1887

Chapter 7 : Transformation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Transformation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555816537/9781555812973_Chap07-2.gif

Abstract:

Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a millionfold greater, and can take up as much as 10% of its cellular DNA content. The current understanding of the mechanism of transformation and the genetics of has depended on a variety of experimental approaches: tracing of the fate of isotopically labeled DNA, analysis of genetic recombination frequencies, isolation and characterization of transformation-defective and other mutants, DNA cloning and sequencing, and identification and use of the competence-inducing peptide to characterize the regulatory aspects of transformation. Spontaneous and chemically induced mutations in many genes have been obtained; they correspond to various single-site base changes and deletions and insertions of all sizes. Markers located nearby on the chromosome will exhibit linkage, that is, show a cotransformation frequency greater than expected for two separate entry events. For transformation to occur under natural conditions, DNA must be released from donor cells as well as taken up by recipient cells. Binding of SsbB may facilitate recombination, as such proteins do in other systems. Essential to recombination, however, is the gene. expression is increased during competence.

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7

Key Concept Ranking

Two-Component Signal Transduction Systems
0.42376792
0.42376792
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model for DNA uptake in transformation of . Double-stranded DNA is irreversibly bound to the cell surface and undergoes single-strand cleavage at random sites, possibly by action of a binding protein. A membrane-located nuclease, EndA, initiates entry of the bound strand by endonucleolytic cleavage of the complementary strand to give a double-strand break. Processive action of EndA 5′ to 3′ degrades the complementary strand to oligonucleotides, which remain outside the cell, while donor strands enter from their 3′ end (half-arrowhead). It is not known whether the strand enters without (a) or with (b) a pilot protein. The entering DNA is covered with a single-strand binding protein (c′).

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Chromosomal transformation. Heavy line, donor DNA strand segment. Thin line, chromosomal DNA. M and m, marker difference between donor and recipient. For plasmid transformation, substitute resident plasmid for chromosomal DNA. (1) Linear synapsis; (2) integration intermediate; (3) covalent joining. (B) Plasmid establishment. (1) Annealing of complementary strand fragments that entered separately; (2) repair synthesis; (3) completed replicon. (C) Chromosomal facilitation of plasmid establishment. (1) Circular synapsis followed by repair synthesis and ligation to close the plasmid strand; (2) synthesis of the complementary strand from the plasmid origin of replication; (3) release of established plasmid. (D) Ectopic integration of the marker in the vicinity of the locus. (1) Donor DNA consists of separately cloned and genes ligated together; (2) circular synapsis of the donor strand fragment at the chromosomal locus (a gap is filled by repair synthesis); (3) a single-strand crossover integrates the donor strand into the chromosome; (4) replication of the chromosome converts the integrated single-strand segment to a duplex form, giving a segment inserted between duplicated segments. (E) Mutagenesis of the gene by additive insertion of a nonreplicating plasmid. (1) Donor DNA consists of the gene joined to an plasmid containing an gene expressible in ; (2) circular synapsis of the donor strand at the chromosomal locus and repair synthesis; (3) a single-strand crossover integrates the donor strand into the chromosome; (4) replication of the chromosome converts the integrated single-strand segment to a duplex form so that the plasmid segment is inserted between duplicated segments, thereby producing an aminopterin resistance mutation. Letters a to d and a′ to d′ in panels D and E designate parts of the and loci, respectively.

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of quorum sensing in the regulation of competence for transformation. Accumulated extracellular CSP signals ComD to phosphorylate ComE, which then enhances synthesis of CSP and ComX. ComX is needed to transcribe genes required for transformation. Relevant genes are shown at the bottom. Open arrows point to gene products. Solid arrows show effects on promoters. Operon control elements: black, SigA promoter; white, weak SigA promoter; horizontal hatch, binding site for ComE enhancer. Other designations: P, protein phosphate; ComC', residual product after removal of CSP.

