1887

Chapter 9 : Lysogenic Conversion in Bacteria of Importance to the Food Industry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Lysogenic Conversion in Bacteria of Importance to the Food Industry, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap09-2.gif

Abstract:

This chapter focuses on the exotoxins produced by /, , and phages, as well as on changes in lipopolysaccharide (LPS) structure and membrane protein compositions brought about by -and -specific phages; the emphasis is on phage conversion activities that affect the major food- and waterborne pathogens. Researchers isolated two converting phages, H-19A and H-19B, from strain H-19. Another research group suggested that Shiga toxins may have evolved for the purpose of bacterial antipredator defense. The staphylococcal lysogenic conversion literature includes two well-documented examples of negative conversion, where staphylococcal phages (in many cases, phages carrying additional lysogenic conversion genes) insertionally inactivate chromosomal genes that encode important exoproteins. Staphylokinase may also contribute to bacterial colonization by interacting with the immune system of the host. Over the past decade, serovar strains transformed by plasmids carrying various ɛ15 genes have been analyzed, using a variety of biological, immunological, and biochemical assays. This work has resulted in the identification of four ɛ15 genes whose protein products influence the structure of serovar Anatum LPS, namely genes. Sections of the chapter illustrate that some proteins encoded by phage conversion genes increase host offensive weapon repertoires, while others appear to increase host defensive capabilities.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9

Key Concept Ranking

Tumor Necrosis Factor alpha
0.43326896
Type III Secretion System
0.40770033
Mobile Genetic Elements
0.40434134
0.43326896
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Comparison of homologous late gene regions of phages g341 and P22, showing the presence of cargo genes (i.e. the moron) in P22.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of two prophage Shiga toxin sequences (StxA and StxB subunits) showing the active site (▼) and signal peptidase cleavage sites (▽) as defined using Phobius ( ).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The late region of a Shiga toxin-converting lambdoid phage. Genes coding for replication proteins (O and P), a gene for antiterminator Q, the Shiga toxin genes, and genes coding for proteins causing cell lysis are marked. Promoters are shown by ovals and terminators by rectangles, and arrows indicate the directionality of transcription. (Adapted from .)

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Map of the right end of the prophage genome from phages ϕETA (NC_003288) (Yama-guchi et al., 2000), ϕETA2 (NC-008798), and ϕETA3 (NC_008799) showing the locations of the genes for the phage lysis functions (white) and exfo-liative toxin A (gray).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Map of PVL-converting phages. Shown are the two phages of the icosahedral head type that, although defective, produce phagelike particles and the three phages of the elongated head type that have been shown to form infective PVL phages. The genes are indicated as black arrows, the conserved phage lysis genes and integrase are gray, and all other phage genes are white. Dark gray shading between genomes indicates genes conserved among all of these phages and the PVL genes -PV and -PV), intermediate gray shading indicates genes shared by three phages, and light gray shading indicates genes shared by two.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic of the arrangement of genes in the IEC at the right end of the prophage genome. The seven IEC types described by are shown. The phage lysis genes are shown in white and the lysogenic conversion genes in gray. Dotted lines indicate regions where the lysogenic conversion gene is either absent, in some isolates, or replaced with open reading frames of unknown function in others.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Map of the left end of the ϕSa3ms genome, showing the location of the two enterotoxin genes (in gray) relative to the phage genes controlling lysogeny and integration (in white).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Map showing the location of the two genes encoding a restriction-modification system in bacteriophage ϕ42.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Organization of the toxin operon in bacteriophages c-st and D-1873. In the latter phage HA70 is referred to as HA3.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Chemical structure of the O-antigenic repeat unit in the LPS of serovar Typhi-murium, where Abe, Man, Rha, and Gal are abe-quose (3,6-dideoxy-D-xylo-hexose), mannose, rham-nose, and galactose, respectively.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

The structure of the O-antigenic repeat unit in the LPS of serovar Anatum before (top) and after (bottom) infection by ɛ15.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

The tetrasaccharide O-polysaccharide repeat unit of ɛ34 seroconvertants of serovar Anatum (var. 15+).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

The 8,509-bp region of phage ɛ15 responsible for serotype conversion with genes (Oap), (Api), (Tar), and (Con) ( ).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14
FIGURE 14

The 6,441-bp region of phage ɛ34 responsible for serotype conversion illustrated in black ( ).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 15
FIGURE 15

O-antigenic repeat unit from serovar Typhimurium showing the impact of the P22 conversion module.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 16a
FIGURE 16a

Diversity of phage lambda Bor homologs found in the NCBI translated nucleotide database using BLAST query. The search also indicated the occurrence of related genes in distant relatives of within the Gammaproteobacteria.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 16b
FIGURE 16b

Diversity of phage lambda Bor homologs found in the NCBI translated nucleotide database using BLAST query. The search also indicated the occurrence of related genes in distant relatives of within the Gammaproteobacteria.

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 17
FIGURE 17

ClustalW analysis of Lom and Ail proteins with the position of the periplasmic loops indicated ( ).

