1887

Chapter 4 : Choline-Binding Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Choline-Binding Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap04-2.gif

Abstract:

Pneumococci covalently link phosphorylcholine to teichoic and lipoteichoic acids found in the peptidoglycan and cytoplasmic membrane, respectively. The functions of most of the choline-binding proteins (CBPs) are unknown, but a few have been studied in some depth and it is apparent that they have a role in pathogenesis and can be protective immunogens. The presence of choline-binding domains implies that any protein expressing these domains is secreted, since choline is a constituent of teichoic and lipoteichoic acids, which are cell surface polymers. The major pneumococcal autolysin LytA contains four to six choline-binding domains but is not found in eluates of pneumococcal strain Rx1 incubated with choline-containing buffers. Pneumococcal CBPs have been shown to play a role in pathogenesis in various murine models of disease. It is likely that there is some redundancy in the function of CBPs, and this, along with the large effect of the pneumococcal capsule, may explain why more is not known about the function of CBPs in pneumococcal disease. PspA and PspC are the two most well-characterized CBPs in terms of their biological functions and roles in disease. While these two proteins can be considered paralogs based on sequence homology, they make distinct contributions to pneumococcal virulence. The major autolysin of pneumococci, designated LytA, is known to be important in remodeling the cell wall of dividing pneumococci and is the common final point for many processes which lead to cell lysis.

Citation: Swiatlo E, McDaniel L, Briles D. 2004. Choline-Binding Proteins, p 49-60. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General organization of PspA and PspC from the nonencapsulated strain Rx1. PspA contains 619 amino acid residues, and PspC contains 923. The strains contain an identical 31-amino-acid leader peptide at the amino terminus, followed by an α-helical domain that varies in length. In PspA a sequence of about 100 amino acids directly adjacent to the proline-rich domain defines specific clades. Arrows below PspC mark the locations of direct repeats in the α-helical domain. In both molecules a region rich in prolines follows the α-helix and is thought to interact with the cell wall. At the carboxyl terminus is a choline-binding domain containing 10 repeats of 20 amino acids each and a short “tail” of uncharged amino acids. The proline-rich and choline-binding domains of PspA and PspC have identical amino acid sequences as determined by all alleles sequenced to this point.

Citation: Swiatlo E, McDaniel L, Briles D. 2004. Choline-Binding Proteins, p 49-60. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of CBPs in TIGR4, with the amino terminus at the far left. Diamonds represent choline-binding domains with homology to the consensus sequence, GWVKDNGTWYYLNSSGAMAT. Boxes within the structures represent domains with a high degree of homology to protein families in the Pfam database. RICH, rich in charged residues; CHAP, cysteine, histidine-dependent, amidohydrolase/peptidase. Boxes at the amino termini of some proteins designate potential cleavage sites of putative leader sequences.

Citation: Swiatlo E, McDaniel L, Briles D. 2004. Choline-Binding Proteins, p 49-60. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Diagram of binding of sIgA via the secretory component and factor H (FH) to PspC. The host proteins bind to separate sites on the α-helical portion of PspC. Both are relatively large host proteins but do not compete for binding in in vitro assays, indicating that they bind separate sites. Simultaneous binding in vivo has not been demonstrated.