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Variation in competence regulatory components of streptococci. (A) CSPs. Species and strain are indicated. Arrows indicate point of cleavage from the precursor. Dots indicate identity to the peptide sequence above. (B) CSP receptor regions of ComD in strains. The first 96 amino-terminal residues are compared. (C) Binding sites for ComE in . The consensus sequence is from reference 114. Uppercase letters indicate correspondence to relatively invariant bases of the consensus. Numbers in brackets give distance between ComE-binding sequence repeats and between the second repeat and the extended −10 promoter site ( ). (D) Arrangement of the genes. Boxes depicting genes point in the direction of transcription.

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Late competence genes and construction and function of the DNA uptake apparatus in . DNA is depicted by heavy lines, with half-arrowheads indicating the 3′ direction. The “translocasome” is a hypothetical structure extruding through the cell wall and formed by CglC-G proteins, which are exported by the CglA-CglB complex and processed by CilC. Other components of the translocasome are CelA, which binds DNA; EndA, which degrades one strand; CelB, which forms a membrane pore for entry of the other strand; and CflA, which may unwind donor DNA. CoiA and CflB also may function in DNA uptake, possibly by nicking and attaching to DNA prior to entry. Calcium and magnesium ions are required for DNA uptake, with the latter needed by EndA. Upon entry, single strands are coated with Ssb. CilB, DpnA, and RecA act subsequent to DNA uptake. Relevant genes are shown at the bottom. Open arrows point to gene products. Solid arrows show effects on promoters. Operon control elements: black, SigA promoter; horizontal hatch, ComE enhancer; crosshatch, ComX promoter. Other designations: P, protein phosphate; m, methyl group on CglC, CglD, and CglF after processing by CilC. Question marks indicate an uncertain role in transformation.

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Restriction enzyme systems of . (A) Restriction gene cassettes of and their products. Symbols: thin bar, chromosome; thick bar, Dpn cassette; open boxes, genes in the cassettes or in the adjacent chromosome, showing direction of transcription. (B) Role of DpnA methylase in enabling unmethylated plasmid transfer into cells containing the DpnII restriction system. The degradative processing of DNA entering the cell by the transformation pathway requires the reconstitution of a plasmid from complementary strands that separately enter the cell. In a host lacking the DpnA methyltransferase, unmethylated plasmid DNA, upon reconstitution to a double-stranded form, would be cleaved by the DpnII endonuclease. In a host containing DpnA, single strands are methylated upon entry, so that the reconstituted plasmid is protected from the DpnII endonuclease. (C) Possible survival value of complementary restriction systems. I and II, cells making DpnI and DpnII, respectively. Infection of a mixed population by a single viral particle would destroy only part of the population.