Citation: Łoś M, Kuzio J, McConnell M, Kropinski A, Węgrzyn G, Christie G. 2010. Lysogenic Conversion in Bacteria of Importance to the Food Industry, p 157-198. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816629.ch09
1. Ackermann, H.-W., and, M. S. DuBow. 1987. Viruses of Prokaryotes. CRC Press, Boca Raton, FL.
2. Aertsen, A.,, D. Faster, and, C. W. Michiels. 2005. Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure. Appl. Environ. Microbiol. 71:11551162.
3. Agbodaze, D. 1999. Verocytotoxins (Shiga-like toxins) produced by Escherichia coli: a minireview of their classification, clinical presentations and management of a heterogeneous family of cytotoxins. Comp. Immunol. Microbiol. Infect. Dis. 22:221230.
4. Allison, H. E. 2007. Stx-phages: drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol. 2:165174.
5. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers, and, D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
6. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33894022.
7. Amagai, M.,, N. Matsuyoshi,, Z. H. Wang,, C. Andl, and, J. R. Stanley. 2000. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat. Med. 6:12751277.
8. Amagai, M.,, T. Yamaguchi,, Y. Hanakawa,, K. Nishifuji,, M. Sugai, and, J. R. Stanley. 2002. Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J. Invest. Dermatol. 118:845850.
9. Arndt, J. W.,, Q. Chai,, T. Christian, and, R. C. Stevens. 2006. Structure of botulinum neurotoxin type D light chain at 1.65 Å resolution: repercussions for VAMP-2 substrate specificity. Biochemistry 45:32553262.
10. Arndt, J. W.,, J. Gu,, L. Jaroszewski,, R. Schwarzenbacher,, M. A. Hanson,, F. J. Lebeda, and, R. C. Stevens. 2005. The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring β-trefoil fold in the progenitor toxin complex. J. Mol. Biol. 346:10831093.
11. Asadulghani, M.,, Y. Ogura,, T. Ooka,, T. Itoh,, A. Sawaguchi,, A. Iguchi,, K. Nakayama, and, T. Hayashi. 2009. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 5:e1000408.
12. Baba, T.,, F. Takeuchi,, M. Kuroda,, H. Yuzawa,, K. Aoki,, A. Oguchi,, Y. Nagai,, N. Iwama,, K. Asano,, T. Naimi,, H. Kuroda,, L. Cui,, K. Yamamoto, and, K. Hiramatsu. 2002. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 359:18191827.
13. Bachert, C.,, N. Zhang,, J. Patou,, T. van Zele, and, P. Gevaert. 2008. Role of staphylococcal superantigens in upper airway disease. Curr. Opin. Allergy Clin. Immunol. 8:3438.
14. Balbontin, R.,, G. Rowley,, M. G. Pucciarelli,, J. Lopez-Garrido,, Y. Wormstone,, S. Lucchini,, F. Garcia-Del Portillo,, J. C. Hinton, and, J. Casadesus. 2006. DNA adenine methylation regulates virulence gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 188:81608168.
15. Bania, J.,, A. Dabrowska,, J. Bystron,, K. Korzekwa,, J. Chrzanowska, and, J. Molenda. 2006. Distribution of newly described enterotoxin-like genes in Staphylococcus aureus from food. Int. J. Food Microbiol. 108:3641.
16. Barksdale, L.,, S. B. Arden. 1974. Persisting bacteriophage infections, lysogeny, and phage conversions. Annu. Rev. Microbiol. 28:265299.
17. Barondess, J. J.,, J. Beckwith. 1990. A bacterial virulence determinant encoded by lysogenic coliphage λ. Nature 346:871874.
18. Barondess, J. J., and, J. Beckwith. 1995. bor gene of phage X, involved in serum resistance, encodes a widely conserved outer membrane lipoprotein. J. Bacteriol. 177:12471253.
19. Bergdoll, M. S. 1983. Enterotoxins, p. 559598. In C. S. F. Easmon and, C. Adlam (ed.), Staphylococci and Staphylococcal Infections. Academic Press, New York, NY.
20. Betley, M. J., and, J. J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229:185187.
21. Birembaux, C.,, O. Fayet, and, M. F. Prere. 1999. E. coli O157 from children with gastrointestinal symptoms. Isolation of a urease producing strain. Acta Clin. Belg. 46:5152.
22. Blair, J. E.,, M. Carr. 1961. Lysogeny in staphylococci. J. Bacteriol. 82:984993.
23. Blanco, M.,, J. E. Blanco,, A. Mora,, G. Dahbi,, M. P. Alonso,, E. A. Gonzalez,, M. I. Bernardez, and, J. Blanco. 2004. Serotypes, virulence genes, and intimin types of Shiga toxin (verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-ξ). J. Clin. Microbiol. 42:645651.
24. Bokarewa, M. I.,, T. Jin, and, A. Tarkowski. 2006. Staphylococcus aureus: staphylokinase. Int. J. Biochem. Cell Biol. 38:504509.
25. Borst, D. W.,, M. J. Betley. 1994. Promoter analysis of the staphylococcal enterotoxin A gene. J. Biol. Chem. 269:18831888.
26. Bray, D.,, P. W. Robbins. 1967. Mechanism of ɛ15 conversion studied with bacteriophage mutants. J. Mol. Biol. 30:457475.
27. Brin, M. F. 1997. Botulinum toxin: chemistry, pharmacology, toxicity, and immunology. Muscle Nerve Suppl. 6:S146S168.
28. Bronner, S.,, P. Stoessel,, A. Gravet,, H. Monteil, and, G. Prevost. 2000. Variable expressions of Staphylococcus aureus bicomponent leucotoxins semiquantified by competitive reverse transcription-PCR. Appl. Environ. Microbiol. 66: 39313938.
29. Brüssow, H.,, C. Canchaya, and, W. D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560602.
30. Bubeck Wardenburg, J.,, T. Bae,, M. Otto,, F. R. DeLeo, and, O. Schneewind. 2007. Poring over pores: α-hemolysin and Panton-Valentine leuko-cidin in Staphylococcus aureus pneumonia. Nat. Med. 13:14051406.
31. Carroll, J. D.,, M. T. Cafferkey, and, D. C. Coleman. 1993. Serotype F double- and triple-converting phage insertionally inactivate the Staphylococcus aureus beta-toxin determinant by a common molecular mechanism. FEMS Microbiol. Lett. 106:147155.
32. Cavarelli, J.,, G. Prevost,, W. Bourguet,, L. Moulinier,, B. Chevrier,, B. Delagoutte,, A. Bilwes,, L. Mourey,, S. Rifai,, Y. Piemont, and, D. Moras. 1997. The structure of Staphylococcus aureus epidermolytic toxin A, an atypic serine protease, at 1.7 A resolution. Structure 5:813824.
33. Chan, P. F.,, S. J. Foster. 1998. Role of SarA in virulence determinant production and environmental signal transduction in Staphylococcus aureus. J. Bacteriol. 180:62326241.
