1887

Chapter 6 : Bacterial Heme Oxygenases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Bacterial Heme Oxygenases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816544/9781555812928_Chap06-2.gif

Abstract:

Many microbial pathogens are known to possess heme acquisition systems that allow the organisms to utilize heme or heme-bound proteins as sources of iron. These systems have been demonstrated to procure iron from heme, hemoglobin, haptoglobin, or hemopexin and are identified as nonsiderophore heme iron acquisition systems. Heme oxygenase activity from mammalian cells was first demonstrated in the 1960s. This enzyme is capable of degrading heme to α-biliverdin with the liberation of free iron. Bacterial heme oxygenase activity was first found in the gram-positive pathogen , the causative organism of the respiratory disease diphtheria. Structure-function relationships have been investigated by site-directed mutagenesis in the hopes of identifying crucial residues participating in the binding of heme and the enzymatic cleavage of the porphryin ring. Overall, human heme oxygenase HO-1 and bacterial heme oxygenase HmuO are mechanistically the same, and they show only slight structural variations when investigated by such methods as electron paramagnetic resonance, resonance Raman spectroscopy, and nuclear magnetic resonance studies.

Citation: Ratliff-Griffin M, Stojiljkovic I, Wilks A. 2004. Bacterial Heme Oxygenases, p 86-95. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch6

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.42533037
0.42533037
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Chemical steps in heme degradation, as defined by the studies of eukaryotic heme oxygenases and HmuO. Me, methyl side chain; V, vinyl side chain; Pr, propionic side chain. All characterized heme oxygenases cleave the porphyrin ring at the α-carbon atom, with the exception of PigA, which cleaves at the β-carbon.

Citation: Ratliff-Griffin M, Stojiljkovic I, Wilks A. 2004. Bacterial Heme Oxygenases, p 86-95. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Amino acid sequence alignment of heme oxygenase proteins. Comparisons were made by using the ClustalW 1.8 program. (A) HemO-like proteins; (B) HmuO-like proteins; (C) BphO-like proteins. NM, ; AT, ; PA, ; SC, ; CD, ; Bs, sp.; Syn, sp.; Ns, sp.; Ss, sp.; PM, ; CP, ; DR, ; PF, ; PS, ; RL, ; RS, ; XA, . Bold type indicates residues that are critical to the coordination of the heme molecule within the proteins. Dots and asterisks indicate similar and identical amino acids, respectively, among all proteins.