Citation: Swiatlo E, McDaniel L, Briles D. 2004. Choline-Binding Proteins, p 49-60. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap4
1. Arulanandam, B. P.,, J. M. Lynch,, D. E. Briles,, S. Hollingshead,, and D. W. Metzger. 2001. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect. Immun. 69: 6718 6724.
2. Austrian, R.,, and O. M. Macleod. 1949. A type specific protein from pneumococcus. J. Exp. Med. 89: 439 450.
3. Balachandran, P.,, A. Brooks-Walter,, A. Virolainen-Julkunen,, S. Hollingshead,, and D. E. Briles. 2002. Role of pneumococcal surface protein C in nasopharyngeal carriage and pneumonia and its ability to elicit protection against carriage of Streptococcus pneumoniae. Infect. Immun. 70: 2526 2534.
4. Balachandran, P.,, S. K. Hollingshead,, J. C. Paton,, and D. E. Briles. 2001. The autolytic enzyme LytA of Streptococcus pneumoniae is not responsible for releasing pneumolysin. J. Bacteriol. 183: 3108 3116.
5. Berry, A. M.,, and J. C. Paton. 2000. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infect. Immun. 68: 133 140.
6. Bosarge, J. R.,, J. M. Watt,, D. O. McDaniel,, E. Swiatlo,, and L. S. McDaniel. 2001. Genetic immunization with the region encoding the α-helical domain of PspA elicits protective immunity against Streptococcus pneumoniae. Infect. Immun. 69: 5456 5463.
7. Briles, D. E.,, S. K. Hollingshead,, J. King,, A. Swift,, P. A. Braun,, M. K. Park,, L. M. Ferguson,, M. H. Nahm,, and G. S. Nabors. 2000. Immunization of humans with recombinant pneumococcal surface protein A (rPspA) elicits antibodies that passively protect mice from fatal infection with Streptococcus pneumoniae bearing heterologous PspA. J. Infect. Dis. 182: 1694 1701.
8. Briles, D. E.,, S. K. Hollingshead,, J. C. Paton,, E. W. Ades,, L. Novak,, F. W. van Ginkel,, and W. H. Benjamin. 2003. Immunizations with pneumococcal surface protein A and pneumolysin are protective against pneumonia in a murine model of pulmonary infection with Streptococcus pneumoniae. J. Infect. Dis. 188: 339 348.
9. Briles, D. E.,, J. D. King,, M. A. Gray,, L. S. McDaniel,, E. Swiatlo,, and K. A. Benton. 1996. PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice. Vaccine 14: 858 867.
9a.. Briles, D. E.,, J. C. Paton,, and S. K. Hollingshead,. 1997. Pneumococcal, common proteins and other strategies. In M. M. Levine,, J. B. Kaper,, R. Rappuoli,, M. Liu,, and M. Good (ed.), New Generation Vaccines. Marcel Dekker, Inc., New York, N.Y.
10. Brooks-Walter, A.,, D. E. Briles,, and S. K. Hollingshead. 1999. The pspC gene of Streptococcus pneumoniae encodes a polymorphic protein, PspC, which elicits cross-reactive antibodies to PspA and provides immunity to pneumococcal bacteremia. Infect. Immun. 67: 6533 6542.
11. Dave, S.,, A. Brooks-Walter,, M. K. Pangburn,, and L. S. McDaniel. 2001. PspC, a pneumococcal surface protein, binds human factor H. Infect. Immun. 69: 3435 3437.
12. Fernandez-Tornero, C.,, E. Garcia,, R. Lopez,, G. Gimenez-Gallego,, and A. Romero. 2002. Two new crystal forms of the choline-binding domain of the major pneumococcal autolysin: insights into the dynamics of the active homodimer. J. Mol. Biol. 321: 163 173.
13. Fernandez-Tornero, C.,, R. Lopez,, E. Garcia,, G. Gimenez-Gallego,, and A. Romero. 2001. A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat. Struct. Biol. 8: 1020 1024.
14. Gosink, K. K.,, E. R. Mann,, C. Guglielmo,, E. I. Tuomanen,, and H. R. Masure. 2000. Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect. Immun. 68: 5690 5695.
15. Hakansson, A.,, H. Roche,, S. Mirza,, L. S. McDaniel,, A. Brooks-Walter,, and D. E. Briles. 2001. Characterization of binding of human lactoferrin to pneumococcal surface protein A. Infect. Immun. 69: 3372 3381.
16. Hammerschmidt, S.,, G. Bethe,, P. H. Remane,, and G. S. Chhatwal. 1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect. Immun. 67: 1683 1687.