34. Chen, Y.,, I. Golding,, S. Sawai,, L. Guo, and, E. C. Cox. 2005. Population fitness and the regulation of Escherichia coli genes by bacterial viruses. PLoS Biol. 3:e229.
35. Chuba, P. J.,, S. Palchaudhuri, and, M. A. Leon. 1986. Contribution of traT and iss genes to the serum resistance phenotype of plasmid ColV2-K94. FEMS Microbiol. Lett. 37:135140.
36. Clecner, B.,, S. Sonea. 1966. Acquisition of the delta type of hemolytic property by lysogenic conversion in Staphylococcus aureus. Rev. Can. Biol. 25:145148.
37. Coggill, P.,, R. D. Finn, and, A. Bateman. 2008. Identifying protein domains with the Pfam database. Curr. Protoc. Bioinformatics Chapter 2:Unit 2.5.
38. Coleman, D. C.,, J. P. Arbuthnott,, H. M. Pomeroy, and, T. H. Birkbeck. 1986. Cloning and expression in Escherichia coli and Staphylococcus aureus of the beta-lysin determinant from Staphylococcus aureus: evidence that bacteriophage conversion of beta-lysin activity is caused by insertional inactivation of the beta-lysin determinant. Microb. Pathog. 1:549564.
39. Coleman, D. C.,, D. J. Sullivan,, R. J. Russell,, J. P. Arbuthnott,, B. F. Carey, and, H. M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of β-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135:16791697.
40. Crago, A. M.,, V. Koronakis. 1999. Binding of extracellular matrix laminin to Escherichia coli expressing the Salmonella outer membrane proteins Rck and PagC. FEMS Microbiol. Lett. 176:495501.
41. Creuzburg, K.,, J. Recktenwald,, V. Kuhle,, S. Herold,, M. Hensel, and, H. Schmidt. 2005. The Shiga toxin 1-converting bacteriophage BP-4795 encodes an NleA-like type III effector protein. J. Bacteriol. 187:84948498.
42. Creuzburg, K.,, H. Schmidt. 2007. Shiga toxin-producing Escherichia coli and their bacteriophages as a model for the analysis of virulence and stress response of a food-borne pathogen. Berl. Munch. Tierarztl. Wochenschr. 120:288295.
43. Czyz, A.,, M. Łoś,, B. Wrobel, and, G. Węgrzyn. 2001. Inhibition of spontaneous induction of lambdoid prophages in Escherichia coli cultures: simple procedures with possible biotechnological applications. BMC Biotechnol. 1:1.
44. Dauwalder, O.,, D. Thomas,, T. Ferry,, A. L. Debard,, C. Badiou,, F. Vandenesch,, J. Etienne,, G. Lina, and, G. Monneret. 2006. Comparative inflammatory properties of staphylococcal super-antigenic enterotoxins SEA and SEG: implications for septic shock. J. Leukoc. Biol. 80:753758.
45. de Haas, C. J.,, K. E. Veldkamp,, A. Peschel,, F. Weerkamp,, W. J. Van Wamel,, E. C. Heezius,, M. J. Poppelier,, K. P. Van Kessel, and, J. A. van Strijp. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 199:687695.
46. Dempsey, R. M.,, D. Carroll,, H. Kong,, L. Higgins,, C. T. Keane, and, D. C. Coleman. 2005. Sau42I, a BcgI-like restriction-modification system encoded by the Staphylococcus aureus quadruple-converting phage ϕ42. Microbiology 151:13011311.
47. Diep, B. A.,, S. R. Gill,, R. F. Chang,, T. H. Phan,, J. H. Chen,, M. G. Davidson,, F. Lin,, J. Lin,, H. A. Carleton,, E. F. Mongodin,, G. F. Sensabaugh, and, F. Perdreau-Remington. 2006. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731739.
48. Diep, B. A.,, M. Otto. 2008. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol. 16:361369.
49. Diep, B. A.,, A. M. Palazzolo-Ballance,, P. Tattevin,, L. Basuino,, K. R. Braughton,, A. R. Whitney,, L. Chen,, B. N. Kreiswirth,, M. Otto,, F. R. DeLeo, and, H. F. Chambers. 2008. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 3: e3198.
50. Dobardzic, R.,, S. Sonea. 1971. Hemolysin production and lysogenic conversion in Staphylococcus aureus. Ann. Inst. Pasteur (Paris) 120:4249.
51. Dumitrescu, O.,, S. Boisset,, C. Badiou,, M. Bes,, Y. Benito,, M. E. Reverdy,, F. Vandenesch,, J. Etienne, and, G. Lina. 2007. Effect of antibiotics on Staphylococcus aureus producing Panton-Valentine leukocidin. Antimicrob. Agents Chemother. 51:15151519.
52. Eklund, M. W.,, F. T. Poysky, and, S. M. Reed. 1972. Bacteriophage and the toxigenicity of Clostridium botulinum type D. Nat. New Biol. 235:1617.
53. Eklund, M. W.,, F. T. Poysky,, S. M. Reed, and, C. A. Smith. 1971. Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172:480482.
54. Ellermeier, C. D.,, J. M. Slauch. 2006. The genus Salmonella, p. 123158. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer, and, E. Stackebrandt (ed.), The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd ed. Springer, New York, NY.
55. Endo, Y.,, K. Tsurugi,, T. Yutsudo,, Y. Takeda,, T. Ogasawara, and, K. Igarashi. 1988. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 171:4550.
56. Endo, Y.,, T. Yamada,, K. Matsunaga,, Y. Hayakawa,, T. Kaidoh, and, S. Takeuchi. 2003. Phage conversion of exfoliative toxin A in Staphylococcus aureus isolated from cows with mastitis. Vet. Microbiol. 96:8190.
57. Evans, T.,, R. G. Bowers, and, M. Mortimer. 2007. Modelling the stability of Stx lysogens. J. Theor. Biol. 248:241250.
58. Fairbrother, J. M., and, E. Nadeau. 2006. Escherichia coli: on-farm contamination of animals. Rev. Sci. Tech. 25:555569.
59. Fernandez, M. M.,, S. Bhattacharya,, M. C. De Marzi,, P. H. Brown,, M. Kerzic,, P. Schuck,, R. A. Mariuzza, and, E. L. Malchiodi. 2007. Superantigen natural affinity maturation revealed by the crystal structure of staphylococcal enterotoxin G and its binding to T-cell receptor Vβ38.2. Proteins 68:389402.
60. Ferry, T.,, D. Thomas,, A. L. Genestier,, M. Bes,, G. Lina,, F. Vandenesch, and, J. Etienne. 2005. Comparative prevalence of superantigen genes in Staphylococcus aureus isolates causing sepsis with and without septic shock. Clin. Infect. Dis. 41:771777.
61. Finck-Barbancon, V.,, G. Duportail,, O. Meunier, and, D. A. Colin. 1993. Pore formation by a two-component leukocidin from Staphylococcus aureus within the membrane of human polymor-phonuclear leukocytes. Biochim. Biophys. Acta 1182:275282.
62. Fix, D. 1993. The rex genes of lambda prophage modify ultraviolet light and N-methyl-N-nitrosourea-induced responses to DNA damage in Escherichia coli. Mutat. Res. 303:143150.