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816537.chap7
1. Alloing, G.,, B. Martin,, C. Granadel,, and J. P. Claverys. 1998. Development of competence in Streptococcus pneumoniae: pheromone autoinduction and control of quorum sensing by the oligopeptide permease. Mol. Microbiol. 29:7583.
2. Alloway, J. L. 1931. The transformation in vitro of R pneumococci into S forms of different specific types by the use of filtered pneumococcus extracts. J. Exp. Med. 55:9199.
3. Avery, O. T.,, C. M. MacLeod,, and M. McCarty. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. Exp. Med. 89:137158.
4. Balganesh, T. S.,, and S. A. Lacks. 1985. Heteroduplex DNA mismatch repair system of Streptococcus pneumoniae: cloning and expression of the hexA gene. J. Bacteriol. 162:979984.
5. Barany, F.,, and J. D. Boeke. 1983. Genetic transformation of Streptococcus pneumoniae by DNA cloned into the single-stranded bacteriophage f1. J. Bacteriol. 153:200210.
6. Bartilson, M.,, A. Marra,, J. Christine,, J. S. Asundi,, W. P. Schneider,, and A. E. Hromockyj. 2001. Differential fluorescence induction reveals Streptococcus pneumoniae loci regulated by competence stimulatory peptide. Mol. Microbiol. 39:126135.
7. Berge, M.,, M. Moscoso,, M. Prudhomme,, B. Martin,, and J. P. Claverys. 2002. Uptake of transforming DNA in Gram-positive bacteria: a view from Streptococcus pneumoniae. Mol. Microbiol. 45:411421.
8. Caimano, M. J.,, G. G. Hardy,, and J. Yother. 1998. Capsule genetics in Streptococcus pneumoniae and a possible role for transposition in the generation of the type 3 locus. Microb. Drug Resist. 4:1123.
9. Camerini-Otero, R.,, and P. Hsieh. 1995. Homologous recombination proteins in prokaryotes and eukaryotes. Annu. Rev. Genet. 29:509552.
10. Campbell, E. A.,, S. Y. Choi,, and H. R. Masure. 1998. A competence regulon in Streptococcus pneumoniae revealed by genome analysis. Mol. Microbiol. 27:929939.
11. Cerritelli, S.,, S. S. Springhorn,, and S. A. Lacks. 1989. DpnA, a methylase for single-strand DNA in the DpnII restriction system, and its biological function. Proc. Natl. Acad. Sci. USA 86:92239227.
12. Chargaff, E. 1951. Structure and function of nucleic acids as cell constituents. Fed. Proc. 10:654659.
13. Cheng, Q.,, E. A. Campbell,, A. M. Naughton,, S. Johnson,, and H. R. Masure. 1997. The com locus controls genetic transformation in Streptococcus pneumoniae. Mol. Microbiol. 23:683692.
14. Chung, Y. S.,, F. Breidt,, and D. Dubnau. 1998. Cell surface localization and processing of the ComG proteins required for DNA binding during transformation of Bacillus subtilis. Mol. Microbiol. 29:905913.
15. Claverys, J. P.,, V. Mejean,, A. M. Gasc,, and A. M. Sicard. 1983. Mismatch repair in Streptococcus pneumoniae: relationship between base mismatches and transformation efficiencies. Proc. Natl. Acad. Sci. USA 80:59565960.
16. Claverys, J. P.,, H. Prats,, H. Vasseghi,, and M. Gherardi. 1984. Identification of Streptococcus pneumoniae mismatch repair genes by an additive transformation approach. Mol. Gen. Genet. 196:9196.
17. Dawson, M. H.,, and R. H. P. Sia. 1931. In vitro transformation of pneumococcal types. I. A technique for inducing transformation of pneumococcal types in vitro. J. Exp. Med. 54:681699.
18. Dowson, C. G.,, T. J. Coffey,, C. Kell,, and R. A. Whiley. 1993. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumoniae. Mol. Microbiol. 9: 635643.
19. Dubnau, D. 1997. Binding and transport of transforming DNA by Bacillus subtilis: the role of type-IV pilin-like proteins—a review. Gene 192:191198.
