1887

Chapter 13 : Application of Bacteriophages for Control of Infectious Diseases in Aquaculture

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Application of Bacteriophages for Control of Infectious Diseases in Aquaculture, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555816629/9781555815028_Chap13-2.gif

Abstract:

Vaccination is an ideal method for prevention of infectious diseases, but commercially available vaccines are still limited in the aquaculture field. Bacteriophages (phages) as specific pathogen-killers are attractive agents for treating or controlling bacterial infections. Studies on phages of fish pathogens and aquaculture phage therapy have become more popular since the late 1990s, with an increasing interest in recent years. This chapter reviews research results and discusses the potential for controlling bacterial infections in aquaculture by means of phages. Ayu () is an osmerid fish with a 1-year life cycle and is one of the most popular freshwater species for sport fishing as well as for aquaculture in Japan. Two bacterial diseases, bacterial hemorrhagic ascites caused by and bacterial cold-water disease (BCWD) caused by have damaged the aquaculture industry and the natural resource enhancement program of this fish species since 1990. Phage therapy against bacterial diseases of fish remains an inadequately studied topic, and further intensive investigations of various aspects of the practice are required to establish its practical feasibility in aquaculture. Phage therapy is both an old and an attractive new approach to prevent and control bacterial infections and potentially applicable to any field affected by bacterial infection, including aquaculture.

Citation: Nakai T. 2010. Application of Bacteriophages for Control of Infectious Diseases in Aquaculture, p 257-272. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch13

Key Concept Ranking

Aeromonas hydrophila
0.47909418
Edwardsiella tarda
0.47909418
Aeromonas hydrophila
0.47909418
Edwardsiella tarda
0.47909418
Aeromonas hydrophila
0.47909418
0.47909418
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Plaques and electron micrographs of phages. (a) PPpW-3. (b) PPpW-4. (Adapted from with permission of the publisher.)

Citation: Nakai T. 2010. Application of Bacteriophages for Control of Infectious Diseases in Aquaculture, p 257-272. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Daily mortality of ayu after phage treatment against natural infection with Fish in the infection-prevailing culture pond received phage-containing feed (pellets) on days 0, 1, and 8. The presence of phages and was monitored by isolation from the kidneys of apparently healthy fish (n = 40) at days -2, -1, 0, 1, 2, 4, 6, 8, and 15. Fish at day 0 were examined 3 h after phage administration and fish at days 1 and 8 were examined before phage administration. (Adapted from with permission of the publisher.)