63. Fleischer, B.,, C. J. Bailey. 1992. Recombinant epidermolytic (exfoliative) toxin A of Staphylococcus aureus is not a superantigen. Med. Microbiol. Immunol. 180:273278.
64. Fleming, S. D.,, J. J. Iandolo, and, S. K. Chapes. 1991. Murine macrophage activation by staphylococcal exotoxins. Infect. Immun. 59:40494055.
65. Fogg, P. C.,, S. M. Gossage,, D. L. Smith,, J. R. Saunders,, A. J. McCarthy, and, H. E. Allison. 2007. Identification of multiple integration sites for Stx-phage Φ24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor. Microbiology 153:40984110.
66. Fraser, J. D.,, T. Proft. 2008. The bacterial superantigen and superantigen-like proteins. Immunol. Rev. 225:226243.
67. Fraser, M. E.,, M. M. Chernaia,, Y. V. Kozlov, and, M. N. James. 1994. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nat. Struct. Biol. 1:5964.
68. Fraser, M. E.,, M. Fujinaga,, M. M. Cherney,, A. R. Melton-Celsa,, E. M. Twiddy,, A. D. O’Brien, and, M. N. James. 2004. Structure of Shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J. Biol. Chem. 279:2751127517.
69. Freeman, V. J. 1951. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 61:675688.
70. Friedman, D. I., and, D. L. Court. 2001. Bacteriophage lambda: alive and well and still doing its thing. Curr. Opin. Microbiol. 4: 201207.
71. Gajdus, J.,, Z. Kaczynski,, M. Czerwicka,, H. Dziadziuszko, and, J. Szafranek. 2008. Structure of the Salmonella Anatum (O:3,10) O-antigen. Pol. J. Chem. 82:13931398.
72. Garcia-Aljaro, C.,, M. Muniesa,, J. Jofre, and, A. R. Blanch. 2009. Genotypic and phenotypic diversity among induced, stx2-carrying bacteriophages from environmental Escherichia coli strains. Appl. Environ. Microbiol. 75:329336.
73. Gillet, Y.,, B. Issartel,, P. Vanhems,, J. C. Fournet,, G. Lina,, M. Bes,, F. Vandenesch,, Y. Piemont,, N. Brousse,, D. Floret, and, J. Etienne. 2002. Association between Staphylococcus aureus strains carrying gene for Panton-Valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 359: 753759.
74. Giraudo, A. T.,, A. Calzolari,, A. A. Cataldi,, C. Bogni, and, R. Nagel. 1999a. Corrigendum to: “The sae locus of Staphylococcus aureus encodes a two-component regulatory system.” FEMS Microbiol. Lett. 180:117.
75. Giraudo, A. T.,, A. Calzolari,, A. A. Cataldi,, C. Bogni, and, R. Nagel. 1999b. The sae locus of Staphylococcus aureus encodes a two-component regulatory system. FEMS Microbiol. Lett. 177:1522.
76. Goerke, C.,, C. Wirtz,, U. Fluckiger, and, C. Wolz. 2006. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol. Microbiol. 61: 16731685.
77. Greenberg, M.,, J. Dunlap, and, R. Villafane. 1995. Identification of the tailspike protein from the Salmonella newington phage ɛ34 and partial characterization of its phage-associated properties. J. Struct. Biol. 115:283289.
78. Grimont, P. A. D.,, F.-X. Weill, and WHO Collaborating Center for Reference and Research on Salmonella. 2007. Antigenic Formulae of the Salmonella Serovars, 9th ed. Institut Pasteur, Paris, France.
79. Guan, S.,, D. A. Bastin, and, N. K. Verma. 1999. Functional analysis of the O antigen glucosylation gene cluster of Shigella flexneri bacteriophage SfX. Microbiology 145:12631273.
80. Guglielmini, J.,, C. Szpirer, and, M. C. Milinkovitch. 2008. Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiol. 8:104.
81. Gyles, C. L. 2007. Shiga toxin-producing Escherichia coli: an overview. J. Anim. Sci. 85:E45E62.
82. Haas, P. J.,, C. J. de Haas,, W. Kleibeuker,, M. J. Poppelier,, K. P. van Kessel,, J. A. Kruijtzer,, R. M. Liskamp, and, J. A. van Strijp. 2004. N-terminal residues of the chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J. Immunol. 173:57045711.
83. Haas, P. J.,, C. J. de Haas,, M. J. Poppelier,, K. P. van Kessel,, J. A. van Strijp,, K. Dijkstra,, R. M. Scheek,, H. Fan,, J. A. Kruijtzer,, R. M. Liskamp, and, J. Kemmink. 2005. The structure of the C5a receptor-blocking domain of chemotaxis inhibitory protein of Staphylococcus aureus is related to a group of immune evasive molecules. J. Mol. Biol. 353:859872.
84. Hagiwara, S.,, H. Uetake. 1970. Formation of hybrid conversion phages between heterologous Salmonella phages ɛ15 and ɛ34. Virology 41:419429.
85. Hanakawa, Y.,, N. M. Schechter,, C. Lin,, K. Nishifuji,, M. Amagai, and, J. R. Stanley. 2004. Enzymatic and molecular characteristics of the efficiency and specificity of exfoliative toxin cleavage of desmoglein 1. J. Biol. Chem. 279:52685277.
86. Handa, H.,, S. Gurczynski,, M. P. Jackson,, G. Auner, and, G. Mao. 2008. Recognition of Salmonella Typhimurium by immobilized phage P22 monolayers. Surf. Sci. 602:13921400.
87. Hanson, M. A., and, R. C. Stevens. 2000. Co-crystal structure of synaptobrevin-II bound to botulinum neurotoxin type B at 2.0 Å resolution. Nat. Struct. Biol. 7:687692.
88. Herold, S.,, H. Karch, and, H. Schmidt. 2004. Shiga toxin-encoding bacteriophages-genomes in motion. Int. J. Med. Microbiol. 294:115121.
89. Hofer, B.,, M. Ruge, and, B. Dreiseikelmann. 1995. The superinfection exclusion gene (sieA) of bacteriophage P22: identification and overexpression of the gene and localization of the gene product. J. Bacteriol. 177:30803086.
90. Holmberg, S. D.,, P. A. Blake. 1984. Staphylococcal food poisoning in the United States. New facts and old misconceptions. JAMA 251: 487489.
91. Holmes, A.,, M. Ganner,, S. McGuane,, T. L. Pitt,, B. D. Cookson, and, A. M. Kearns. 2005. Staphylococcus aureus isolates carrying Panton-Valentine leucocidin genes in England and Wales: frequency, characterization, and association with clinical disease. J. Clin. Microbiol. 43:23842390.
92. Hongo, I.,, T. Baba,, K. Oishi,, Y. Morimoto,, T. Ito, and, K. Hiramatsu. 2009. Phenol-soluble modulin α3 enhances the human neutrophil lysis mediated by Panton-Valentine leukocidin. J. Infect. Dis. 200:715723.
93. Huan, P. T.,, D. A. Bastin,, B. L. Whittle,, A. A. Lindberg, and, N. K. Verma. 1997. Molecular characterization of the genes involved in O-antigen modification, attachment, integration and excision in Shigella flexneri bacteriophage SfV. Gene 195:217227.
