “slime layer” of pneumococcus type III. J. Exp. Med. 90: 85 96.
123. Wu, H. Y.,, A. Virolainen,, B. Mathews,, J. King,, M. W. Russell,, and D. E. Briles. 1997. Establishment of a Streptococcus pneumoniae nasopharyngeal colonization model in adult mice. Microb. Pathog. 23: 127 137.
124. Wugeditsch, T.,, A. Paiment,, J. Hocking,, J. Drummelsmith,, C. Forrester,, and C. Whitfield. 2001. Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. J. Biol. Chem. 276: 2361 2371.
125. Yother, J., 1999. Common themes in the genetics of streptococcal capsular polysaccharides, p. 161 184. In J. B. Goldberg (ed.), Genetics of Bacterial Polysaccharides. CRC Press, Boca Raton, Fla.
126. Yother, J.,, K. D. Ambrose,, and M. J. Caimano. 1997. Association of a partial H-rpt element with the type 3 capsule locus of Streptococcus pneumoniae. Mol. Microbiol. 25: 201 204.
127. Yother, J.,, L. S. McDaniel,, and D. E. Briles. 1986. Transformation of encapsulated Streptococcus pneumoniae. J. Bacteriol. 168: 1463 1465.
128. Zhou, L.,, F. M. Hui,, and D. A. Morrison. 1995. Characterization of IS1167, a new insertion sequence in Streptococcus pneumoniae. Plasmid 33: 127 138.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error