1887

Chapter 2 : Siderophore Biosynthesis in Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Siderophore Biosynthesis in Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap02-2.gif

Abstract:

The evolution of the biosynthetic routes to bacterial siderophores has been driven by the chemical demands imposed by the task of coordinating (and therefore making soluble) individual atoms of ferric iron (Fe). To serve as a chemically competent ligand to ferric iron, a functional group must possess a lone pair of electrons that has good electron donor properties. Bacteria have marshalled a diverse array of such functional groups for use in their siderophores, including phenolic hydroxyls, N-hydroxamates, the nitrogen constituents of five-member heterocyclic rings, and carboxylates. Each functional group defines a class of siderophores, and while some are the sole contingent of electron donors in a given siderophore, each of them has been found in combination with another. Siderophore scaffolds require flexibility and a certain amount of spatial extension, given that the molecule must wrap around an iron atom such that coordinating functional groups can be positioned at or near the optimal distances and angles. To make effective scaffolds, bacteria have chosen readily available materials that have the appropriate molecular handles to attach the required functional groups.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2

Key Concept Ranking

Amide Bond Formation
0.48249206
Aromatic Amino Acid Biosynthesis
0.45685124
0.48249206
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Octahedral configuration of ferric iron coordination by ligands (X).

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Required activities in NRPS modules. (A) A domains use ATP to activate amino acids and thioesterify them to the phosphopantetheine cofactor (wavy line) of a PCP, (B) C domains couple upstream donor and downstream acceptor amino acids, elongating the peptide and translocating it down the NRPS. (C) TE domains release the finished peptide via hydrolysis.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Auxilliary activities in NRPS modules. Commonly observed domains catalyze cyclization-dehydration (A), epimerization (B), methyl transfer (C), and oxidation or reduction (D). Oxidation is not shown. X indicates O or S; R indicates an amino acid side chain.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Some representative catecholate or phenolate siderophores.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Biosynthesis of catechols and phenolates. Chorismate is generated from primary metabolites (A) and then used to manufacture DHB (B), while salicylate has a related but distinct biosynthetic pathway (C). Roman numerals refer to enzymes listed in Table 1 .

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Biosynthesis of enterobactin from DHB and Ser by EntB, EntE, and EntF.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Biosynthesis of myxochelins A and B from DHB and Lys by MxcF, MxcE, MxcG, and MxcL.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Some representative hydroxamate siderophores.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Proposed scheme for lysine- -hydroxylation by the monooxygenase IucD of the aerobactin biosynthetic pathway.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Biosynthesis of aerobactin. (A) Structure of aerobactin. (B) Structure of aerobactin biosynthetic gene cluster. (C) Scheme for aerobactin synthesis from lysine, citrate, acetyl-CoA (AcCoA), and O by IucD, IucB, IucA, and IucC.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Biosynthesis of exochelin. (A) Structure of exochelin. (B) Structure of exochelin biosynthesis gene cluster. (C) NRPS proteins FxbB and FxbC shown with posttranslationally modified (but unacylated) PCPs.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Some representative five-member heterocyclic ring-containing siderophores.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

Scheme of the chelation of ferric iron by the siderophore micacocidin, as determined by Xray crystallography.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14
FIGURE 14

Predicted mechanism for the formation of heterocyclic rings by Cy domains.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 15
FIGURE 15

Biosynthesis of vibriobactin from DHB, Thr, and NSPD by VibB, VibE, VibH, and VibF. DHP-mOx, dihydroxyphenyl-methyloxazolinyl.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 16
FIGURE 16

Biosynthesis of yersiniabactin by YbtE, HMWP2, the hybrid NRPS-PKS HMWP1, and the reductase YbtU.