20. Echenique, J. R.,, S. Chapuy-Regaud,, and M.-C. Trombe. 2000. Competence regulation by oxygen in Streptococcus pneumoniae: involvement of ciaRH and comCDE. Mol. Microbiol. 36:688696.
21. Ephrussi-Taylor, H.,, and T. C. Gray. 1966. Genetic studies of recombining DNA in pneumococcal transformation. J. Gen. Physiol. 49(Part 2):211231.
22. Ephrussi-Taylor, H.,, A. M. Sicard,, and R. Kamen. 1965. Genetic recombination in DNA-induced transformation of pneumococcus. I. The problem of relative efficiency of transforming factors. Genetics 51:455475.
23. Fishel, R.,, M. K. Lescoe,, M. R. S. Rao,, N. G. Copeland,, N. A. Jenkins,, J. Garber,, M. Kane,, and R. Kolodner. 1993. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:10271038.
24. Fox, M. S. 1957. Deoxyribonucleic acid incorporation by transformed bacteria. Biochim. Biophys. Acta 26:8385.
25. Fox, M. S. 1960. Fate of transforming deoxyribonucleate following fixation by transforming bacteria. II. Nature 187:10041006.
26. Fox, M. S.,, and M. K. Allen. 1964. On the mechanism of deoxyribonucleate integration in pneumococcal transformation. Proc. Natl. Acad. Sci. USA 52:412419.
27. Franklin, R.,, and R. Gosling. 1953. Molecular configuration in sodium thymonucleate. Nature 171:740741.
28. Gasc, A. M.,, N. Sicard,, J. P. Claverys,, and A. M. Sicard. 1980. Lack of SOS repair in Streptococcus pneumoniae. Mutat. Res. 70:157165.
29. Gentry, D. R.,, K. A. Ingraham,, M. J. Stanhope,, S. Rittenhouse,, R. L. Jarvest,, P. J. O’Hanlon,, J. R. Brown,, and D. J. Holmes. 2003. Variable sensitivity to bacterial methionyltRNA synthetase inhibitors reveals subpopulations of Streptococcus pneumoniae with two distinct methionyl-tRNA synthetase genes. Antimicrob. Agents Chemother. 47:17841789.
30. Grebe, T. W.,, and J. B. Stock. 1999. The histidine protein kinase superfamily. Adv. Microb. Physiol. 41:139227.
31. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27:113159.
32. Hakenbeck, R.,, N. Balmelle,, B. Weber,, C. Gardes,, W. Keck,, and A. de Saizieu. 2001. Mosaic genes and mosaic chromosomes: intraand interspecies genomic variation of Streptococcus pneumoniae. Infect. Immun. 69:24772486.
33. Hava, D. L.,, and A. Camilli. 2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol. 45:13891406.
34. Håvarstein, L. S.,, G. Coomaraswamy,, and D. A Morrison. 1995. An unmodified heptadecapeptide induces competence for genetic transformation in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 92:1114011144.
35. Håvarstein, L. S.,, P. Gaustad,, I. F. Nes,, and D. A Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol. Microbiol. 21:863869.
36. Håvarstein, L. S.,, R. Hakenbeck,, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol. 179:65896594.
37. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton,, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
38. Hobbs, M.,, and J. S. Mattick. 1993. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol. Microbiol. 10:233243.
39. Hoskins, J.,, W. E. Alborn, Jr.,, J. Arnold,, L. C. Blaszczak,, S. Burgett,, B. S. DeHoff,, S. T. Estrem,, L. Fritz,, D. J. Fu,, W. Fuller,, C. Geringer,, R. Gilmour,, J. S. Glass,, H. Khoja,, A. R. Kraft,, R. E. Lagace,, D. J. LeBlanc,, L. N. Lee,, E. J. Lefkowitz,, J. Lu,, P. Matsushima,, S. M. McAhren,, M. McHenney,, K. McLeaster,, C. W. Mundy,, T. I. Nicas,, F. H. Norris,, M. O’Gara,, R. B. Peery,, G. T. Robertson,, P. Rockey,, P. M. Sun,, M. E. Winkler,, Y. Yang,, M. Young-Bellido,, G. Zhao,, C. A. Zook,, R. H. Baltz,, S. R. Jaskunas,, P. R. Rosteck, Jr.,, P. L. Skatrud,, and J. I. Glass. 2001. Genome of the bacterium Streptococcus pneumoniae strain R6. J. Bacteriol. 183:57095717.