94. Iandolo, J. J.,, V. Worrell,, K. H. Groicher,, Y. Qian,, R. Tian,, S. Kenton,, A. Dorman,, H. Ji,, S. Lin,, P. Loh,, S. Qi,, H. Zhu, and, B. A. Roe. 2002. Comparative analysis of the genomes of the temperate bacteriophages φ11, φ12 and φ13 of Staphylococcus aureus 8325. Gene 289:109118.
95. Imamovic, L.,, J. Jofre,, H. Schmidt,, R. Serra-Moreno, and, M. Muniesa. 2009. Phage-mediated Shiga toxin 2 gene transfer in food and water. Appl. Environ. Microbiol. 75:17641768.
96. Inoue, K., and, H. Iida. 1968. Bacteriophages of Clostridium botulinum. J. Virol. 2:537540.
97. Inoue, K., and, H. Iida. 1970. Conversion of toxigenicity in Clostridium botulinum type C. Jpn. J. Microbiol. 14:8789.
98. Inoue, K., and, H. Iida. 1971. Phage-conversion of toxigenicity in Clostridium botulinum types C and D. Jpn. J. Med. Sci. Biol. 24:5356.
99. Ippel, J. H.,, C. J. de Haas,, A. Bunschoten,, J. A. van Strijp,, J. A. Kruijtzer,, R. M. Liskamp, and, J. Kemmink. 2009. Structure of the tyrosine-sulfated C5a receptor N terminus in complex with chemotaxis inhibitory protein of Staph-ylococcus aureus. J. Biol. Chem. 284:1236312372.
100. Iseki, S., and, K. Kashiwagi. 1955. Induction of somatic antigen 1 by bacteriophage in Salmonella group B. Proc. Jpn. Acad. 31:558564.
101. Iwashita, S., and, S. Kanegasaki. 1976. Deacetylation reaction catalyzed by Salmonella phage c341 and its baseplate parts. J. Biol. Chem. 251:53615365.
102. Jackson, M. P., and, J. J. Iandolo. 1986a. Cloning and expression of the exfoliative toxin B gene from Staphylococcus aureus. J. Bacteriol. 166:574580.
103. Jackson, M. P., and, J. J. Iandolo. 1986b. Sequence of the exfoliative toxin B gene of Staphylococcus aureus. J. Bacteriol. 167:726728.
104. Jarraud, S.,, M. A. Peyrat,, A. Lim,, A. Tristan,, M. Bes,, C. Mougel,, J. Etienne,, F. Vandenesch,, M. Bonneville, and, G. Lina. 2001. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J. Immunol. 166:669677.
105. Jayasinghe, L.,, H. Bayley. 2005. The leukocidin pore: evidence for an octamer with four LukF subunits and four LukS subunits alternating around a central axis. Protein Sci. 14:25502561.
106. Jin, T.,, M. Bokarewa,, T. Foster,, J. Mitchell,, J. Higgins,, A. and Tarkowski. 2004. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J. Immunol. 172:11691176.
107. Johnson, A. D.,, L. Spero,, J. S. Cades, and, B. T. de Cicco. 1979. Purification and characterization of different types of exfoliative toxin from Staphylococcus aureus. Infect. Immun. 24:679684.
108. Johnson, E. A.,, M. Bradshaw. 2001. Clostridium botulinum and its neurotoxins: a metabolic and cellular perspective. Toxicon 39:17031722.
109. Johnson, T. J.,, Y. M. Wannemuehler, and, L. K. Nolan. 2008. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74: 23602369.
110. Juhala, R. J.,, M. E. Ford,, R. L. Duda,, A. Youlton,, G. F. Hatfull, and, R. W. Hendrix. 2000. Genetic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299:2751.
111. Kall, L.,, A. Krogh, and, E. L. Sonnhammer. 2004. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338:10271036.
112. Kamio, Y.,, T. Tomita, and, J. Kaneko. 2001. Pore-forming cytolysin from Staphylococcus aureus, alpha- and gamma-hemolysin, and leukocidin, p. 179212. In I. Friedman (ed.), Staphylococcal Infection and Immunity. Kluwer Academic/Plenum Publishers, New York, NY.
113. Kaneko, J., and, Y. Kamio. 2004. Bacterial two-component and hetero-heptameric pore-forming cytolytic toxins: structures, pore-forming mechanism, and organization of the genes. Biosci. Biotechnol. Biochem. 68:9811003.
114. Kaneko, J.,, T. Kimura,, Y. Kawakami,, T. Tomita, and, Y. Kamio. 1997. Panton-Valentine leukocidin genes in a phage-like particle isolated from mitomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Biosci. Biotechnol. Biochem. 61: 19601962.
115. Kaneko, J.,, T. Kimura,, S. Narita,, T. Tomita, and, Y. Kamio. 1998. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage φPVL carrying Panton-Valentine leukocidin genes. Gene 215: 5767.
116. Karch, H.,, M. Bielaszewska. 2001. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H strains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J. Clin. Microbiol. 39:20432049.
117. Karmali, M. A.,, M. Petric,, C. Lim,, P. C. Fleming, and, B. T. Steele. 1983a. Escherichia coli cytotoxin, haemolytic-uraemic syndrome, and haemorrhagic colitis. Lancet 2:12991300.
118. Karmali, M. A.,, B. T. Steele,, M. Petric, and, C. Lim. 1983b. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1:619620.
119. Kimmitt, P. T.,, C. R. Harwood, and, M. R. Barer. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6:458465.
120. Kitamura, M.,, K. Takamiya,, S. Aizawa,, K. Fu-rukawa, and, K. Furukawa. 1999. Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim. Biophys. Acta 1441:13.
121. Kobayashi, S. D.,, F. R. DeLeo. 2009. An update on community-associated MRSA virulence. Curr. Opin. Pharmacol. 9:545551.
122. Kondo, I.,, S. Sakurai,, Y. Sarai, and, S. Futaki. 1975. Two serotypes of exfoliatin and their distribution in staphylococcal strains isolated from patients with scalded skin syndrome. J. Clin. Microbiol. 1:397400.
123. Kozaki, S.,, G. Sakaguchi,, M. Nishimura,, M. Iwamori, and, Y. Nagai. 1984. Inhibitory effect of ganglioside GTlb on the activities of Clostridium botulinum toxins. FEMS Microbiol. Lett. 21:219223.
124. Kropinski, A. M. 2009. Measurement of the bacteriophage inactivation kinetics with purified receptors. Methods Mol. Biol. 501:157160.
125. Kropinski, A. M.,, M. Borodovsky,, T. J. Carver,, A. M. Cerdeno-Tarraga,, A. Darling,, A. Lomsadze,, P. Mahadevan,, P. Stothard,, D. Seto,, G. Van Domselaar, and, D. S. Wishart. 2009. In silico identification of genes in bacteriophage DNA. Methods Mol. Biol. 502:5789.
126. Kropinski, A. M.,, I. V. Kovalyova,, S. J. Billington,, B. D. Butts,, A. N. Patrick,, J. A. Guichard,, S. M. Hutson,, A. D. Sydlaske,, K. R. Day,, D. R. Falk, and, M. R. McConnell. 2007. The genome of ɛ15, a serotype-converting, Group E1 Salmonella enterica-specific bacteriophage. Virology 369:234244.