Citation: Nakai T. 2010. Application of Bacteriophages for Control of Infectious Diseases in Aquaculture, p 257-272. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816629.ch13
1. Alisky, J.,, K. Iczkowski,, A. Rapoport, and, N. Troitsky. 1998. Bacteriophages show promise as antimicrobial agents. J. Infect. 36:515.
2. Austin, B., and, D. Austin. 2007. Zoonoses, p. 408411. In B. Austin and, D. Austin (ed.), Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish, 4th ed. Praxis Publishing, Chichester, United Kingdom.
3. Barnes, A. C., and, A. E. Ellis. 2004. Role of capsule in serotypic differences and complement fixation by Lactococcus garvieae. Fish Shellfish Immunol. 16:207214.
4. Barnes, A. C.,, F. M. Young,, M. T. Horne, and, A. E. Ellis. 2003. Streptococcus iniae: serological differences, presence of capsule and resistance to immune serum killing. Dis. Aquat. Org. 53:241247.
5. Barrow, P.,, M. Lovell, and, A. Berchieri, Jr. 1998. Use of lytic bacteriophage for control of experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin. Diagn. Lab. Immunol. 5:294298.
6. Barrow, P. A., and, J. S. Soothill. 1997. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol. 5:268271.
7. Bergh, Ø.,, K. Y. Børsheim,, G. Bratbak, and, M. Heldal. 1989. High abundance of viruses found in aquatic environments. Nature 340:467468.
8. Bernardet, J.-F.,, Y. Nakagawa, and, B. Holmes. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52:10491070.
9. Biosca, E. G.,, C. Amaro,, J. L. Larsen, and, K. Pedersen. 1997. Phenotypic and genotypic characterization of Vibrio vulnificus: proposal for the substitution of the subspecific taxon biotype for serovar. Appl. Environ. Microbiol. 63:14601466.
10. Eldar, A.,, C. Ghittino,, L. Asanta,, E. Bozzetta,, M. Goria,, M. Prearo, and, H. Bercovier. 1996. Enterococcus seriolicida is a junior synonym of Lactococcus garvieae, a causative agent of septicemia and meningoencephalitis in fish. Curr. Microbiol. 32:8588.
11. Emery, D. L., and, R. J. Whittington. 2004. An evaluation of mycophage therapy, chemotherapy and vaccination for control of Mycobacterium avium subsp. paratuberculosis infection. Vet. Microbiol. 104:143155.
12. Goncalves, J. R.,, G. Brum,, A. Fernandes,, I. Biscaia,, M. J. Correia, and, J. Bastardo. 1992. Aeromonas hydrophila fulminant pneumonia in a fit young man. Thorax 47:482483.
13. Hargreaves, J. E., and, D. R. Lucey. 1990. Life-threatening Edwardsiella tarda soft-tissue infection associated with catfish puncture wound. J. Infect. Dis. 162:14161417.
14. Hildebrand, G. J., and, H. Wolochow. 1962. Translocation of bacteriophage across the intestinal wall of the rat. Proc. Soc. Exp. Biol. Med. 109:183185.
15. Hiney, M., and, G. Olivier. 1999. Furunculosis (Aeromonas salmonicida), p. 341425. In P. T. K. Woo and, D. W. Bruno (ed.), Fish Diseases and Disorders, vol. 3. Viral, Bacterial and Fungal Infections. CABI Publishing, London, United Kingdom.
16. Iida, T., and, H. Wakabayashi. 1993. Resistance of Edwardsiella tarda to opsonophagocytosis of eel neutrophils. Fish Pathol. 28:191192.
17. Iida, Y., and, A. Mizokami. 1996. Outbreaks of coldwater disease in wild ayu and pale chub. Fish Pathol. 31:157164.
18. Imbeault, S.,, S. Parent,, M. Lagacé,, C. F. Uhland, and, J.-F. Blais. 2006. Using bacteriophages to prevent furunculosis caused by Aeromonas salmonicida in farmed brook trout. J. Aquat. Anim. Health 18:203214.
19. Irianto, A., and, B. Austin. 2002. Probiotics in aquaculture. J. Fish Dis. 25:633642.
20. Janda, J. M., and, S. L. Abbott. 1993. Expression of an iron-regulated hemolysin by Edwardsiella tarda. FEMS Microbiol. Lett. 111:275280.
21. Jensen, E. C.,, H. S. Schrader,, B. Rieland,, T. L. Thompson,, K. W. Lee,, K. W. Nickerson, and, T. A. Kokjohn. 1998. Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 64:575580.
22. Kanai, K.,, M. Notohara,, T. Kato,, K. Shutou, and, K. Yoshikoshi. 2006. Serological characterization of Streptococcus iniae strains isolated from cultured fish in Japan. Fish Pathol. 41:5766.