40. Hotchkiss, R. D. 1954. Cyclical behavior in pneumococcal growth and transformability occasioned by environmental changes. Proc. Natl. Acad. Sci. USA 40:4955.
41. Hotchkiss, R. D., 1957. Criteria for the quantitative genetic transformation of bacteria, p. 321335. In W. D. McElroy, and B. Glass (ed.), The Chemical Basis of Heredity. Johns Hopkins Press, Baltimore, Md.
42. Hui, F. M.,, and D. A. Morrison. 1991. Genetic transformation in Streptococcus pneumoniae: nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J. Bacteriol. 173:372381.
43. Karudapuram, S.,, X. Zhao,, and G. J. Barcak. 1995. DNA sequence and characterization of Haemophilus influenzae dprA+, a gene required for chromosomal but not plasmid DNA transformation. J. Bacteriol. 177:32353240.
44. Lacks, S. 1962. Molecular fate of DNA in genetic transformation of pneumococcus. J. Mol. Biol. 5:119131.
45. Lacks, S. 1966. Integration efficiency and genetic recombination in pneumococcal transformation. Genetics 53:207235.
46. Lacks, S. 1970. Mutants of Diplococcus pneumoniae that lack deoxyribonucleases and other activities possibly pertinent to genetic transformation. J. Bacteriol. 101:373383.
47. Lacks, S. 1979. Uptake of circular deoxyribonucleic acid and mechanism of deoxyribonucleic acid transport in genetic transformation of Streptococcus pneumoniae. J. Bacteriol. 138:404409.
48. Lacks, S.,, and B. Greenberg. 1973. Competence for deoxyribonucleic acid uptake and deoxyribonuclease action external to cells in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 114:152163.
49. Lacks, S.,, and B. Greenberg. 1976. Singlestrand breakage on binding of DNA to cells in the genetic transformation of Diplococcus pneumoniae. J. Mol. Biol. 101:255275.
50. Lacks, S.,, B. Greenberg,, and K. Carlson. 1967. Fate of donor DNA in pneumococcal transformation. J. Mol. Biol. 29:327347.
51. Lacks, S.,, B. Greenberg,, and M. Neuberger. 1974. Role of a deoxyribonuclease in the genetic transformation of Diplococcus pneumoniae. Proc. Natl. Acad. Sci. USA 71:23052309.
52. Lacks, S.,, B. Greenberg,, and M. Neuberger. 1975. Identification of a deoxyribonuclease impli- cated in genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 123:222232.
53. Lacks, S.,, and M. Neuberger. 1975. Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 124:13211329.
54. Lacks, S. A., 1977. Binding and entry of DNA in bacterial transformation, p. 179232. In J. L. Reissig (ed.), Microbial Interactions, Receptors and Recognition. Chapman and Hall, London, England.
55. Lacks, S. A., 1989. Generalized DNA mismatch repair—its molecular basis in Streptococcus pneumoniae and other organisms, p. 325339. In L. O. Butler,, C. Harwood,, and B. E. B. Moseley (ed.), Genetic Transformation and Expression. Intercept, Andover, England.
56. Lacks, S. A. 1997. Cloning and expression of pneumococcal genes in Streptococcus pneumoniae. Microb. Drug Resist. 3:327337.
57. Lacks, S. A., 1998. DNA repair and mutagenesis in Streptococcus pneumoniae, p. 263286. In J. A. Nickoloff, and M. F. Hoekstra (ed.), DNA Damage and Repair, vol. 1. DNA Repair in Prokaryotes and Lower Eukaryotes. Humana Press, Totowa, N.J.
58. Lacks, S. A., 1999. DNA uptake by transformable bacteria, p. 138168. In J. K. Broome- Smith,, S. Baumberg,, C. J. Stirling,, and F. B. Ward (ed.), Transport of Molecules across Microbial Membranes. Cambridge University Press, Cambridge, England.