127. Kumagai, R.,, K. Nakatani,, N. Ikeya,, Y. Kito,, T. Kaidoh, and, S. Takeuchi. 2007. Quadruple or quintuple conversion of hlb, sak, sea (or sep), scn, and chp genes by bacteriophages in non-β-hemolysin-producing bovine isolates of Staphylococcus aureus. Vet. Microbiol. 122:190195.
128. Kumar, A.,, H. Wu,, L. S. Collier-Hyams,, J. M. Hansen,, T. Li,, K. Yamoah,, Z. Q. Pan,, D. P. Jones, and, A. S. Neish. 2007. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26: 44574466.
129. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi, and, K. Hiramatsu. 2001. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:12251240.
130. Kwan, T.,, J. Liu,, M. DuBow,, P. Gros, and, J. Pelletier. 2005. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA 102:51745179.
131. Labandeira-Rey, M.,, F. Couzon,, S. Boisset,, E. L. Brown,, M. Bes,, Y. Benito,, E. M. Barbu,, V. Vazquez,, M. Hook,, J. Etienne,, F. Vandenesch, and, M. G. Bowden. 2007. Staphylococcus aureus Panton-Valentine leukocidin causes necrotizing pneumonia. Science 315:11301133.
132. Ladhani, S. 2001. Recent developments in staphylococcal scalded skin syndrome. Clin. Microbiol. Infect. 7:301307.
133. Ladhani, S.,, C. L. Joannou,, D. P. Lochrie,, R. W. Evans, and, S. M. Poston. 1999. Clinical, microbial, and biochemical aspects of the exfoliative toxins causing staphylococcal scalded-skin syndrome. Clin. Microbiol. Rev. 12:224242.
134. Lainhart, W.,, G. Stolfa, and, G. B. Koudelka. 2009. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J. Bacteriol. 191:51165122.
135. Landstrom, J.,, E. L. Nordmark,, R. Eklund,, A. Weintraub,, R. Seckler, and, G. Widmalm. 2008. Interaction of a Salmonella enteritidis O-antigen octasaccharide with the phage P22 tailspike protein by NMR spectroscopy and docking studies. Glycoconj. J. 25:137143.
136. Lavigne, R.,, D. Seto,, P. Mahadevan,, H.-W. Ackermann, and, A. M. Kropinski. 2008. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP based tools. Res. Microbiol. 159:406414.
137. Lee, C. Y.,, J. J. Iandolo. 1986. Lysogenic conversion of staphylococcal lipase is caused by insertion of the bacteriophage L54a genome into the lipase structural gene. J. Bacteriol. 166:385391.
138. Lee, C. Y.,, J. J. Schmidt,, A. D. Johnson-Winegar,, L. Spero, and, J. J. Iandolo. 1987. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. J. Bacteriol. 169:39043909.
139. Lee, J. E.,, J. Reed,, M. S. Shields,, K. M. Spiegel,, L. D. Farrell, and, P. P. Sheridan. 2007. Phylogenetic analysis of Shiga toxin 1 and Shiga toxin 2 genes associated with disease outbreaks. BMC Microbiol. 7:109.
140. Lehnherr, H. 2005. Bacteriophage P1, p. 350364. In R. Calendar (ed.), The Bacteriophages, 2nd ed. Oxford University Press, New York, NY.
141. Le Loir, Y.,, F. Baron, and, M. Gautier. 2003. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2:6376.
142. Le Minor, L. 1962. Conversion par lysogenisation de quelques sérotypes de Salmonella des groupes A, B et D normalement dépourvus du facteur 027 en cultures 27 positives. Ann. Inst. Pasteur (Paris) 103: 684706.
143. Le Minor, L. 1963. Conversion antigénique chez les Salmonella: IV. Acquisition du facteur 01 par les Salmonella des groupes R et T sous l’effet de la lysogenisation. Ann. Inst. Pasteur (Paris) 105:879896.
144. Le Minor, L. 1965a. Conversion antigénique chez les Salmonella: V. Acquisition des facteurs 15 et 34 par les Salmonella du sous groupe D2 sous l’effet de la lysogénisation par les phages ɛ15 et ɛ34. Ann. Inst. Pasteur (Paris) 109:3546.
145. Le Minor, L. 1965b. Conversions antigéniques chez les Salmonella. VI. Acquisition des facteurs 6, 14 par les serotypes du groupe K (018) sous l’effet de la lysogénisation. Ann. Inst. Pasteur (Paris) 108: 805811.
146. Le Minor, L. 1965c. Conversions antieégniques chez les Salmonella. VII. Acquisition du facteur 14 par les Salmonella du sous groupe C1 (6, 7) apres ly-sogénisation par un phage tempere isole des cultures du sous groupe C4 (6, (7), (14)). Ann. Inst. Pasteur (Paris) 109:505515.
147. Le Minor, L.,, H.-W. Ackermann, and, P. Nicolle. 1963. Acquisition simultanée des facteurs 01 et 037 par les Salmonella du groupe G sous l’effet de la lysogénisation. Ann. Inst. Pasteur (Paris) 104: 469475.
148. Le Minor, L.,, S. Le Minor, and, P. Nicolle. 1961. Conversion des cultures de S. schwarzengrund et S. bredeney dépourvues de l’antigèine 27 en cultures 27 positives par lysogénisation. Ann. Inst. Pasteur (Paris) 101:571589.
149. Leung, D. Y.,, J. B. Travers, and, D. A. Norris. 1995. The role of superantigens in skin disease. J. Invest. Dermatol. 105(1 Suppl.):37S42S.
150. Lietzow, M. A.,, E. T. Gielow,, D. Le,, J. Zhang, and, M. F. Verhagen. 2008. Subunit stoichiometry of the Clostridium botulinum type A neurotoxin complex determined using denaturing capillary electrophoresis. Protein J. 27:420425.
151. Lina, G.,, Y. Piemont,, F. Godail-Gamot,, M. Bes,, M. O. Peter,, V. Gauduchon,, F. Vandenesch, and, J. Etienne. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylo-coccus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29:11281132.
152. Lindberg, A. A.,, C. G. Hellerqvist,, G. Bagdian-Motta, and, P. H. Mäkelä. 1978. Lipopolysaccharide modification accompanying antigenic conversion by phage P27. J. Gen. Microbiol. 107:279287.
153. Łoś, J. M. 2009. Molecular mechanisms of development regulation in lambdoid bacteriophages. Ph.D. thesis. University of Gdansk, Gdansk, Poland.
154. Łoś, J. M.,, P. Golec,, G. Węgrzyn,, A. Węgrzyn, and, M. Łoś. 2008a. Simple method for plating Escherichia coli bacteriophages forming very small plaques or no plaques under standard conditions. Appl. Environ. Microbiol. 74:51135120.
155. Łoś, J. M.,, M. Łoś,, A. Węgrzyn, and, G. Węgrzyn. 2008b. Role of the bacteriophage λ exo-xis region in the virus development. Folia Microbiol. (Praha) 53:443450.
156. Łoś, J. M.,, M. Łoś,, A. Węgrzyn, and, G. Węgrzyn. 2010. Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 58:322329.