23. Karunasagar, I.,, R. Pai,, G. R. Malathi, and, I. Karunasagar. 1994. Mass mortality of Penaeus monodon larvae due to antibiotic resistant Vibrio harveyi infection. Aquaculture 128:203209.
24. Karunasagar, I.,, M. M. Shivu,, S. K. Girisha,, G. Krohne, and, I. Karunasagar. 2007. Biocontrol of pathogens in shrimp hatcheries using bacteriophages. Aquaculture 268:288292.
25. Kawanishi, M.,, T. Yoshida,, M. Kijima,, K. Yagyu,, T. Nakai,, S. Okada,, A. Endo,, M. Murakami,, S. Suzuki, and, H. Morita. 2007. Characterization of Lactococcus garvieae isolated from radish and broccoli sprouts that exhibited a KG+ phenotype, lack of virulence and absence of a capsule. Lett. Appl. Microbiol. 44:481487.
26. Kawanishi, M.,, T. Yoshida,, S. Yagashiro,, M. Kijima,, K. Yagyu,, T. Nakai,, M. Murakami,, H. Morita., and, S. Suzuki. 2006. Differences between Lactococcus garvieae isolated from the genus Seriola in Japan and those isolated from other animals (trout, terrestrial animals from Europe) with regard to pathogenicity, phage susceptibility and genetic characterization. J. Appl. Microbiol. 101:496504.
27. Kim, J. H.,, D. K. Gomez,, T. Nakai, and, S. C. Park. 2010. Isolation and identification of bacteriophages infecting ayu Plecoglossus altivelis altivelis specific Flavobacterium psychrophilum. Vet. Microbiol. 140:109115.
28. Kusuda, R., and, F. Salati. 1999. Enterococcus seriolicida and Streptococcus iniae, p. 303317. In P. T. K. Woo and, D. W. Bruno (ed.), Fish Diseases and Disorders, vol. 3. Viral, Bacterial and Fungal Infections. CABI Publishing, London, United Kingdom.
29. Lau, S. K. P.,, P. C. Y. Woo,, W.-K. Luk,, A. M. Y. Fung,, W.-T. Hui,, A. H. C. Fong,, C.-W. Chow,, S. S. Y. Wong, and, K.-Y. Yuen. 2006. Clinical isolates of Streptococcus iniae from Asia are more mucoid and β-hemolytic than those from North America. Diagn. Microbiol. Infect. Dis. 54:177181.
30. Lavilla-Pitogo, C. R.,, M. C. L. Baticados,, E. R. Cruz-Lacierda, and, L. D. de la Pena. 1990. Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 9:113.
31. Lenski, R. E. 1984. Coevolution of bacteria and phage: are there endless cycles of bacterial defenses and phage counterdefenses? J. Theor. Biol. 108:319325.
32. Matsuoka, S.,, T. Hashizume,, H. Kanzaki,, E. Iwamoto,, S. C. Park,, T. Yoshida, and, T. Nakai. 2007. Phage therapy against β-hemolytic streptococcosis of Japanese flounder Paralichthys olivaceus. Fish Pathol. 42:181189.
33. Matsuoka, S., and, T. Nakai. 2004. Seasonal appearance of Edwardsiella tarda and its bacteriophages in the culture farms of Japanese flounder. Fish Pathol. 39:145152.
34. Merril, C. R.,, D. Scholl, and, S. L. Adhya. 2003. The prospect for bacteriophage therapy in Western medicine. Nat. Rev. Drug Discov. 2:489497.
35. Miller, J. D., and, M. N. Neely. 2005. Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect. Immun. 73:921934.
36. Munro, J.,, J. Oakey,, E. Bromage, and, L. Owens. 2003. Experimental bacteriophage-mediated virulence in strains of Vibrio harveyi. Dis. Aquat. Org. 54:187194.
37. Nakai, T., and, S. C. Park. 2002. Bacteriophage therapy of infectious diseases in aquaculture. Res. Microbiol. 153:1318.
38. Nakai, T.,, R. Sugimoto,, K.-H. Park,, S. Matsuoka,, K. Mori,, T. Nishioka, and, K. Maruyama. 1999. Protective effects of bacteriophage on experimental Lactococcus garvieae infection in yellowtail. Dis. Aquat. Org. 37:3341.
39. Nakatsugawa, T., and, Y. Iida. 1996. Pseudomonas sp. isolated from diseased ayu, Plecoglossus altivelis. Fish Pathol. 31:221227.
40. Nishibuchi, M.,, K. Muroga,, R. J. Seidler, and, J. L. Fryer. 1979. Pathogenic Vibrio isolated from cultured eels. IV. Deoxyribonucleic acid studies. Bull. Jpn. Soc. Sci. Fish. 45:14691473.
41. Nishimori, E.,, K. Kita-Tsukamoto, and, H. Wakabayashi. 2000. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial hemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50:8389.
42. Park, K.-H.,, H. Kato,, T. Nakai, and, K. Muroga. 1998. Phage typing of Lactococcus garvieae (formerly Enterococcus seriolicida), a pathogen of cultured yellowtail. Fish. Sci. 64:6264.