59. Lacks, S. A.,, S. Ayalew,, A. G. de la Campa,, and B. Greenberg. 2000. Regulation of competence for genetic transformation in Streptococcus pneumoniae: expression of dpnA, a late competence gene encoding a DNA methyltransferase of the DpnII restriction system. Mol. Microbiol. 35:10891098.
60. Lacks, S. A.,, J. J. Dunn,, and B. Greenberg. 1982. Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31:327336.
61. Lacks, S. A.,, and B. Greenberg. 2001. Constitutive competence for genetic transformation in Streptococcus pneumoniae caused by mutation of a transmembrane histidine kinase. Mol. Microbiol. 42:10351045.
62. Lacks, S. A.,, B. M. Mannarelli,, S. S. Springhorn,, and B. Greenberg. 1986. Genetic basis of the complementary DpnI and DpnII restriction systems of S. pneumoniae: an intercellular cassette mechanism. Cell 46:9931000.
63. Lange, R.,, C. Wagner,, A. de Saizieu,, N. Flint,, J. Molnos,, M. Stieger,, P. Caspers,, M. Kamber,, W. Keck,, and K. E. Amrein. 1999. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237:223234.
64. Lau, G. W.,, S. Haataja,, M. Lonetto,, S. E. Kensit,, A. Marra,, A. P. Bryant,, D. McDevitt,, D. A. Morrison,, and D. W. Holden. 2001. A functional genomic analysis of type 3 Streptococcus pneumoniae virulence. Mol. Microbiol. 40:555571.
65. Lee, M. S.,, B. A. Dougherty,, A. C. Madeo,, and D. A. Morrison. 1999. Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl. Environ. Microbiol. 65:18831890.
66. Lee, M. S.,, and D. A. Morrison. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 181:50045016.
67. Lerman, R. S.,, and L. J. Tolmach. 1957. Genetic transformation. I. Cellular incorporation of DNA accompanying transformation in pneumococcus. Biochim. Biophys. Acta 28:6882.
68. Li, Y. H.,, P. C. Lau,, J. H. Lee,, R. P. Ellen,, and D. G. Cvitkovitch. 2001. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183:897908.
69. Lopez, P.,, M. Espinosa,, D. L. Stassi,, and S. A. Lacks. 1982. Facilitation of plasmid transfer in Streptococcus pneumoniae by chromosomal homology. J. Bacteriol. 150:692701.
70. Lorenz, M. G.,, and W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563602.
71. Luo, P.,, H. Li,, and D. A. Morrison. 2003. ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol. Microbiol. 50:623633.
72. Mannarelli, B. M.,, and S. A. Lacks. 1984. Ectopic integration of chromosomal genes in Streptococcus pneumoniae. J. Bacteriol. 160:867873.
73. Marmur, J.,, and D. Lane. 1960. Strand separation and specific recombination in deoxyribonucleic acids: biological studies. Proc. Natl. Acad. Sci. USA 46:453461.
74. Martin, B.,, P. Garcia,, M. P. Castanie,, and J. P. Claverys. 1995. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls lysogenic induction. Mol. Microbiol. 15:367379.
75. Martin, B.,, M. Prudhomme,, G. Alloing,, C. Granadel,, and J. P. Claverys. 2000. Crossregulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol. Microbiol. 38:867878.
76. Mascher, T.,, D. Zahner,, M. Merai,, N. Balmelle,, A. B. de Saizieu,, and R. Hakenbeck. 2003. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J. Bacteriol. 185:6070.
77. Mejean, V.,, and J. P. Claverys. 1988. Polarity of DNA entry in transformation of Streptococcus pneumoniae. Mol. Gen. Genet. 213:444448.
78. Miao, R.,, and W. R. Guild. 1970. Competent Diplococcus pneumoniae accept both single- and double-stranded deoxyribonucleic acid. J. Bacteriol. 101:361364.
79. Morrison, D. A.,, and M. F. Baker. 1979. Competence for genetic transformation in pneumococcus depends on synthesis of a small set of proteins. Nature 282:215217.
