1887

Chapter 30 : Mechanisms and Regulation of Iron Uptake in the Rhizobia

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Mechanisms and Regulation of Iron Uptake in the Rhizobia, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap30-2.gif

Abstract:

This chapter considers only recent experimental and in silico analyses that directly apply to the iron biology of rhizobia. At least two main sets of observations have emerged from these studies and are recurring themes in the chapter. The first is that the rhizobia have great flexibility in their use of iron sources compared to many other bacteria. The second is that some paradigms of iron-responsive gene regulation do not operate in the rhizobia or, at least, not all rhizobia. There have been detailed biochemical and genetic studies of only two rhizobial siderophores. These are the trihydroxamate vicibactin (VB), made by most strains of , and the chemically distinct dihydroxamate rhizobactin 1021 (RB1021), synthesized by different strains of , including the well-characterized strain 1021—hence the name RB1021. The expression of bacterial genes involved in iron uptake and other aspects of “iron biology” responds to iron availability, and the rhizobia are no exception. It is clear that the rhizobia have great flexibility for iron uptake and show real differences in their iron-responsive gene regulation compared to other gram-negative bacteria. Importantly, it is now evident that as much as 50% of the genome of one rhizobial species does not resemble those of other, even closely related species (e.g., and ). Focusing on mechanisms of iron uptake, these lines of argument may explain why rhizobia not only use siderophores but also contain at least two transport systems more frequently associated with pathogens.

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30

Key Concept Ranking

Bacterial Proteins
0.48302338
Outer Membrane Proteins
0.44434375
0.48302338
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structures of three chemically characterized siderophores made by rhizobia.

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Organization of gene clusters involved in siderophore synthesis and uptake in and . Relative locations of genes for the synthesis and uptake of the siderophores VB by (a) and RB1021 by (b) are shown. Dotted lines indicate transcriptional organization of the different operons. Gene functions are given in the text, Table 2 , and Fig. 3 and 4 . Data from for VB and from for RB1021.

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Pathway of VB synthesis. The proposed pathway for VB synthesis in is shown. The numbered steps correspond to those in Table 2 . Adapted from .

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Pathway of RB1021 synthesis. The proposed pathway for RB1021 synthesis in is shown. Adapted from .

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phylogenic tree of the Fur superfamily in the rhizobia, compared with homologues in other bacterial taxa. A maximum-parsimony phylogenetic tree was constructed from amino acid sequences of Fur and Fur-like sequences by using PAUP* version 4.0b10. The tree is rooted at the midpoints, and bootstrap values are shown for nodes with values of >70. Branch lengths are proportional to the degree of amino acid change. Proteins were obtained from the GenBank database. A.ae, ; A.tum, ; B.jap, ; B.sub, ; B.hen, ; B.mel, ; B.per, ; C.ac, ; C.cre, ; D.vu, ; E.col, K-12; H.inf, ; H.pyl, ; K.pne, ; L.pne, ; L.inn, ; M.lot, ; N.men, ; P.aer, ; P.mul, ; R.leg, , R.sph, ; R.pa, ; S.ent, ; S.mel, , S.typ, serovar Typhimurium; S.aur, ; T.mar, ; V.ang, ; V.cho, ; Y.pes, . Proteins from , , , , and are marked with stars.