17. Hammerschmidt, S.,, S. R. Talay,, P. Brandtzaeg,, and G. S. Chhatwal. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Mol. Microbiol. 25: 1113 1124.
18. Hava, D. L.,, C. J. Hemsley,, and A. Camilli. 2003. Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J. Bacteriol. 185: 413 421.
19. Hollingshead, S. K.,, R. Becker,, and D. E. Briles. 2000. Diversity of PspA: mosaic genes and evidence for past recombination in Streptococcus pneumoniae. Infect. Immun. 68: 5889 5900.
20. Holtje, J.-V.,, and A. Tomasz. 1975. Specific recognition of choline residues in the cell wall tei- choic acid by N-acetylmuramyl-L-alanine amidase of pneumococcus. J. Biol. Chem. 250: 6072 6075.
21. Jarva, H.,, R. Janulczyk,, J. Hellwage,, P. F. Zipfel,, L. Bjorck,, and S. Meri. 2002. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locusencoded Hic protein that binds to short consensus repeats 8-11 of factor H. J. Immunol. 168: 1886 1894.
22. Kwon, H.-Y.,, S.-W. Kim,, M.-H. Choi,, D. A. Ogunniyi,, J. C. Paton,, S.-H. Park,, S.-N. Pyo,, and D.-K. Rhee. 2003. Effect of heat shock and mutations in ClpL and ClpP on virulence gene expression in Streptococcus pneumoniae. Infect. Immun. 71: 3757 3765.
23. Lock, R. A.,, D. Hansman,, and J. C. Paton. 1992. Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb. Pathog. 12: 137 143.
24. Lu, L.,, M. E. Lamm,, H. Li,, B. Corthesy,, and J.-R. Zhang. 2003. The human polymeric immunoglobulin receptor binds to Streptococcus pneumoniae via domains 3 and 4. J. Biol. Chem. 278: 48178 48187.
25. McDaniel, L. S.,, D. O. McDaniel,, S. K. Hollinghead,, and D. E. Briles. 1998. Comparison of the PspA sequence from Streptococcus pneumoniae EF5668 to the previously identified PspA sequence from strain Rx1 and ability of PspA from EF5668 to elicit protection against pneumococci of different capsular types. Infect. Immun. 66: 4748 4754.
26. McDaniel, L. S.,, G. Scott,, J. F. Kearney,, and D. E. Briles. 1984. Monoclonal antibodies against protease-sensitive pneumococcal antigens can protect mice from fatal infection with Streptococcus pneumoniae. J. Exp. Med. 160: 386 397.
27.. McDaniel, L. S.,, J. Yother,, M. Vijayakumar,, L. McGarry,, W. R. Guild,, and D. E. Briles. 1987. Use of insertional inactivation to facilitate studies of biological properties of pneumococcal surface protein A (PspA). J. Exp. Med. 165: 381 394.
28. Nabors, G. S.,, P. A. Braun,, D. J. Herrmann,, M. L. Heise,, D. J. Pyle,, S. Gravenstein,, M. Schilling,, L. M. Ferguson,, S. K. Hollingshead,, D. E. Briles,, and R. S. Becker. 2000. Immunization of healthy adults with a single recombinant pneumococcal surface protein A (PspA) variant stimulates broadly cross-reactive antibodies to heterologous PspA molecules. Vaccine 18: 1743 1754.
29. Ogunniyi, A. D.,, R. L. Folland,, D. E. Briles,, S. K. Hollingshead,, and J. C. Paton. 2000. Immunization of mice with combinations of pneumococcal virulence proteins elicits enhanced protection against challenge with Streptococcus pneumoniae. Infect. Immun. 68: 3028 3033.
30. Ogunniyi, A. D.,, M. C. Woodrow,, J. T. Poolman,, and J. C. Paton. 2001. Protection against Streptococcus pneumoniae elicited by immunization with pneumolysin and CbpA. Infect. Immun. 69: 5997 6003.
31. Overweg, K.,, C. D. Pericone,, G. G. C. Verhoef,, J. N. Weiser,, H. D. Meiring,, A. P. J. M. de Jong,, and R. de Groot. 2000. Differential protein expression in phenotypic variants of Streptococcus pneumoniae. Infect. Immun. 68: 4604 4610.
32. Paton, J. C.,, R. A. Lock,, and D. J. Hansman. 1983. Effect of immunization with pneumolysin on survival time of mice challenged with Streptococcus pneumoniae. Infect. Immun. 40: 548 552.
