1887

Chapter 10 : Transport Biochemistry of FepA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Transport Biochemistry of FepA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap10-2.gif

Abstract:

This chapter provides an overview of structural features of metal transporters as a basis for mechanistic discussions that follow. The crystals of FepA, FhuA, FecA, and BtuB all showed the hollow, 22-strand antiparallel β-barrel of the C-domain, which spans the outer membrane (OM) and contains large extracellular loops that function in ligand binding, and the structurally distinct globular N-domain, which folds into the barrel interior, blocking access to the periplasm. The FepA crystal structure did not illustrate the disposition of bound ligands, but it is known from site-directed mutagenesis and biochemistry that basic and aromatic amino acids in the surface loops adsorb ligands on the basis of ionic and hydrophobic bonds and ring stacking. FepA interconverts between two distinct structural forms that were seen by electron spin resonance (ESR) spectroscopy. ESR spectroscopy also observed conformational changes in FepA during ligand uptake, but its low sensitivity made the technique difficult to employ in vivo. Ferric enterobactin (FeEnt) binds to FepA with a subnanomolar Kd that translates into a dissociation half-life of over 1 min. This calculation conflicts with the experimentally observed 20-s turnover number of FepA and argues for protein conformational change as an essential part of the transport mechanism that (i) undermines the affinity of the siderophore-receptor binding interaction, (ii) originates or unveils a channel to the periplasm, and (iii) facilitates internalization of the metal complex from the surface loops through the pore.

Citation: Klebba P. 2004. Transport Biochemistry of FepA, p 147-157. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch10

Key Concept Ranking

Bacterial Pathogenesis
0.48955908
Aromatic Amino Acids
0.47667593
Basic Amino Acids
0.46071032
Reactive Oxygen Species
0.4197453
Bacterial Diseases
0.4117776
Vitamin B12
0.4022989
0.48955908
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816544.chap10
1. Annamalai, R.,, B. Jin,, Z. Cao,, S. M. C. Newton,, and P. E. Klebba. 2004. Recognition of ferric catecholates by FepA. J. Bacteriol. 186:35783589.
2. Braun, M.,, H. Killmann,, and V. Braun. 1999. The beta-barrel domain of FhuAΔ 5-160 is sufficient for TonB-dependent FhuA activities of Escherichia coli. Mol. Microbiol. 33:10371049.
3. Buchanan, S. K.,, B. S. Smith,, L. Venkatramani,, D. Xia,, L. Esser,, M. Palnitkar,, R. Chakraborty,, D. vanderHelm,, and J. Deisenhofer. 1999. Crystal structure of the outer membrane active transporter FepA from Escherichia coli. Nat. Struct. Biol. 6:5663.
4. Cao, Z.,, P. Warfel,, S. M. Newton,, and P. E. Klebba. 2003. Spectroscopic observations of ferric enterobactin transport. J. Biol. Chem. 278:10221028.
5. Chimento, D. P.,, A. K. Mohanty,, R. J. Kadner,, and M. C. Wiener. 2003. Substrate-induced transmembrane signaling in the cobalamin transporter BtuB. Nat. Struct. Biol. 10:394401.
6. Jiang, X.,, M. A. Payne,, Z. Cao,, S. B. Foster,, J. B. Feix,, S. M. Newton,, and P. E. Klebba. 1997. Ligand-specific opening of a gated-porin channel in the outer membrane of living bacteria. Science 276:12611264.
7. Klebba, P. E. 2003. Three paradoxes of ferric enterobactin uptake. Front. Biosci. 8:14221436.
8. Liu, J.,, J. M. Rutz,, P. E. Klebba,, and J. B. Feix. 1994. A site-directed spin-labeling study of ligandinduced conformational change in the ferric enterobactin receptor, FepA. Biochemistry 33:1327413283.
9. Murphy, C. K.,, and P. E. Klebba. 1989. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12. J. Bacteriol. 171:58945900.
10. Newton, S. M.,, J. D. Igo,, D. C. Scott,, and P. E. Klebba. 1999. Effect of loop deletions on the binding and transport of ferric enterobactin by FepA. Mol. Microbiol. 32:11531165.
11. Nikaido, H.,, and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol Rev. 49:132.
12. Payne, M. A.,, J. D. Igo,, Z. Cao,, S. B. Foster,, S. M. Newton,, and P. E. Klebba. 1997. Biphasic binding kinetics between FepA and its ligands. J. Biol. Chem. 272:2195021955.
13. Scott, D. C. 2001. Mechanism of ferric enterobactin transport through FepA: a bacterial venus flytrap. Ph.D. thesis. University of Oklahoma, Norman.
14. Scott, D. C.,, Z. Cao,, Z. Qi,, M. Bauler,, J. D. Igo,, S. M. Newton,, and P. E. Klebba. 2001. Exchangeability of N termini in the ligand-gated porins of Escherichia coli. J. Biol. Chem. 276:1302513033.
15. Ullmann, A.,, D. Perrin,, F. Jacob,, and J. Monod. 1965. Identification, by in vitro complementation and purification, of a peptide fraction of Escherichia coli β-galactosidase. J. Mol. Biol. 12:918923. (In French.)
16. Usher, K. C.,, E. Ozkan,, K. H. Gardner,, and J. Deisenhofer. 2001. The plug domain of FepA, a TonB-dependent transport protein from Escherichia coli, binds its siderophore in the absence of the transmembrane barrel domain. Proc. Natl. Acad. Sci. USA 98:1067610681.
17. Vakharia, H. L.,, and K. Postle. 2002. FepA with globular domain deletions lacks activity. J. Bacteriol. 184:55085512.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error