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816544.chap30
1. Carter, R. A.,, P. S. Worsley,, G. Sawers,, G. L. Challis,, M. J. Dilworth,, K. C. Carson,, J. A. Lawrence,, M. Wexler,, A. W. B. Johnston,, and K. H. Yeoman. 2002. The vbs genes that direct synthesis of the siderophore vicibactin in Rhizobium leguminosarum: their expression in other genera requires ECF σ factor RpoI. Mol. Microbiol. 44:11531166.
2. Dilworth, M. J.,, K. C. Carson,, R. G. F. Giles,, L. T. Byrne,, and A. R. Glenn. 1998. Rhizobium leguminosarum bv. viciae produces a novel cyclic trihydroxamate siderophore, vicibactin. Microbiology144:781791.
3. Hamza, I.,, S. Chauhan,, R. Hassett,, and M. R. O’Brian. 1998. The bacterial Irr protein is required for coordination of heme biosynthesis with iron availability. J. Biol. Chem. 273:2166921674.
4. Hamza, I.,, R. Hassett,, and M. R. O’Brian. 1999. Identification of a functional fur gene in Bradyrhizobium japonicum. J. Bacterol. 181:58435846.
5. Hamza, I.,, Z. H. Qi,, N. D. King,, and M. R. O’Brian. 2000. Fur-independent regulation of iron metabolism by Irr in Bradyrhizobium japonicum. Microbiology 146:669676.
6. Hirsch, A. M.,, M. R. Lum,, and J. A. Downie. 2001. What makes the rhizobia-legume symbiosis so special? Plant Physiol. 127:14841492.
7. Johnston, A. W. B.,, K. H. Yeoman,, and M. Wexler. 2001. Metals and the rhizobial-legume symbiosis— uptake, utilization and signalling. Adv. Microb. Physiol. 45:114156.
8. Kolade O. O.,, P. Bellini,, M. Wexler,, A. W. B. Johnston,, J. G. Grossmann,, and A. M. Hemmings. 2002. Structural studies of the Fur protein from Rhizobium leguminosarum. Biochem. Soc. Trans. 30:771774.
9. LeVier, K.,, D. A. Day,, and M. L. Guerinot. 1996. Iron uptake by symbiosomes from soybean nodules. Plant Physiol. 111:893900.
10. LeVier, K.,, and M. L. Guerinot. 1996. The Bradyrhizobium japonicum fegA gene encodes an iron-regulated membrane protein with similarity to hydroxamate- type siderophore receptors. J. Bacteriol. 178:72657275.
11. Lynch, D.,, J. O’Brien,, T. Welch,, J. H. Crosa,, and M. O’Connell. 2001. Genetic organization of the region encoding regulation, biosynthesis and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J. Bacteriol. 183:25762585.
12. Moreau, S.,, D. A. Day,, and A. Puppo. 1998. Ferrous iron is transported across the peribacteroid membrane of soybean nodules. Planta 207:8387.
13. Nienaber, A.,, H. Hennecke,, and H. M. Fischer. 2001. Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum. Mol. Microbiol. 41:787800.
14. Noya, F.,, A. Arias,, and E. Fabiano. 1997. Heme compounds as iron sources for nonpathogenic Rhizobium species. J. Bacteriol. 179:30763078.
15. Platero, R. A.,, M. Jaureguy,, F. J. Battistoni,, and E. R. Fabiano. 2003. Mutations in sitB and sitD genes affect manganese-growth requirements in Sinorhizobium meliloti. FEMS Microbiol. Lett. 218:6570.
16. Pohl, E.,, J. C. Haller,, A. Mijovilovich,, W. Meyer- Klaucke,, E. Garman,, and M. L. Vasil. 2003. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47:903915.
17. Qi, Z. H.,, I. Hamza,, and M. R. O’Brian. 1999. Heme is an effector molecule for iron dependent degradation of the bacterial iron response regulator (Irr) protein. Proc. Natl. Acad. Sci. USA 96:1305613061.
18. Qi, Z.,, and M. R. O’Brian. 2002. Interaction between the bacterial iron response regulator and ferrochelatase mediates genetic control of heme biosynthesis. Mol. Cell 9:155162.
19. Giel,, T. Patschkowski,, C. F. Luther,, J. Ruzicka,, H. Beinert,, and P. J. Kiley. 2001. IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc. Natl. Acad. Sci. USA 98:1489514900.
20. Stevens, J. B.,, R. A. Carter,, H. Hussain,, K. C. Carson,, M. J. Dilworth,, and A. W. B. Johnston. 1999. The fhu genes of Rhizobium leguminosarum, specifying siderophore uptake proteins: fhuDCB are adjacent to a pseudogene version of fhuA. Microbiology 145:593601.
21. Todd, J. D.,, M. Wexler,, G. Sawers,, K. H. Yeoman,, P. S. Poole,, and A. W. B. Johnston. 2002. RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum. Microbiology 148:40594071.
22. Visca, P.,, L. Leoni,, M. J. Wilson,, and I. L. Lamont. 2002. Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol. 45:11771190.
23. Wexler, M.,, J. D. Todd,, O. Kolade,, A. M. Hemmings,, G. Sawers,, and A. W. B. Johnston. 2003. Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum, Microbiology 149:13571365.
24. Wexler, M.,, K. H. Yeoman,, J. B. Stevens,, N. G. de Luca,, G. Sawers,, and A. W. B. Johnston. 2001. The Rhizobium leguminosarum tonB gene is required for the uptake of siderophores and haem as sources of iron. Mol. Microbiol. 41:801816.
25. Yeoman, K. H.,, A. G. May,, N. G. deLuca,, D. B. Stuckey,, and A. W. B. Johnston. 1999. A putative ECF sigma actor gene, rpoI, regulates siderophore production in Rhizobium leguminosarum. Mol. Plant-Microbiol. Interact. 12:994999.
26. Yeoman K. H.,, S. Mitelheiser,, G. Sawers,, and A. W. B. Johnston. 2003. The ECF sigma factor RpoI of R. leguminosarum initiates transcription of the vbsGSO and vbsADL siderophore biosynthetic genes in vitro. FEMS Microbiol. Lett. 223:239244.
27. Yeoman, K. H.,, F. Wisniewski-Dye,, C. Timony,, J. B. Stevens,, N. G. deLuca,, J. A. Dowine,, and A. W. B. Johnston. 2000. Analysis of the Rhizobium leguminosarum siderophore-uptake gene fhuA: differential expression in free-living bacteria and nitrogen- fixing bacteroids and distribution of an fhuA pseudogene in different strains. Microbiology 146:829837.

Tables

Generic image for table
TABLE 1

Species of rhizobia referred to in this chapter

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Generic image for table
TABLE 2

Proposed functions of individual genes in the VB biosynthetic gene cluster of

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30
Generic image for table
TABLE 3

Similarities among the Fbp-like proteins of rhizobia and selected homologues in other taxa.

Citation: Johnston A. 2004. Mechanisms and Regulation of Iron Uptake in the Rhizobia, p 469-488. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error