43. Park, K.-H.,, S. Matsuoka,, T. Nakai, and, K. Muroga. 1997. A virulent bacteriophage of Lactococcus garvieae (formerly Enterococcus seriolicida) isolated from yellowtail Seriola quinqueradiata. Dis. Aquat. Org. 29:145149.
44. Park, S. C., and, T. Nakai. 2003. Bacteriophage control of Pseudomonas plecoglossicida infection in ayu Plecoglossus altivelis. Dis. Aquat. Org. 53:3339.
45. Park, S. C.,, I. Shimamura,, M. Fukunaga,, K. Mori, and, T. Nakai. 2000. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl. Environ. Microbiol. 66:14161422.
46. Plumb, J. A. 1999. Health Maintenance and Principal Microbial Diseases of Cultured Fishes. Iowa State University Press, Ames, IA.
47. Proctor, L. M., and, J. A. Fuhrman. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature 343:6062.
48. Rahman, M. H.,, A. Kuroda,, J. M. Dijkstra,, I. Kiryu,, T. Nakanishi, and, M. Ototake. 2002. The outer membrane fraction of Flavobacterium psychrophilum induces protective immunity in rainbow trout and ayu. Fish Shellfish Immunol. 12:169179.
49. Reid, G. 1999. Testing the efficacy of probiotics, p. 129140. In G. W. Tannock (ed.), Probiotics: a Critical Review. Horizon Scientific Press, Wymondham, United Kingdom.
50. Rodgers, C. J.,, J. H. Pringle,, D. H. McCarthy, and, B. Austin. 1981. Quantitative and qualitative studies of Aeromonas salmonicida bacteriophage. J. Gen. Microbiol. 125:335345.
51. Ruangpan, L.,, Y. Danayadol,, S. Direkbusarakom,, S. Siurairatana, and, T. W. Flegel. 1999. Lethal toxicity of Vibrio harveyi to cultivated Penaeus monodon induced by a bacteriophage. Dis. Aquat. Org. 35:195201.
52. Ryan, J. M., and, G. D. R. Bryant. 1997. Fish tank granuloma—a frequently misdiagnosed infection of the upper limb. J. Accid. Emerg. Med. 14:398399.
53. Sakazaki, R. 2005. Genus XI. Edwardsiella Ewing and McWhorter 1965, 37AL, p. 657661. In D. J. Brenner,, N. R. Krieg,, J. T. Staley, and, G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 2, part B. Springer, New York, NY.
54. Shivu, M. M.,, B. C. Rajeeva,, S. K. Girisha,, I. Karunasagar,, G. Krohne, and, I. Karunasagar. 2007. Molecular characterization of Vibrio harveyi bacteriophages isolated from aquaculture environment along the coast of India. Environ. Microbiol. 9:322331.
55. Shotts, E. B., Jr., and, C. E. Starliper. 1999. Flavobacterial diseases: columnaris disease, cold-water disease and bacterial gill disease, p. 559576. In P. T. K. Woo and, D. W. Bruno (ed.), Fish Diseases and Disorders, vol. 3. Viral, Bacterial and Fungal Infections. CABI Publishing, London, United Kingdom.
56. Slopek, S.,, B. Weber-Dabrowska,, M. Dabrowski, and, A. Kucharewicz-Krukowska. 1987. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981–1986. Arch. Immunol. Ther. Exp. (Warsz.) 35:569583.
57. Smith, H. W., and, M. B. Huggins. 1982. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J. Gen. Microbiol. 128:307318.
58. Smith, H. W., and, M. B. Huggins. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J. Gen. Microbiol. 129:26592675.
59. Smith, H. W.,, M. B. Huggins, and, K. M. Shaw. 1987a. The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. J. Gen. Microbiol. 133:11111126.
60. Smith, H. W.,, M. B. Huggins, and, K. M. Shaw. 1987b. Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J. Gen. Microbiol. 133:11271135.
61. Sommerset, I.,, B. Krossøy,, E. Biering, and, P. Frost. 2005. Vaccines for fish in aquaculture. Expert Rev. Vaccines 4:89101.
62. Stenholm, A. R.,, I. Dalsgaard, and, M. Middelboe. 2008. Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl. Environ. Microbiol. 74:40704078.
63. Sulakvelidze, A.,, Z. Alavidze, and, J. G. Morris, Jr. 2001. Bacteriophage therapy. Antimicrob. Agents Chemother. 45:649659.
64. Sulakvelidze, A., and, P. Barrow. 2005. Phage therapy in animals and agribusiness, p. 335380. In E. Kutter and, A. Sulakvelidze (ed.), Bacteriophages: Biology and Applications, CRC Press, Boca Raton, FL.
65. Sulakvelidze, A., and, E. Kutter. 2005. Bacteriophage therapy in humans, p. 381436. In E. Kutter and, A. Sulakvelidze (ed.), Bacteriophages: Biology and Applications, CRC Press, Boca Raton, FL.
