1887

Chapter 21 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap21-2.gif

Abstract:

, the etiological agent of periodontal disease, is an anaerobe that requires iron in the form of heme for growth. This chapter discusses the roles of specific outer membrane proteins and gingipains in heme accumulation by . The binding and accumulation of hemoglobin by is currently the focus of investigations being conducted in several independent laboratories. Recent investigations have indicated a significant role for the gingipain proteases in the acquisition of heme from hemoglobin. The gingipains of specifically cleave substrates behind either arginine or lysine residues. In addition to gingipains, hemagglutinins may aid in iron-heme utilization in . Due to the obligate requirement for iron by the expression of specific iron uptake systems is an important survival mechanism. The development of effective control strategies for infection requires an understanding of the iron transport systems required for in vivo growth of this organism. does not produce siderophores as do many other pathogens. Recent investigations of the acquisition of heme by have led to the identification of several outer membrane receptors. While the function of many of these putative receptors remains to be determined by mutational analysis, the initial analyses have provided the primary insight into how acquires heme. The involvement of the gingipains, particularly Kgp, indicates that in addition to specific outer membrane proteins, may use a hemophorelike delivery system.

Citation: Genco C, Simpson W, Olczak T. 2004. , p 329-343. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch21

Key Concept Ranking

Outer Membrane Proteins
0.5231257
Enzyme-Linked Immunosorbent Assay
0.4147465
Gene Expression and Regulation
0.4091888
0.5231257
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structures of gingipains HRgpA and Kgp. The sizes of the hemagglutinin domains (HA1 to HA4) are indicated. Amino acids involved in posttranslational processing are indicated by arrows. Areas of similar shading indicate sequences identical in both proteins. Percentages represent the degree of identity between the two compared regions of HRgpA and Kgp.

Citation: Genco C, Simpson W, Olczak T. 2004. , p 329-343. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Three proposed mechanisms of heme transport in . (A) The degradation of a red blood cell (RBC) by a hemolysin liberates hemoglobin (Hb) and possibly heme. These iron sources may bind directly to HmuR working in cooperation with the putative TonB, ExbB, and ExbD proteins. (B) Soluble Kgp, acting as a hemophore-like protein, binds free hemoglobin and delivers it to HmuR. Either Kgp or hemoglobin may directly interact with HmuR. (C) Membrane-bound Kgp degrades hemoglobin, liberating free heme. This free heme may bind to HmuR or to a separate heme receptor (HmR). In all three scenarios, the transport of heme into the cytoplasm is facilitated by the use of a cytoplasmic membrane-bound permease working in cooperation with an ATPase. Once internalized, a putative degradative protein, such as heme oxygenase, may degrade heme.