80. Morrison, D. A.,, S. A. Lacks,, W. G. Guild,, and J. M. Hageman. 1983. Isolation and characterization of three new classes of transformation- deficient mutants of Streptococcus pneumoniae that are defective in DNA transport and genetic recombination. J. Bacteriol. 156:281290.
81. Morrison, D. A.,, and B. Mannarelli. 1979. Transformation in pneumococcus: nuclease resistance of deoxyribonucleic acid in the eclipse complex. J. Bacteriol. 140:655665.
82. Mortier-Barriere, I.,, A. de Saizieu,, J. P. Claverys,, and B. Martin. 1998. Competencespecific induction of recA is required for full recombination proficiency during transformation in Streptococcus pneumoniae. Mol. Microbiol. 27:159170.
83. Novak, R.,, A. Cauwels,, E. Charpentier,, and E. Tuomanen. 1999. Identification of a Streptococcus pneumoniae gene locus encoding proteins of an ABC phosphate transporter and a two-component regulatory system. J. Bacteriol. 181:11261133.
84. Ottolenghi, E.,, and R. D. Hotchkiss. 1962. Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J. Exp. Med. 116:491519.
85. Pakula, R.,, and W. Walczak. 1963. On the nature of competence of transformable streptococci. J. Gen. Microbiol. 31:125133.
86. Pasta, F.,, and M. A. Sicard. 1994. Hyperrecombination in pneumococcus: A/G to C.G repair and requirement for DNA polymerase I. Mutat. Res. 315:113122.
87. Pearce, B. J.,, A. M. Naughton,, E. A. Campbell,, and H. R. Masure. 1995. The rec locus, a competence-induced operon in Streptococcus pneumoniae. J. Bacteriol. 177:8693.
88. Pestova, E. V.,, L. S. Håvarstein,, and D. A. Morrison. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol. Microbiol. 21:853862.
89. Pestova, E. V.,, and D. A. Morrison. 1998. Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J. Bacteriol. 180:27012710.
90. Peterson, S.,, R. T. Cline,, H. Tettelin,, V. Sharov,, and D. A. Morrison. 2000. Gene expression analysis of the Streptococcus pneumoniae competence regulons by use of DNA microarrays. J. Bacteriol. 182:61926202.
90a.. S. N. Peterson,, C. K. Sung,, R. Cline,. B. V. Desai,, E. Snesrud,, P. Luo,, J. Walling,, H. Li,, M. Mintz,, G. Tsegaye,, P. Burr,, Y. Do,, S. Ahn,, J. Gilbert,, R. Fleischmann,, and D. A. Morrison. 2004. Identification of competence pheromone responsive genes in Streptococcus pneumoniae by use of DNA microarrays. Mol. Microbiol. 51:10511070.
91. Polissi, A.,, A. Pontiggia,, G. Feger,, M. Altieri,, H. Mottl,, L. Ferrari,, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66:56205629.
92. Pozzi, G.,, L. Masala,, F. Iannelli,, R. Manganelli,, L. S. Håvarstein,, L. Piccoli,, D. Simon,, and D. A. Morrison. 1996. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178:60876090.
93. Provvedi, R.,, and D. Dubnau. 1999. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31: 271280.
94. Puyet, A.,, B. Greenberg,, and S. A. Lacks. 1990. Genetic and structural characterization of EndA, a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol. 213:727738.
95. Ravin, A. W. 1960. The genetics of transformation. Adv. Genet. 10:61163.
96. Rimini, R.,, B. Jansson,, G. Feger,, T. C. Roberts,, M. de Francesco,, A. Gozzi,, F. Faggioni,, E. Domenici,, D. M. Wallace,, N. Frandsen,, and A. Polissi. 2000. Global analysis of transcription kinetics during competence development in Streptococcus pneumoniae using high density DNA arrays. Mol. Microbiol. 36:12791292.
97. Sabelnikov, A. G.,, B. Greenberg,, and S. A. Lacks. 1995. An extended −10 promoter alone directs transcription of the DpnII operon of Streptococcus pneumoniae. J. Mol. Biol. 250:144155.