66. Teixeira, L. M.,, V. L. Merquior,, M. C. Vianni,, M. G. Carvalho,, S. E. Fracalanzza,, A. G. Steigerwalt,, D. J. Brenner, and, R. R. Facklam. 1996. Phenotypic and genotypic characterization of atypical Lactococcus garvieae strains isolated from water buffalos with subclinical mastitis and confirmation of L. garvieae as a senior subjective synonym of Enterococcus seriolicida. Int. J. Syst. Bacteriol. 46:664668.
67. Tison, D. L.,, M. Nishibuchi,, J. D. Greenwood, and, R.J. Seidler. 1982. Vibrio vulnificus biogroup 2: new biogroup pathogenic for eels. Appl. Environ. Microbiol. 44:640646.
68. Udey, L. R., and, J. L. Fryer. 1978. Immunization of fish with bacterins of Aeromonas salmonicida. Mar. Fish. Rev. 40:1217.
69. Vandepitte, J.,, P. Lemmens, and, L. de Swert. 1983. Human edwardsiellosis traced to ornamental fish. J. Clin. Microbiol. 17:165167.
70. Veenstra, J.,, P. J. Rietra,, C. P. Stoutenbeek,, J. M. Coster,, H. H. de Gier, and, S. Dirks-Go. 1992. Infection by an indole-negative variant of Vibrio vulnificus transmitted by eels. J. Infect. Dis. 166:209210.
71. Verner-Jeffreys, D. W.,, M. Algoet,, M. J. Pond,, H. K. Virdee,, N. J. Bagwell, and, E. G. Roberts. 2007. Furunculosis in Atlantic salmon (Salmo salar L.) is not readily controllable by bacteriophage therapy. Aquaculture 270:475484.
72. Verschuere, L.,, G. Rombaut,, P. Sorgeloos, and, W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 64:655671.
73. Vinod, M. G.,, M. M. Shivu,, K. R. Umesha,, B. C. Rajeeva,, G. Krohne,, I. Karunasagar, and, I. Karunasagar. 2006. Isolation of Vibrio harveyi bacteriophage with a potential for biocontrol of luminous vibriosis in hatchery environments. Aquaculture 255:117124.
74. Wagner, P. L., and, M. K. Waldor. 2002. Bacteriophage control of bacterial virulence. Infect. Immun. 70:39853993.
75. Wakabayashi, H.,, T. Toyama, and, T. Iida. 1994. A study on serotyping of Cytophaga psychrophila isolated from fishes in Japan. Fish Pathol. 29:101104.
76. Weinstein, M. R.,, M. Litt,, D. A. Kertesz,, P. Wyper,, D. Rose,, M. Coulter,, A. McGeer,, R. Facklam,, C. Ostach,, B. M. Willey,, A. Borczyk, and, D. E. Low. 1997. Invasive infections due to a fish pathogen, Streptococcus iniae. N. Engl. J. Med. 337:589594.
77. Wu, J.-L., and, W.-J. Chao. 1982. Isolation and application of a new bacteriophage, φpET-1, which infect Edwardsiella tarda, the pathogen of edward-siellosis, p. 817. In Council for Agricultural Planning and Development Fisheries Series no. 8, Fish Disease Research (IV). Council for Agricultural Planning and Development, Taipei, Taiwan.
78. Wu, J.-L.,, H.-M. Lin,, L. Jan,, Y.-L. Hsu, and, L.-H. Chang. 1981. Biological control of fish bacterial pathogen, Aeromonas hydrophila, by bacteriophage AH1. Fish Pathol. 15:271276.
79. Yamamoto, A., and, T. Maegawa. 2008. Phage typing of Edwardsiella tarda from eel farm and diseased eel. Aquac. Sci. 56:611612.
80. Yoshida, T.,, M. Endo,, M. Sakai, and, V. Inglis. 1997. A cell capsule with possible involvement in resistance to opsonophagocytosis in Enterococcus seriolicida isolated from yellowtail Seriola quinqueradiata. Dis. Aquat. Org. 29:233235.
81. Yoshida, T.,, Y. Yamada,, M. Sakai,, V. Inglis,, X. J. Xie,, S.-C. Chen, and, R. Kruger. 1996. Association of the cell capsule with anti-opsonophagocytosis in β-hemolytic Streptococcus spp. isolated from rainbow trout. J. Aquat. Anim. Health 8:223228.

Tables

Generic image for table
TABLE 1

Major bacterial pathogens of fish associated with human infections

Citation: Nakai T. 2010. Application of Bacteriophages for Control of Infectious Diseases in Aquaculture, p 257-272. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch13
Generic image for table
TABLE 2

Studies on phage therapy of bacterial infections in fish and shellfish

Citation: Nakai T. 2010. Application of Bacteriophages for Control of Infectious Diseases in Aquaculture, p 257-272. In Sabour P, Griffiths M (ed), Bacteriophages in the Control of Food-and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816629.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error