157. Łoś, J. M.,, M. Łoś,, G. Węgrzyn, and, A. Węgrzyn. 2009. Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb. Pathog. 47:289298.
158. Łoś, M.,, P. Golec,, J. M. Łoś,, A. Weglewska-Jurkiewicz,, A. Czyz,, A. Węgrzyn,, G. Węgrzyn, and, P. Neubauer. 2007. Effective inhibition of lytic development of bacteriophages λ, P1 and T4 by starvation of their host, Escherichia coli. BMC Biotechnol. 7: 13.
159. Łoś, M.,, J. M. Łoś,, L. Blohm,, E. Spillner,, T. Grunwald,, J. Albers,, R. Hintsche, and, G. Węgrzyn. 2005. Rapid detection of viruses using electrical biochips and anti-virion sera. Lett. Appl. Microbiol. 40:479485.
160. Łoś, M.,, J. M. Łoś, and, G. Węgrzyn. 2008c. Rapid identification of Shiga toxin-producing Es-cherichia coli (STEC) using electric biochips. Diagn. Mol. Pathol. 17:179184.
161. Losick, R. 1969. Isolation of a trypsin-sensitive inhibitor of O-antigen synthesis involved in lysogenic conversion by bacteriophage ɛ15. J. Mol. Biol. 42:237246.
162. Losick, R., and, P. W. Robbins. 1967. Mechanism of ɛ15 conversion studied with a bacterial mutant. J. Mol. Biol. 30:445455.
163. Lüderitz, O. 1970. Recent results on the biochemistry of the cell wall lipopolysaccharides of Salmonella bacteria. Angew. Chem. Int. Ed. Engl. 9:649663.
164. Lüderitz, O.,, A. M. Staub, and, O. Westphal. 1966. Immunochemistry of O and R antigens of Salmonella and related Enterobacteriaceae. Bacteriol. Rev. 30:192255.
165. Lwoff, A. 1953. Lysogeny. Bacteriol. Rev. 17:269337.
166. Ma, X. X.,, T. Ito,, P. Chongtrakool, and, K. Hiramatsu. 2006. Predominance of clones carrying Panton-Valentine leukocidin genes among methicillin-resistant Staphylococcus aureus strains isolated in Japanese hospitals from 1979 to 1985. J. Clin. Microbiol. 44:45154527.
167. Ma, X. X.,, T. Ito,, Y. Kondo,, M. Cho,, Y. Yoshizawa,, J. Kaneko,, A. Katai,, M. Higashiide,, S. Li, and, K. Hiramatsu. 2008. Two different Panton-Valentine leukocidin phage lineages predominate in Japan. J. Clin. Microbiol. 46:32463258.
168. Maiques, E.,, C. Ubeda,, S. Campoy,, N. Salvador,, I. Lasa,, R. P. Novick,, J. Barbe, and, J. R. Penades. 2006. β-Lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureus. J. Bacteriol. 188: 27262729.
169. McCormick, J. K.,, J. M. Yarwood, and, P. M. Schlievert. 2001. Toxic shock syndrome and bacterial superantigens: an update. Annu. Rev. Microbiol. 55:77104.
170. McLeod, S. M.,, H. H. Kimsey,, B. M. Davis, and, M. K. Waldor. 2005. CTXϕ and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol. Microbiol. 57: 347356.
171. Melish, M. E.,, L. A. Glasgow. 1970. The staphylococcal scalded-skin syndrome. N. Engl. J. Med. 282:11141119.
172. Melish, M. E.,, L. A. Glasgow, and, M. D. Turner. 1972. The staphylococcal scalded-skin syndrome: isolation and partial characterization of the exfoliative toxin. J. Infect. Dis. 125:129140.
173. Menestrina, G.,, M. Dalla Serra,, M. Comai,, M. Coraiola,, G. Viero,, S. Werner,, D. A. Colin,, H. Monteil, and, G. Prevost. 2003. Ion channels and bacterial infection: the case of (3-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett. 552:5460.
174. Miller, V. L.,, K. B. Beer,, G. Heusipp,, B. M. Young, and, M. R. Wachtel. 2001. Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol. Microbiol. 41: 10531062.
175. Miller, V. L.,, K. B. Beer,, W. P. Loomis,, J. A. Olson, and, S. I. Miller. 1992. An unusual pagC::TnphoA mutation leads to an invasion- and virulence-defective phenotype in salmonellae. Infect. Immun. 60:37633770.
176. Mmolawa, P. T.,, H. Schmieger,, C. P. Tucker, and, M. W. Heuzenroeder. 2003. Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: evidence for modular genetic architecture. J. Bacteriol. 185: 34733475.
177. Monday, S. R., and, G. A. Bohach. 2001. Genes encoding staphylococcal enterotoxins G and I are linked and separated by DNA related to other staphylococcal enterotoxins. J. Nat. Toxins 10:18.
178. Monday, S. R.,, G. M. Vath,, W. A. Ferens,, C. Deobald,, J. V. Rago,, P. J. Gahr,, D. D. Monie,, J. J. Iandolo,, S. K. Chapes,, W. C. Davis,, D. H. Ohlendorf,, P. M. Schlievert, and, G. A. Bohach. 1999. Unique superantigen activity of staphylococcal exfoliative toxins. J. Immunol. 162:45504559.
179. Moreland, J. L.,, A. Gramada,, O. V. Buzko,, Q. Zhang, and, P. E. Bourne. 2005. The Molecular Biology Toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics 6: 21.
180. Morlock, B. A.,, L. Spero, and, A. D. Johnson. 1980. Mitogenic activity of staphylococcal exfoliative toxin. Infect. Immun. 30:381384.
181. Muniesa, M.,, J. Jofre,, C. García-Aljaro, and, A. R. Blanch. 2006. Occurrence of Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli in the environment. Environ. Sci. Technol. 40: 71417149.
182. Munson, S. H.,, M. T. Tremaine,, M. J. Betley, and, R. A. Welch. 1998. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect. Immun. 66: 33373348.
183. Murphy, K. C.,, J. M. Ritchie,, M. K. Waldor,, A. Lobner-Olesen, and, M. G. Marinus. 2008. Dam methyltransferase is required for stable lysogeny of the Shiga toxin (Stx2)-encoding bacteriophage 933W of enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 190:438441.
184. Muschel, L. H.,, L. A. Ahl, and, L. S. Baron. 1968. Effect of lysogeny on serum sensitivity. J. Bacteriol. 96:19121914.
185. Nakamura, T.,, M. Kotani,, T. Tonozuka,, A. Ide,, K. Oguma, and, A. Nishikawa. 2009. Crystal structure of the HA3 subcomponent of Clostridium botulinum type C progenitor toxin. J. Mol. Biol. 385:11931206.
186. Narita, S.,, J. Kaneko,, J. Chiba,, Y. Piemont,, S. Jarraud,, J. Etienne, and, Y. Kamio. 2001. Phage conversion of Panton-Valentine leukocidin in Staphylococcus aureus: molecular analysis of a PVL-converting phage, φSLT. Gene 268:195206.
187. Nejman, B.,, J. M. Łoś,, M. Łoś,, G. Węgrzyn, and, A. Węgrzyn. 2009. Plasmids derived from lambdoid bacteriophages as models for studying replication of mobile genetic elements responsible for the production of Shiga toxins by pathogenic Es-cherichia coli strains. J. Mol. Microbiol. Biotechnol. 17: 211220.