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816544.chap2
1. Actis, L. A.,, W. Fish,, J. H. Crosa,, K. Kellerman,, S. R. Ellenberger,, F. M. Hauser,, and J. Sanders- Loehr. 1986. Characterization of anguibactin, a novel siderophore from Vibrio anguillarum 775(pJM1). J. Bacteriol. 167:5765.
2. Bearden, S. W.,, J. D. Fetherston,, and R. D. Perry. 1997. Genetic organization of the yersiniabactin biosynthetic region and construction of avirulent mutants in Yersinia pestis. Infect. Immun. 65: 16591668.
3. Budde, A. D.,, and S. A. Leong. 1989. Characterization of siderophores from Ustilago maydis. Mycopathologia 108:125133.
4. Cox, C. D.,, K. L. Rinehart, Jr.,, M. L. Moore,, and J. C. Cook, Jr. 1981. Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 78:42564260.
5. Drechsel, H.,, H. Stephan,, R. Lotz,, H. Haag,, H. Zahner,, K. Hantke,, and G. Jung. 1995. Structural elucidation of yersiniabactin, a siderophore from highly virulent Yersinia strains. Liebigs Ann. 1995:17271733.
6. Gaitatzis, N.,, B. Kunze,, and R. Muller. 2001. In vitro reconstitution of the myxochelin biosynthetic machinery of Stigmatella aurantiaca Sg a15: biochemical characterization of a reductive release mechanism from nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. USA 98:1113611141.
7. Gehring, A. M.,, K. A. Bradley,, and C. T. Walsh. 1997. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36:84958503.
8. Gehring, A. M.,, E. DeMoll,, J. D. Fetherston,, I. Mori,, G. F. Mayhew,, F. R. Blattner,, C. T. Walsh,, and R. D. Perry. 1998. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem. Biol. 5: 573586.
9. Harris, W. R.,, C. J. Carrano,, S. R. Cooper,, S. R. Sofen,, A. E. Avdeef,, J. V. McArdle,, and K. N. Raymond. 1979. Coordination chemistry of microbial iron transport compounds. 19. Stability constants and electrochemical behavior of ferric enterobactin and model complexes. J. Am. Chem. Soc. 101:60976104.
10. Keating, T. A.,, C. G. Marshall,, and C. T. Walsh. 2000. Reconstitution and characterization of the Vibrio cholerae vibriobactin synthetase from VibB, VibE, VibF, and VibH. Biochemistry 39: 1552215530.
11. Keating, T. A.,, C. G. Marshall,, and C. T. Walsh. 2000. Vibriobactin biosynthesis in Vibrio cholerae: VibH is an amide synthase homologous to nonribosomal peptide synthetase condensation domains. Biochemistry 39:1551315521.
12. Keating, T. A.,, C. G. Marshall,, C. T. Walsh,, and A. E. Keating. 2002. The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains. Nat. Struct. Biol. 9:522526.
13. Keating, T. A.,, D. A. Miller,, and C. T. Walsh. 2000. Expression, purification, and characterization of HMWP2, a 229 kDa, six domain protein subunit of yersiniabactin synthetase. Biochemistry 39: 47294739.
14. Keating, T. A.,, and C. T. Walsh. 1999. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 3:598606.
15. Kobayashi, S.,, H. Nakai,, Y. Ikenishi,, W. Y. Sun,, M. Ozaki,, Y. Hayase,, and R. Takeda. 1998. Micacocidin A, B and C, novel antimycoplasma agents from Pseudomonas sp. II. Structure elucidation. J. Antibiot. (Tokyo) 51:328332.
16. Lynch, D.,, J. O'Brien,, T. Welch,, P. Clarke,, P. O. Cuiv,, J. H. Crosa,, and M. O'Connell. 2001. Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J. Bacteriol. 183:25762585.
17. Marshall, C. G.,, M. D. Burkart,, T. A. Keating,, and C. T. Walsh. 2001. Heterocycle formation in vibriobactin biosynthesis: alternative substrate utilization and identification of a condensed intermediate. Biochemistry 40:1065510663.
18. Marshall, C. G.,, N. J. Hillson,, and C. T. Walsh. 2002. Catalytic mapping of the vibriobactin biosynthetic enzyme VibF. Biochemistry 41:244250.
19. May, J. J.,, T. M. Wendrich,, and M. A. Marahiel. 2001. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihydroxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276:72097217.
20. Miller, D. A.,, L. Luo,, N. Hillson,, T. A. Keating,, and C. T. Walsh. 2002. Yersiniabactin synthetase: a four-protein assembly line producing the nonribosomal peptide/polyketide hybrid siderophore of Yersinia pestis. Chem. Biol. 9:333344.
21. Patel, H. M.,, and C. T. Walsh. 2001. In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry 40: 90239031.
22. Perry, R. D.,, P. B. Balbo,, H. A. Jones,, J. D. Fetherston,, and E. DeMoll. 1999. Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145:11811190.
23. Quadri, L. E.,, T. A. Keating,, H. M. Patel,, and C. T. Walsh. 1999. Assembly of the Pseudomonas aeruginosa nonribosomal peptide siderophore pyochelin: in vitro reconstitution of aryl-4, 2-bisthiazoline synthetase activity from PchD, PchE, and PchF. Biochemistry 38:1494114954.
24. Reimmann, C.,, H. M. Patel,, L. Serino,, M. Barone,, C. T. Walsh,, and D. Haas. 2001. Essential PchG-dependent reduction in pyochelin biosynthesis of Pseudomonas aeruginosa. J. Bacteriol. 183: 813820.
25. Sharman, G. J.,, D. H. Williams,, D. F. Ewing,, and C. Ratledge. 1995. Isolation, purification and structure of exochelin MS, the extracellular siderophore from Mycobacterium smegmatis. Biochem. J. 305: 187196.
26. Tolmasky, M. E.,, L. A. Actis,, and J. H. Crosa. 1995. A histidine decarboxylase gene encoded by the Vibrio anguillarum plasmid pJM1 is essential for virulence: histamine is a precursor in the biosynthesis of anguibactin. Mol. Microbiol. 15:8795.
27. Walsh, C. T.,, J. Liu,, F. Rusnak,, and M. Sakaitani. 1990. Molecular studies on enzymes in chorismate metabolism and the enterobactin biosynthetic pathway. Chem. Rev. 90:11051129.
28. Yu, S.,, E. Fiss,, and W. R. Jacobs, Jr. 1998. Analysis of the exochelin locus in Mycobacterium smegmatis: biosynthesis genes have homology with genes of the peptide synthetase family. J. Bacteriol. 180: 46764685.
29. Yuan, W. M.,, G. D. Gentil,, A. D. Budde,, and S. A. Leong. 2001. Characterization of the Ustilago maydis sid2 gene, encoding a multidomain peptide synthetase in the ferrichrome biosynthetic gene cluster. J. Bacteriol. 183:40404051.
30. Zhu, W.,, J. E. Arceneaux,, M. L. Beggs,, B. R. Byers,, K. D. Eisenach,, and M. D. Lundrigan. 1998. Exochelin genes in Mycobacterium smegmatis: identification of an ABC transporter and two nonribosomal peptide synthetase genes. Mol. Microbiol. 29:629639.

Tables

Generic image for table
TABLE 1

Biosynthesis of catechols and phenolates

Citation: Walsh C, Marshall C. 2004. Siderophore Biosynthesis in Bacteria, p 18-37. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error