Citation: Genco C, Simpson W, Olczak T. 2004. , p 329-343. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816544.chap21
1. Aduse-Opoku, J.,, J. Slaney,, M. Rangarajan,, J. Muir,, K. Young,, and M. A. Curtis. 1997. The Tla protein of Porphyromonas gingivalis W50: a homolog of the R1 protease precursor (PrpR1) is an outer membrane receptor required for growth on low levels of hemin. J.Bacteriol. 179:47784788.
2. Amano, A.,, M. Kuboniwa,, K. Kataoka,, K. Tazaki,, E. Inoshita,, H. Nagata,, H. Tamagawa,, and S. Shizukuishi. 1995. Binding of hemoglobin by Porphyromonas gingivalis. FEMS Microbiol.Lett. 134:6367.
3. Bramanti, T. E.,, and S. C. Holt. 1992. Localization of a Porphyromonas gingivalis 26—kilodalton heatmodifiable, hemin-regulated surface protein which translocates across the outer membrane. J.Bacteriol. 174:58275839.
4. Dashper, S. G.,, A. Hendtlass,, N. Slakeski,, C. Jackson,, K. J. Cross,, L. Brownfield,, R. Hamilton,, I. Barr,, and E. C. Reynolds. 2000. Characterization of a novel outer membrane hemin binding protein of Porphyromonas gingivalis.J. Bacteriol. 182: 64566462.
5. Genco, C. A.,, and D. W. Dixon. 2001. Emerging strategies in microbial heme capture. Mol.Microbiol. 391:111.
6. Genco, C. A.,, B. M. Odusanya,, and G. Brown. 1994. Binding and accumulation of hemin in Porphyromonas gingivalis are induced by hemin. Infect. Immun. 62:28852892.
7. Karunakaran, T.,, T. Madden,, and K. Kuramitsu. 1997. Isolation and characterization of a hemin-regulated gene, hemR, from Porphyromonas gingivalis. J. Bacteriol. 179:18981908.
8. Letoffe, S.,, F. Nato,, M. E. Goldberg,, and C. Wandersman. 1999. Interactions of HasA, a bacterial hemophore, with hemoglobin and with its outer membrane receptor HasR. Mol.Microbiol. 33: 546555.
9. Lewis, J. P.,, J. A. Dawson,, J. C. Hannis,, D. Muddiman,, and F. L. Macrina. 1999. Hemoglobinase activity of the lysine gingipain protease (Kgp) of Porphyromonas gingivalis W83. J.Bacteriol. 181: 49054913.
10. Nakayama, K.,, D. B. Ratnayake,, T. Tsukuba,, T. Kadowaki,, K. Yamamoto,, and S. Fujimura. 1998. Haemoglobin receptor is intragenically encoded by the cysteine proteinase-encoding genes and the haemagglutinin-encoding gene of Porphyromonas gingivalis. Mol.Microbiol. 27:5161.
11. Olczak, T.,, D. W. Dixon,, and C. A. Genco. 2001. Binding specificity of the Porphyromonas gingivalis heme and hemoglobin receptor HmuR, gingipain K, and gingipain R1 for heme, porphyrins, and metalloporphyrins. J.Bacteriol. 183:55995608.
12. Paramaesvaran, M.,, K. A. Nguyen,, E. Caldon,, J. A. McDonald,, S. Najdi,, G. Gonzaga,, D. B. Langley,, A. DeCarlo,, M. J. Crossley,, N. Hunter,, and C. A. Collyer. 2003. Porphyrin-mediated cell surface heme capture from hemoglobin by Porphyromonas gingivalis. J.Bacteriol. 185: 25282537.
13. Pike, R. N.,, W. McGraw,, J. Potempa,, and J. Travis. 1994. Lysine- and arginine-specific proteinases from Porphyromonas gingivalis. Isolation, characterization and evidence for the existence of complexes with hemagglutinins. J.Biol. Chem. 269: 406411.
14. Potempa, J.,, A. Banbula,, and J. Travis. 2000. Role of bacterial proteinases in matrix destruction and modulation of host responses. Periodontology 24: 153192.
15. Shi, Y.,, D. B. Ratnayake,, K. Okamoto,, N. Abe,, K. Yamamoto,, and K. Nakayama. 1999. Genetic analyses of proteolysis, hemoglobin binding, and hemagglutination of Porphyromonas gingivalis. J. Biol.Chem. 274:1795517960.
16. Shibata, Y.,, K. Hiratsuka,, M. Hayakawa,, T. Shiroza,, H. Takiguchi,, Y. Nagatsuka,, and Y. Abiko. 2003. A 35-kDa co-aggregation factor is a hemin binding protein in Porphyromonas gingivalis. Biochem.Biophys.Res.Commun. 300:351356.
17. Simpson, W.,, T. Olczak,, and C. A. Genco. 2000. Characterization and expression of HmuR, a TonBdependent hemoglobin receptor of Porphyromonas gingivalis.J.Bacteriol. 182:57375748.
18. Slakeski, N.,, S. G. Dashper,, P. Cook,, C. Poon,, C. Moore,, and E. C. Reynolds. 2000. A Porphyromonas gingivalis genetic locus encoding a heme transport system. Oral Microbiol.Immunol. 15:388392.
19. Smalley, J. W.,, J. Silver,, P. J. Marsh,, and A. J. Birss. 1998. The periodontopathogen Porphyromonas gingivalis binds iron protoporphyrin in the muoxo dimeric form: an oxidative buffer and possible pathogenic mechanism. Biochem J. 331:681685.
20. Sroka, A. E.,, M. Sztukowska,, J. Potempa,, J. Travis,, and C. A. Genco. 2001. Degradation of host heme proteins by the lysine- and arginine-specific cysteine proteinases (gingipains) of Porphyromonas gingivalis.J.Bacteriol. 183:56095616.

Tables

Generic image for table
TABLE 1

Heme-binding proteins identified in

Citation: Genco C, Simpson W, Olczak T. 2004. , p 329-343. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error