33. Peng, S.-B.,, L. Wang,, J. Moomaw,, R. B. Peery,, P.-M. Sun,, R. B. Johnson,, and J. Lu. 2001. Biochemical characterization of signal peptidase I from Gram-positive Streptococcus pneumoniae. J. Bacteriol. 183: 621 627.
34. Rapola, S.,, V. Jantti,, R. Haikala,, R. Syrjanen,, G. M. Carlone,, J. S. Sampson,, and D. E. Briles. 2000. Natural development of antibodies to pneumococcal surface protein A, pneumococcal surface adhesin A, and pneumolysin in relation to pneumococcal carriage and acute otitis media. J. Infect. Dis. 182: 1146 1152.
35. Ren, B.,, A. J. Szalai,, O. Thomas,, S. K. Hollingshead,, and D. E. Briles. 2003. Both family 1 and family 2 PspA proteins can inhibit complement deposition and confer virulence to a capsular serotype 3 strain of Streptococcus pneumoniae. Infect. Immun. 71: 75 85.
36. Roche, H.,, B. Ren,, L. S. McDaniel,, A. Hakansson,, and D. E. Briles. 2003. Relative roles of genetic background and variation in PspA in the ability of antibodies to PspA to protect against capsular type 3 and 4 strains of Streptococcus pneumoniae. Infect. Immun. 71: 4498 4505.
37. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25: 819 829.
38. Sanchez-Beato, A. R.,, R. Lopez,, and J. L. Garcia. 1998. Molecular characterization of PcpA: a novel choline-binding protein of Streptococcus pneumoniae. FEMS Microbiol. Lett. 164: 207 214.
39. Smith, B. L.,, and M. K. Hostetter. 2000. C3 as a substrate for adhesion of Streptococcus pneumoniae. J. Infect. Dis. 182: 497 508.
40. Sussman, J. L.,, and I. Silman. 1992. Acetyl-cholinesterase: structure and use as a model for specific cation-protein interactions. Curr. Opin. Struct. Biol. 2: 721 729.
41. Swiatlo, E.,, A. Brooks-Walter,, D. E. Briles,, and L. S. McDaniel. 1997. Oligonucleotides identify conserved and variable regions of pspA and pspA-like sequences of Streptococcus pneumoniae. Gene 188: 279 284.
42. Swiatlo, E.,, J. King,, G. S. Nabors,, B. Mathews,, and D. E. Briles. 2003. Pneumococcal surface protein A is expressed in vivo, and antibodies to PspA are effective for therapy in a murine model of pneumococcal sepsis. Infect. Immun. 71: 7149 7153.
43. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. T. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
44. Tu, A. H.,, R. L. Fulgham,, M. A. McCrory,, D. E. Briles,, and A. J. Szalai. 1999. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect. Immun. 67: 4720 4724.
45. Weiser, J. N.,, R. Austrian,, P. K. Sreenivasan,, and H. R. Masure. 1994. Phase variation in pneumococcal opacity: relationship between colonial morphology and nasopharyngeal colonization. Infect. Immun. 62: 2582 2589.
46. Weiser, J. N.,, Z. Markiewicz,, E. I. Tuomanen,, and J. H. Wani. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect. Immun. 64: 2240 2245.
47. Wu, H.-Y.,, M. H. Nahm,, Y. Guo,, M. W. Russell,, and D. E. Briles. 1997. Intranasal immunization of mice with PspA (pneumococcal surface protein A) can prevent intranasal carriage, pulmonary infection, and sepsis with Streptococcus pneumoniae. J. Infect. Dis. 175: 839 846.
48. Yother, J.,, and D. E. Briles. 1992. Structural properties and evolutionary relationships of PspA, a surface protein of Streptococcus pneumoniae, as revealed by sequence analysis. J. Bacteriol. 174: 601 609.
49. Yother, J.,, G. L. Handsome,, and D. E. Briles. 1992. Truncated forms of PspA that are secreted from Streptococcus pneumoniae and their use in functional studies and cloning of the pspA gene. J. Bacteriol. 174: 610 618.
50. Yother, J.,, and J. M. White. 1994. Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. J. Bacteriol. 176: 2976 2985.
51. Zhang, J. R.,, K. E. Mostov,, M. E. Lamm,, M. Nanno,, S. Shimida,, M. Ohwaki,, and E. I. Tuomanen. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 128: 827 837.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error