188. Nemecek, D.,, G. C. Lander,, J. E. Johnson,, S. R. Casjens, and, G. J. Thomas, Jr. 2008. Assembly architecture and DNA binding of the bacteriophage P22 terminase small subunit. J. Mol. Biol. 383:494501.
189. Nickerson, S. C.,, W. E. Owens, and, R. L. Boddie. 1995. Mastitis in dairy heifers: initial studies on prevalence and control. J. Dairy Sci. 78:16071618.
190. Nishifuji, K.,, M. Sugai, and, M. Amagai. 2008. Staphylococcal exfoliative toxins: “molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J. Dermatol. Sci. 49: 2131.
191. Nolan, L. K.,, S. M. Horne,, C. W. Giddings,, S. L. Foley,, T. J. Johnson,, A. M. Lynne, and, J. Skyberg. 2003. Resistance to serum complement, iss, and virulence of avian Escherichia coli. Vet. Res. Commun. 27:101110.
192. Novick, R. P. 2006. Staphylococcal pathogenesis and pathogenicity factors: genetics and regulation, p. 496516. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. Portnoy, and, J. A. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, DC.
193. Oguma, K. 1976. The stability of toxigenicity in Clostridium botulinum types C and D. J. Gen. Microbiol. 92:6775.
194. Oguma, K.,, H. Iida,, M. Shiozaki, and, K. Inoue. 1976. Antigenicity of converting phages obtained from Clostridium botulinum types C and D. Infect. Immun. 13:855860.
195. Ohlenschlager, O.,, R. Ramachandran,, K. H. Guhrs,, B. Schlott, and, L. R. Brown. 1998. Nuclear magnetic resonance solution structure of the plasminogen-activator protein staphylokinase. Biochemistry 37:1063510642.
196. Olson, R.,, H. Nariya,, K. Yokota,, Y. Kamio, and, E. Gouaux. 1999. Crystal structure of staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel. Nat. Struct. Biol. 6:134140.
197. Osterhout, R. E.,, I. A. Figueroa,, J. D. Keasling, and, A. P. Arkin. 2007. Global analysis of host response to induction of a latent bacteriophage. BMC Microbiol. 7:82.
198. O’Toole, P. W., and, T.J. Foster. 1986. Molecular cloning and expression of the epidermolytic toxin A gene of Staphylococcus aureus. Microb. Pathog. 1: 583594.
199. O’Toole, P. W., and, T. J. Foster. 1987. Nucleotide sequence of the epidermolytic toxin A gene of Staphylococcus aureus. J. Bacteriol. 169:39103915.
200. Panton, P. N.,, M. B. Came, and, F. C. O. Valentine. 1932. Staphylococcal toxin. Lancet 1:506508.
201. Papageorgiou, A. C.,, K. R. Acharya. 2000. Microbial superantigens: from structure to function. Trends Microbiol. 8:369375.
202. Papageorgiou, A. C.,, L. R. Plano,, C. M. Collins, and, K. R. Acharya. 2000. Structural similarities and differences in Staphylococcus aureus exfoliative toxins A and B as revealed by their crystal structures. Protein Sci. 9: 610618.
203. Parma, D. H.,, M. Snyder,, S. Sobolevski,, M. Nawroz,, E. Brody, and, L. Gold. 1992. The Rex system of bacteriophage λ: tolerance and altruistic cell death. Genes Dev. 6:497510.
204. Parry, M. A.,, C. Fernandez-Catalan,, A. Bergner,, R. Huber,, K. P. Hopfner,, B. Schlott,, K. H. Guhrs, and, W. Bode. 1998. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat. Struct. Biol. 5:917923.
205. Paton, A. W., and, J. C. Paton. 1996. Enterobacter cloacae producing a Shiga-like toxin II-related cytotoxin associated with a case of hemolytic-uremic syndrome. J. Clin. Microbiol. 34:463465.
206. Pedelacq, J. D.,, L. Maveyraud,, G. Prevost,, L. Baba-Moussa,, A. Gonzalez,, E. Courcelle,, W. Shepard,, H. Monteil,, J. P. Samama, and, L. Mourey. 1999. The structure of a Staphylococcus aureus leucocidin component (LukF-PV) reveals the fold of the water-soluble species of a family of transmembrane pore-forming toxins. Structure 7: 277287.
207. Pedulla, M. L.,, M. E. Ford,, T. Karthikeyan,, J. M. Houtz,, R. W. Hendrix,, G. F. Hatfull,, A. R. Poteete,, E. B. Gilcrease,, D. A. Winn-Stapley, and, S. R. Casjens. 2003. Corrected sequence of the bacteriophage P22 genome. J. Bacteriol. 185:14751477.
208. Perry, L. L.,, P. SanMiguel,, U. Minocha,, A. I. Terekhov,, M. L. Shroyer,, L. A. Farris,, N. Bright,, B. L. Reuhs, and, B. M. Applegate. 2009. Sequence analysis of Escherichia coli O157:H7 bacteriophage V10 and identification of a phage-encoded immunity protein that modifies the O157 antigen. FEMS Microbiol. Lett. 292:182186.
209. Persson, S.,, K. E. Olsen,, S. Ethelberg, and, F. Scheutz. 2007. Subtyping method for Escherichia coli Shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. J. Clin. Microbiol. 45:20202024.
210. Petersson, K.,, M. Thunnissen,, G. Forsberg, and, B. Walse. 2002. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Structure 10: 16191626.
211. Plano, L. R.,, D. M. Gutman,, M. Woischnik, and, C. M. Collins. 2000. Recombinant Staphylococcus aureus exfoliative toxins are not bacterial superantigens. Infect. Immun. 68:30483052.
212. Plunkett, G., III.,, D. J. Rose,, T. J. Durfee, and, F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181:17671778.
213. Postma, B.,, M. J. Poppelier,, J. C. van Galen,, E. R. Prossnitz,, J. A. van Strijp,, C. J. de Haas, and, K. P. van Kessel. 2004. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J. Immunol. 172:69947001.
214. Prere, M. F.,, O. Fayet. 2005. A new genetic test for the rapid identification of shiga-toxines producing (STEC), enteropathogenic (EPEC) E. coli isolates from children. Pathol. Biol. (Paris) 53: 466469.
215. Prevost, G.,, P. Couppie,, P. Prevost,, S. Gayet,, P. Petiau,, B. Cribier,, H. Monteil, and, Y. Piemont. 1995a. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J. Med. Microbiol. 42:237245.
216. Prevost, G.,, B. Cribier,, P. Couppie,, P. Petiau,, G. Supersac,, V. Finck-Barbancon,, H. Monteil, and, Y. Piemont. 1995b. Panton-Valentine leucocidin and gamma-hemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect. Immun. 63:41214129.
217. Ptashne, M. 2004. A Genetic Switch: Phage Lambda Revisited. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
218. Ramamurthy, T. 2008. Shiga toxin-producing Escherichia coli (STEC): the bug in our backyard. Indian J. Med. Res. 128:233236.