98. Saunders, C. W.,, and W. R. Guild. 1980. Monomer plasmid DNA transforms Streptococcus pneumoniae. Mol. Gen. Genet. 181:5762.
99. Sebert, M. E.,, L. M. Palmer,, M. Rosenberg,, and J. N. Weiser. 2002. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colo nization. Infect. Immun. 70:40594067.
100. Seto, H.,, and A. Tomasz. 1975. Protoplast formation and leakage of intramembrane cell components: induction by the competence activator substance of pneumococci. J. Bacteriol. 121:344353.
101. Stassi, D. L.,, and S. A. Lacks. 1982. Effect of strong promoters on the cloning in Escherichia coli of DNA fragments from Streptococcus pneumoniae. Gene 18:319328.
102. Stassi, D. L.,, P. Lopez,, M. Espinosa,, and S. A. Lacks. 1981. Cloning of chromosomal genes in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 78:70287032.
103. Steinmoen, H.,, E. Knutsen,, and L. S. Håvarstein. 2002. Induction of natural competence in Streptococcus pneumoniae triggers lysis and DNA release from a subfraction of the cell population. Proc. Natl. Acad. Sci. USA 99:76817686.
104. Strom, M. S.,, D. N. Nunn,, and S. Lory. 1993. A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family. Proc. Natl. Acad. Sci. USA 90:24042408.
105. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Angiuoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498506.
106. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge,, A. Marra,, N. G. Wallis,, J. R. Brown,, D. J. Holmes,, M. Rosenberg,, and M. K. Burnham. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35:566576.
107. Tiraby, G.,, and M. S. Fox. 1973. Marker discrimination in transformation and mutation of pneumococcus. Proc. Natl. Acad. Sci. USA 70:35413545.
108. Tomasz, A.,, and R. D. Hotchkiss. 1964. Regulation of the transformability of pneumococcal cultures by macromolecular cell products. Proc. Natl. Acad. Sci. USA 51:480487.
109. Vasseghi, H.,, J. P. Claverys,, and A. M. Sicard,. 1981. Mechanism of integrating foreign DNA during transformation in Streptococcus pneumoniae, p. 137154. In M. Polsinelli, and G. Mazza (ed.), Transformation 1980. Cotswold Press, Oxford, England.
110. Vijayakumar, M. N.,, S. D. Priebe,, and W. R. Guild. 1986. Structure of a conjugative element in Streptococcus pneumoniae. J. Bacteriol. 166:978984.
111. Vovis, G. F.,, and S. Lacks. 1977. Complementary action of restriction enzymes Endo R.DpnI and Endo R.DpnII on bacteriophage fl DNA. J. Mol. Biol. 115:525538.
112. Wagner, C.,, A. de Saizieu,, H. J. Schonfeld,, M. Kamber,, R. Lange,, C. J. Thompson,, and M. G. Page. 2002. Genetic analysis and functional characterization of the Streptococcus pneumoniae vic operon. Infect. Immun. 70:61216128.
113. Watson, J. D.,, and F. H. C. Crick. 1953. Molecular structure of nucleic acids. Nature 171:737738.
114. Ween, O.,, P. Gaustad,, and L. S. Håvarstein. 1999. Identification of DNA binding sites for ComE, a key regulator of natural competence in Streptococcus pneumoniae. Mol. Microbiol. 33:817827.
115. Whatmore, A. M.,, V. A. Barcus,, and C. G. Dowson. 1999. Genetic diversity of the streptococcal competence (com) gene locus. J. Bacteriol. 181:31443154.

Tables

Generic image for table
TABLE 1

Genes of implicated in transformation

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7
Generic image for table
TABLE 2

Two-component signal transduction systems in

Citation: Lacks S. 2004. Transformation, p 89-116. In Tuomanen E, Mitchell T, Morrison D, Spratt B (ed), The Pneumococcus. ASM Press, Washington, DC. doi: 10.1128/9781555816537.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error