Citation: Ratliff-Griffin M, Stojiljkovic I, Wilks A. 2004. Bacterial Heme Oxygenases, p 86-95. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816544.chap6
1. Beale, S. I.,, and J. Cornejo. 1991. Biosynthesis of phycobilins. 3(Z)-Phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha. J. Biol. Chem. 266:2233322340.
2. Bhoo, S.-H.,, S. J. Davis,, J. Walker,, B. Karniol, and R. D. Vierstra. 2001. Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore. Nature 414:776779.
3. Caignan, G.A,, R. Deshmukh,, A. Wilks,, Y. Zeng,, H.-W. Huang,, P. Moënne-Loccoz,, R. A. Bunce,, M. A. Eastman,, and M. Rivera. 2001. The oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase is a consequence of an unusual seating of the heme. J. Am. Chem. Soc. 124:1487914892.
4. Chu, G. C.,, S.-Y. Park,, Y. Shiro,, T. Yoshida,, and M. Ideka-Saito. 1999. Crystallization and preliminary X-ray diffraction analysis of a recombinant bacterial heme oxygenase (HmuO) from Corynebacterium diphtheriae. J. Struct. Biol. 126: 171174.
5. Davis S. J.,, A. V. Vener,, and R. D. Vierstra. 1999. Bacteriophytochromes: phytochromes from nonphotosynthetic eubacteria. Science 286: 25172520.
6. Gambetta, G. A.,, and J. C. Lagarias. 2001. Genetic engineering of phytochrome biosynthesis in bacteria. Proc. Natl. Acad. Sci. USA 98:1056610571.
7. Genco, C. A.,, and D. White Dixon. 2001. Emerging strategies in microbial haem capture. Mol. Microbiol 39:111.
8. Létoffé, S.,, V. Redeker,, and C. Wandersman. 1998. Isolation and characterization of an extracellular haem-binding protein from Pseudomonas aeruginosa that shares function and sequence similarities with the Serratia marcescens HasA haemophore. Mol. Microbiol. 28:12231234.
9. Liu, Y.,, L. K. Lightning,, H. Huang,, P. Moenne-Loccoz,, D. J. Schuller,, T. L. Poulos,, T. M. Loehr,, and P. R. Ortiz de Montellano. 2000. Replacement of the distal glycine 139 transforms human heme oxygenase-1 into a peroxidase. J. Biol. Chem. 275:3450134507.
10. Maines, M. D. 1997. The heme oxygenase system: a regulator of second messenger gases. Annu. Rev. Pharmacol. Toxicol. 37:517554.
11. Ratliff, M.,, W. Zhu,, R. Deshmukh,, A. Wilks,, and I. Stojiljkovic. 2001. Homologues of neisserial heme oxygenase in gram-negative bacteria: degradation of heme by the product of the pigA gene of Pseudomonas aeruginosa. J. Bacteriol. 183: 63946403.
12. Schluchter, W. M.,, and A. N. Glazer. 1997. Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis. J. Biol. Chem. 272:1356213569.
13. Schuller, D. J.,, W. Zhu,, A. Wilks,, I. Stojiljkovic,, and T. L. Poulos. 2001. Crystal structure of heme oxygenase from the gram-negative pathogen Neisseria meningitidis and a comparison with mammalian heme oxygenase-1. Biochemistry 40: 1155211558.
14. Schuller, D. J.,, A. Wilks,, and P. R. Ortiz de Montellano. 1999. Crystal structure of human heme oxygenase-1. Nat. Struct. Biol. 6:860867.
15. Stojiljkovic, I.,, and D. Perkins-Balding. 2002. Processing of heme and heme-containing proteins by bacteria. DNA Cell Biol. 21:281295.
16. Sugishima, M.,, Y. Omata,, Y. Kakuta,, H. Sakamoto,, M. Noguchi,, and M. K. Fukuyama. 2000. Crystal structure of rat heme oxygenase-1 in complexwith heme. FEBS Lett. 471:6166.
17. Sun, J.,, T. M. Loehr,, A. Wilks,, and P. R. Ortiz de Montellano. 1994. Identification of histidine 25 as the heme ligand in human liver heme oxygenase. Biochemistry 33:1373413740.
18. Sun, J.,, A. Wilks,, P. R. Ortiz de Montellano,, and T. M. Loehr. 1993. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes. Biochemistry 32:1415114157.
19. Tenhunen, R.,, H. S. Marver,, and R. Schmid. 1969. Microsomal heme oxygenase: characterization of the enzyme. J. Biol. Chem. 244:63886394.
20. Wilks, A.,, and P. Moenne-Loccoz. 2000. Identification of the proximal ligand His-20 in heme oxygenase (HmuO) from Corynebacterium diphtheriae: oxidative cleavage of the heme macrocycle does not require the proximal histidine. J. Biol. Chem. 275:1168611692.
21. Wilks, A.,, S. M. Black,, W. L. Miller,, and P. R. OrtizdeMontellano. 1995. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase. Biochemistry 34:44214427.
22. Wilks, A.,, J. Sun,, T. M. Loehr,, and P. R. Ortiz de Montellano. 1995. Heme oxygenase His25Ala mutant: replacement of the proximal iron ligand by exogenous bases restores catalytic activity. J. Am. Chem. Soc. 117:29252926.
23. Willows, R. D.,, S. M. Mayer,, M. S. Foulk,, A. DeLong,, K. Hanson,, J. Chory,, and S. I. Beale. 2000. Phytobilin biosynthesis: the Synechocystis sp. PCC 6803 heme oxygenase-encoding ho1 gene complements a phytochrome-deficient Arabidopsis thaliana hy1 mutant. Plant Mol. Biol. 43: 113120.
24. Zhou, H.,, C. Taiko,, M. Sato,, D. Sun,, X. Zhang,, M. Ideka-Saito,, H. Fujii,, and T. Yoshida. 2000. Participation of carboxylate amino acid side chain in regiospecific oxidation of heme by heme oxygenase. J. Am. Chem. Soc. 122:83118312.
25. Zhu, W.,, A. Wilks,, and I. Stojiljkovic. 2000. Degradation of heme in gram-negative bacteria: the product of the hemO gene of neisseriae is a heme oxygenase. J. Bacteriol. 182:67836790.

Tables

Generic image for table
TABLE 1

Steady-state distribution of iron in humans

Citation: Ratliff-Griffin M, Stojiljkovic I, Wilks A. 2004. Bacterial Heme Oxygenases, p 86-95. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch6
Generic image for table
TABLE 2

Amino acid comparison of heme oxygenase-like proteins from diverse microorganisms

Citation: Ratliff-Griffin M, Stojiljkovic I, Wilks A. 2004. Bacterial Heme Oxygenases, p 86-95. In Crosa J, Mey A, Payne S, Iron Transport in Bacteria. ASM Press, Washington, DC. doi: 10.1128/9781555816544.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error